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ABSTRACT

Recently, we developed a simple isothermal nucleic
acid amplification reaction, primer generation-
rolling circle amplification (PG-RCA), to detect
specific DNA sequences with great sensitivity and
large dynamic range. In this paper, we combined
PG-RCA with a three-way junction (3WJ) formation,
and detected specific RNA molecules with high sen-
sitivity and specificity in a one-step and isothermal
reaction format. In the presence of target RNA, 3WJ
probes (primer and template) are designed to form a
3WJ structure, from which multiple signal primers
for the following PG-RCA can be generated by re-
peating primer extension, nicking and signal primer
dissociation. Although this signal primer generation
is a linear amplification process, the PG-RCA expo-
nentially can amplify these signal primers and thus
even a very small amount of RNA specimen can be
detected. After optimizing the structures of 3WJ
probes, the detection limit of this assay was
15.9zmol (9.55 x 10° molecules) of synthetic RNA
or 143zmol (8.6 x 10* molecules) of in vitro
transcribed human CD4 mRNA. Further, the applic-
ability of this assay to detect CD4 mRNA in a human
mRNA sample was demonstrated.

INTRODUCTION

Several mRNA quantification technologies have been
available including northern blot analysis, ribonuclease
protection assay, reverse transcriptase polymerase chain
reaction (RT-PCR) and DNA microarray (1-5).
Currently, real-time RT-PCR analysis is a gold standard
for RNA quantification and detection in the fields of fun-
damental research, drug discovery and molecular diagnos-
tics, and it is especially useful for quantifying small to

medium numbers of RNA targets with large dynamic
range and high sensitivity.

However, RT-PCR usually requires two separate reac-
tions, RT and PCR, in different buffers and temperatures;
therefore, it often causes long hands-on time for reaction
preparation and risk of cross-contamination among
samples. Although several one-step RT-PCR reagents
are commercially available and allow both RT and PCR
in a single tube without sample dilution or transfer
between the reactions, two-step RT-PCR is generally
more sensitive and specific than the one-step reaction
format. One of the major problems to use the one-step
reaction format is primer dimerization or mis-priming for-
mation during the RT step, which deteriorates the sensi-
tivity and accuracy of the following PCR, especially
problematic in real-time PCR using SYBR Green (6).

Rolling circle amplification (RCA) is a powerful iso-
thermal nucleic acid amplification technology utilizing
circular single-stranded DNA probes. Among several
modes of RCA proposed (7-11), hyper-branched RCA
(also known as ramification or cascade RCA) shows ex-
ponential signal amplification with great sensitivity (9,10).
In order to detect nucleic acid sequences, circular probes
can be obtained through circularization of padlock probes
in a separate ligation reaction; however, it is difficult to
conduct both reactions simultaneously (12). Also, ligation
reaction of padlock probes on RNA templates is not as
efficient as on DNA templates; therefore it may be difficult
to utilize conventional RCA for RNA detection yet
(13-15).

Recently, we developed a novel mode of RCA, dubbed
primer generation-rolling circle amplification (PG-RCA),
in which specific sample DNA are detected with high sen-
sitivity and wide dynamic range (16). By simple design of
circular probes and addition of a nicking enzyme, conven-
tional linear RCA was successfully converted to an
exponential amplification mode without complicated
topological factors. One of the distinctive advantages

*To whom correspondence should be addressed. Tel: +81 3 5452 5200; Fax: +81 3 5452 5209; Email: komiyama@mkomi.rcast.u-tokyo.ac.jp

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



e22  Nucleic Acids Research, 2012, Vol. 40, No. 3

over conventional nucleic acid amplification technologies
is being free from troublesome design and usage of
exogenous primers since ‘primers’ are generated succes-
sively during the reaction. However, PG-RCA can detect
only DNA sequences that carry nicking sites used in
PG-RCA because PG-RCA reaction cycle can be initiated
only from specific 3’ end sequences. Also, the same assay
scheme does not work to detect RNA because nicking
enzymes do not efficiently cleave RNA strands in RNA/
DNA duplexes. Recently, we demonstrated that supple-
mentation of a very low concentration of thermostable
RNaseH to a PG-RCA reaction allows RNA detection
in the same assay scheme by cleaving target RNA upon
hybridization with circular probes and initiating the
reaction cycle from the cleaved RNA strands (17).
However, the sequence recognition of RNaseH is not suf-
ficiently strict; therefore, many non-specific amplifications
are expected to occur when this reaction format is applied
to biological samples.

In this paper, target RNA specimens are detected with
high sensitivity and specificity by combining PG-RCA
technology with a three-way junction (3WJ) formation.
3WIJ probes (primer and template) are designed to form
a 3WI structure on target RNA, and DNA primers (signal
primers) for the following PG-RCA reaction are generated
from the 3WIJ structure by repeating primer extension,
nicking and signal primer dissociation. These signal
primers are, in turn, exponentially amplified in situ by
PG-RCA. As a result, the target RNA sequence is pre-
cisely and effectively detected in a one-step and isothermal
reaction format.

MATERIALS AND METHODS
Reagents

Oligonucleotides were purchased from Integrated DNA
Technologies, Trilink biotechnologies or Sigma Genosys.
Vent (exo-) DNA polymerase, Nb.Bsml and exonuclease
IIT were purchased from New England Biolabs. Circligase
ssDNA ligase, T4 DNA ligase and exonuclease I were
from Epicentre Biotechnologies. Rat spleen mRNA and
human spleen mRNA were from Clontech Laboratories.
Preparation of in vitro transcribed CD4 mRNA (742 bases
long) was described elsewhere (18).

Polyacrylamide gel analysis of 3WJ primer extension
and signal primer generation

Two-hundred nanomoles each of RNAS50, 3W1J primer P1
and template T1b were mixed in different combinations in
10ul of PG-RCA buffer [20mM Tris—HCl buffer
(pH 8.8), 10mM (NH4),SO4, 10mM KCI, 6mM
MgSOy, 0.1% Triton X-100 and 0.01% SYBR Green 1|
(Invitrogen)], and incubated at 37°C for 30min after
initial denaturation at 80°C for 3min. To initiate a
PG-RCA reaction, 10pul of PG-RCA buffer containing
80uM dNTP, 0.4U Vent(exo-) DNA polymerase and
2 U Nb.Bsml, was mixed to the samples and incubated
at 60°C for 0, 15 and 30min. The reaction products
were analyzed by 15% denaturing polyacrylamide gel
with SYBR gold staining (Invitrogen).
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RNA detection by 3WJ probes and PG-RCA

Circular probe was prepared by self-ligation of a
5'-phosphoriated circular probe precursor (Table 1) as
described elsewhere (16,17). Sample RNA and 1nM
each of 3WJ probes were mixed in Sul of PG-RCA
buffer and incubated at 37°C for 90min after initial
denaturation at 80°C for Smin. PG-RCA reaction was
conducted at 60°C by adding 5 ul of PG-RCA buffer con-
taining 0.8 uM each dNTP, 15nM circular probe, 0.05U
Vent (exo-) DNA polymerase and 1 U Nb.Bsml to the
RNA samples. The fluorescent intensity of each reaction
was monitored in MyiQ real-time PCR instrument
(Bio-rad) with a SYBR green filter set. Threshold time
(Tr) was estimated from the reaction time when the fluor-
escent intensity of the reaction exceeds an arbitrary thresh-
old, which was set right above the background fluorescent
intensity.

RESULTS

General assay scheme of RNA detection using 3WJ
probes and PG-RCA

We recently developed a novel isothermal nucleic acid
amplification reaction, PG-RCA to detect DNA (16).
It may be possible to apply this technology to RNA detec-
tion using reverse transcription to convert RNA to cDNA
before PG-RCA detection. However, in order to detect
RNA in a one-step reaction using PG-RCA, we utilized
3WIJ probes in this manuscript. 3WJ probes, which
comprise of 3WJ primer and 3WJ template, are designed
to have 7-base-long complementary sequences each other.
At the reaction temperature of PG-RCA (60°C), 3WJ
probes do not associate with each other because the
melting temperature of the complementary sequence is
set well below the reaction temperature. However, when
target RNA exists, 3WJ probes can hybridize stably to the
RNA in close proximity; therefore, the short complemen-
tary sequences of 3WJ probes can form a double-strand
structure even at the reaction temperature, resulting in a
3WIJ structure among the target RNA and 3WJ probes
(Figure 1A).

5" end sequence of 3WJ template is designed to contain
a nicking site and a complementary sequence of DNA
primer for circular probe (signal primer). Therefore,
under the PG-RCA reaction condition containing DNA
polymerase and nicking enzyme, a reaction cycle of primer
extension, nicking reaction and signal primer dissociation
can generate signal primers continuously from the 3WJ
structure (Figure 1B). Although this signal primer gener-
ation is inherently linear, the following PG-RCA reaction
can detect very low number of generated signal pri-
mers through its exponential amplification mechanism
(Figure 1C). In this way, target RNA can be detected by
PG-RCA using 3WJ probes in a one-step reaction format.

Design of 3WJ probes to detect human CD4 mRNA

3WJ probes P1 and T1b were designed to target human
CD4 mRNA for proof of concept (Table 1). Target
RNA used for demonstration and reaction optimization



PAGE 3 0F 10

Table 1. Oligonucleotide sequences® ©
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Oligonucleotide Sequence (5 to 3')

Circular probe
Circular probe precursor
Mock gene
RNAS0
3W1J probe for RNAS50 and Human CD4 mRNA
3WJ primer PI
3WIJ template Tla

p-GCTGTGCTCAAGGTGTGTGAATGCTGTGCTCAAGGTGTGTGAATGCTGTGCTCAAGGTGTGTGAAT
UCUUCCUACCCUUCCUCACCACUUCCCUCAGUCCCAACUCCAAAAAAAAA

GGAGTTGGGACTGAGGGTTGATTATG
TGCTCAAGGTGTGTGAATGCTTTTTCATAATCGTGGTGAGGAAGGGTAGGAAGA

3WIJ template Tlb

TGCTCAAGGTGTGTGAATGCTTTTTCATAATCGTGGTGAGGAAGGGTAGGAAGATTTTT

3WJ template Tlc

TGCTCAAGGTGTGTGAATGCTTTTTCATAATCGTGGTGAGGAAGGGTAGGAAGATTTTTp

3WIJ template T1d

TGCTCAAGGTGTGTGAATGCTTTTTCATAATCXGTGGTGAGGAAGGGTAGGAAGATTTTTp

“p’ indicates a 5’ or 3’ phosphate modification.
Bold characters indicate the recognition sequence of Nb.Bsml.

“Solid underlines indicate hybridization sequences between three-way junction probes.
dperforated underlines indicate the template sequences for signal primer generation.

€,

x” indicates a C3 linker.
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Figure 1. RNA detection mechanism by three-way junction probe and primer generation-rolling circle amplification. (A) Three-way junction (3WJ)
probes (primer and template) are designed to form a 3WJ structure on target RNA, however they do not interact each other without target RNA
because their complementary sequence is only 6-8 bases. (B) Addition of DNA polymerase and nicking enzyme initiates a reaction cycle of primer
extension, nicking reaction and signal primer generation under an isothermal condition to generate signal primers. (C) The generated signal primers

can be detected by primer generation-rolling circle amplification.

is a 50-base-long synthetic RNA that carries CD4 mRNA
sequence (RNAS50). Using these probes and RNA, each
step of RNA detection scheme in Figure 1 was
investigated.

First, we confirmed the complex formation among
RNAS50 and 3WJ probes in Figure 1A by melting curve
analysis using SYBR Green I dye (Supplementary infor-
mation 1). When RNAS50 and 3WIJ probes are mixed,
strong fluorescent intensity was observed between 40 and
70°C by forming stable double strands, and decreased

rapidly as temperature increased above 70°C by dissoci-
ation of the complex structure. Observed melting tempera-
ture of the complex structure was 70.3°C, suggesting that
RNAS50 and 3WJ probes can form stable complex struc-
tures at the reaction temperature of PG-RCA (60°C).
Similar melting curves were observed between RNASO
and either of 3WJ probes, and observed melting tempera-
tures were 69.0°C for 3WJ primer and 69.8°C for 3WJ
template. On the other hand, when only 3WJ probes
were mixed, much weaker fluorescent intensity was
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Figure 2. Confirmation of 3WJ primer extension and signal primer generation products. 3WJ primer P1, 3WJ template T1b and RNAS50 were mixed
in different combinations [(A): P1/T1b/RNASO0, (B): P1/T1b, (C): PI/RNASO and (D): TIb/RNAS0] and incubated to form a 3WJ structure. Signal
generation reaction was conducted at 60°C for 0, 15 and 30 min by adding an enzyme mix [0.2 U Vent(exo-) DNA polymerase and 1 U Nb.Bsml] to
the samples. The reaction products were analyzed on 15% denaturing polyacrylamide gel. P1* indicates a reaction product through primer extension
of 3W1J primer and SP indicates signal primer generated from 3WJ structure. The numbers in parentheses indicate the length or expected length of
each probe or reaction product. Lane M is 20-100nt oligonucleotide marker.

observed between 40 and 70°C, suggesting that no double
strand was formed without RNASO0.

To confirm that 3W1J probes form a 3WJ structure only
when target RNA exists and signal primers are generated
through a reaction cycle of primer extension, nicking
reaction and signal primer dissociation (Figure 1A and
B), a mixture of RNAS50 3WIJ probes P1 and Tlb was
incubated at 60°C with DNA polymerase and nicking
enzyme (40 pM dNTP, 0.2 U/10 pl Vent(exo-) DNA poly-
merase and 1 U/10pul Nb.Bsml) after complex structure
formation and analyzed on 15% denaturing polyacryl-
amide gel (Figure 2). Within 15min, the majority of
3WIJ primer disappeared and an ~50-base-long product
was observed because DNA polymerase extended the 3
end of 3WJ primer on the 3WJ template and converted the
3WIJ primer to a 51-base-long product, which is expected
from the 3WJ probe sequences. Also, an ~20-base-long
product was accumulated along with the reaction, which
is assumed to be signal primer (19 base long expected from
the 3WIJ probe sequences). On the other hand, when
only 3WJ probes were incubated with DNA polymerase
and nicking enzyme, both of the 50 and 20-base-long
products were not observed, suggesting that, without
target RNA, 3WJ probes do not interact with each other
and 3WIJ primer extension and signal primer generation
do not occur. Similarly, when RNAS50 and either of 3WJ
probes were incubated with the enzymes, no new products
were observed.

In order to detect RNA in a single-step reaction format,
signal primer generation is designed to work concurrently
with PG-RCA. PG-RCA utilizes a very limited amount of
dNTP and DNA polymerase to improve the assay sensi-
tivity by suppressing the background amplification of
PG-RCA as described before (16). Therefore, the signal
primer generation reaction was further investigated
under the PG-RCA reaction condition [0.4uM dNTP,
0.05U Vent(exo-) DNA polymerase and 1U Nb.Bsml]
by ligation-qPCR (Supplementary Information 2).

Positive control (250 amol RNAS0) and negative control
(no RNA) samples were incubated with 3WJ probes P1
and T1b for complex formation, and then incubated under
the PG-RCA reaction condition without circular probe
for signal primer generation. Using signal primer-specific
ligation-qPCR, which was developed to detect signal
primers in the presence of excess complementary
sequence (3WJ template), it was confirmed that Ct value
of the positive control decreased along with the signal
primer generation reaction. Using a standard curve
prepared using synthetic signal primer, the signal primer
generation speed was estimated at 0.69 amol/min for the
positive control. On the other hand, Ct value of the
negative control did not change meaningfully along with
the reaction.

These data indicate that when target RNA exists, a 3WJ
structure is formed among target RNA and 3WJ probes at
60°C and DNA polymerase and nicking enzyme catalyze a
signal primer generation reaction; however, without target
RNA, 3W]J probes do not associate with each other and
3WIJ primer extension or signal primer generation does
not occur.

Finally, we investigated RNAS50 detection by 3W1J probes
and real-time PG-RCA concurrently (Figure 1A-C);
0-250 amol RNASO was incubated with 3WJ probes P1
and T1b after initial denaturation, and then real-time
PG-RCA was conducted by adding a PG-RCA reaction
mix (Figure 3). Typical PG-RCA amplification curves
were observed and synchronized very well among tripli-
cate experiments containing the same amount of RNAS50
as well as in our previous study for DNA detection (16).
Furthermore, the abrupt signal increases appeared earlier
when the reaction contained a larger amount of RNASO0.
Threshold time (77: the time when the fluorescent inten-
sity exceeds an arbitrary threshold) was defined in analogy
to threshold cycle (Cr) in real-time PCR analysis (19), and
plotted against the amount of RNAS50 on a log scale
(Figure 3B). We obtained a good lincarity between
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Figure 3. Detection of RNAS0 by 3WJ probe and real-time PG-RCA. (A) Different concentrations of RNAS50 were analyzed using 3WJ probe P1
and T1b at 37°C for 90 min following initial heat denaturation at 80°C for Smin. PG-RCA was conducted at 60°C by adding a PG-RCA reaction
mixture to the RNA samples and the fluorescent intensities of each reaction were monitored in real time. The RNAS50 concentration in each reaction
was prepared by 10-fold serial dilution from 250 amol to 25zmol, and their signal amplification curves are indicated by colored lines (red, orange,
green, light blue and blue, respectively). Negative controls are indicated by gray lines. (B) Threshold time 77 (the reaction time when fluorescent
intensity of each reaction exceeds an arbitrary threshold) was plotted against the RNASO concentration (S) of the reaction. The solid line indicates
linear least squares fitting between 250 zmol and 250 amol RNAS50 and its formulation is Tr = —25.2 log;o(S)+ 110 (R> = 0.989). The perforated line
indicates average T value of the negative controls. Detection limit is 76.5zmol (4.59 x 10* molecules) of RNAS50 by calculation from the intersection

of both lines.

250 zmol and 500 amol RNAS0 in linear least squares fitting
(R* = 0.989) and detection limit of PG-RCA was obtained
as 76.5zmol (4.59 x 10* molecules) of RNAS50 by
calculating from the intersection of the fitting and average
Tt value of the negative controls. These data indicate that
the whole process of 3WIJ structure formation, signal
primer generation and PG-RCA can proceed quantitatively
corresponding to the amount of RNAS5O; therefore it is
possible to apply this assay to RNA quantification as well.

Suppression of background amplification using modified
3WJ templates

We observed a background signal amplification without
target RNA, which is as strong as 76.5zmol RNAS0
(the detection limit described above); however, it seemed
to be different from that of PG-RCA observed before
because the background signal intensities differ by ap-
proximately two to three orders (Supplementary informa-
tion 3) (16). It was confirmed that signal primers were
generated from 3WJ template (T1b) independent of
target RNA or 3WIJ primer, and increased the background
signal amplification of PG-RCA (Supplementary informa-
tion 3). Therefore, two modified 3WJ templates were
designed to minimize this false signal primer generation
(Table 1). The first modified 3WJ template carries a
3’-phosphate poly(dT) in order to prevent 3’ end extension
(T1c), assuming that the complementary strand of 3WJ
template was synthesized through hairpin/dimer forma-
tion of its 3’ end sequence. In addition to the 3’-phosphate
poly(dT) modification, the second one carries an internal
C3 linker in order to stop complementary strand synthesis
before DNA polymerase reaches the template region for
signal primer generation (T1d), assuming that the comple-
mentary strand synthesis of 3WJ template is initiated by
ab initio DNA polymerization, which was suggested to
cause the background amplification of PG-RCA in our
previous study (16). In order not to affect 3WJ formation,
the internal C3 linker was introduced at the 3W1J junction
to form a bulge loop.

Those modified 3WJ templates were compared with
3WJ templates without a 3’-poly(dT) (Tla) and with a
3-poly(T) (Tlb) by real-time PG-RCA analysis of
positive control (50amol RNAS0) and negative control
(no RNA) samples (Figure 4). Tt values of the positive
controls were not different meaningfully among the 3WJ
templates, suggesting that those modifications may not
affect 3WJ structure formation significantly. Only T1d
gives slightly larger Tt value of the positive control than
the others maybe because the internal C3 linker modifica-
tion may to some extent affect 3WJ formation. On the
other hand, 7t values of the negative controls increased
significantly by introducing a poly(dT) tail (Tla—Tl1b), a
3" phosphate (T1b—TIlc) and an internal C3 linker
(Tlc—TI1d). Apparently, each of those modifications con-
tributes to the suppression of the background signal
primer generation associated with 3W1J template.

In order to further evaluate the modified 3WJ templates
Tlc and TI1d, 0-500amol RNAS50 were analyzed by
real-time PG-RCA and detection limits were calculated
for both 3WIJ templates (Figure 5). In comparison with
T1b (Figure 3), Tt values of the negative controls
increased and the background signal amplifications were
successfully suppressed for both of Tlc and T1d, being
consistent with the results in Figure 4. The obtained de-
tection limit was 15.9 zmol (9.55 x 10 molecules) RNAS0
for Tlc and 18.2zmol (1.09 x 10* molecules) RNA50 for
T1d. Although T1d suppressed the background signal
amplification more than Tlc, Tt values of the RNAS0
positive samples for T1d were always slightly larger than
those for Tlc, therefore Tlc indicated a lower detection
limit-than T1d.

Human CD4 mRNA detection by 3WJ probes and
PG-RCA

The applicability of this RNA detection method to real
mRNA samples was investigated. First, it was investigated
whether excess mRNA affects RNA detection by 3WIJ
probes and PG-RCA. Positive control (50 amol RNAS50)
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Figure 5. RNA detection by modified 3WJ templates. (A and C) Different concentrations of RNAS50 were analyzed by the modified 3WJ probes (in
Table 1). The reaction condition is the same as in Figure 3 except using modified 3WJ template Tlc (A and B) or Tld (C and D). The RNASO
concentration in each reaction was prepared by 10-fold serial dilution from 500 amol to 50 zmol, and their signal amplification curves are indicated by
colored lines (red, orange, green, light blue and blue, respectively). Negative controls are indicated by gray lines. (B and D). Threshold time 7t was
plotted against the RNASO concentration (S) of the reaction. Solid lines indicate linear least squares fitting between 50 zmol and 500 amol RNAS50
and their formulations are Tr = —23.2 log;o(S)+ 109 (R* = 0.993) and Tt = —23.9 log;o(S)+ 117 (R* = 0.991), respectively. Perforated lines indicate
average T values of the negative controls. Detection limits are 15.9 zmol (9.55 x 10° molecules) of RNA50 for Tlc (B) and 18.2zmol (1.09 x 10*
molecules) of RNAS50 for T1d (D) by calculation from the intersections of both lines.

and negative control (no RNAS50) were analyzed in the
presence of 1-4000 pg rat spleen mRNA (Figure 6). No
mRNA similar to RNAS5O is expressed in rat mRNA ac-
cording to the BLAST program (http://blast.ncbi.nlm.nih.
gov); therefore, it was expected that 3WJ probes P1 and
Tlc do not associate with rat mRNA and initiate
PG-RCA reaction cycle. Indeed, 77 values of the
positive and negative controls were not affected in the
presence of 1-1000pg rat mRNA, suggesting that
sequence recognition by the 3WJ probes is very specific
to target RNA. Even in the presence of more than 1000 pg

rat mRNA, Tt value of the positive control was signifi-
cantly lower than that of the negative control, therefore
specificity of the 3WJ probes still remains the same;
however, both Tt values were larger than in the
presence of <1000 pg rat mRNA. Since similar increase
of Tt values were observed when sample DNA was
analyzed by PG-RCA in the presence of excess mRNA,
total RNA or rRNA (data not shown), the excess rat
mRNA may affect the PG-RCA reaction speed by inhibit-
ing hybridization between circular probe and linear RCA
product, but not 3WJ structure formation.
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least squares fitting between 250 zmol and 250 amol CD4 mRNA and its formulation is Ty = —17.3 log;o(S) + 134 (R> = 0.953). The perforated line
indicates average T value of the negative controls. Detection limit is 143 zmol (8.60 x 10* molecules) of RNAS50 by calculation from the intersection
of both lines. (C) CD4 mRNA expressed in human mRNA was analyzed using 3WJ probe Pl and Tlc. Human mRNA used in this experiment was 0
(gray), 10 (green), 100 (orange) and 1000 pg (red). (D) Threshold time 7t was plotted against the human mRNA concentration (S) of the reaction.
The solid line indicates linear least squares fitting between 10 and 1000 pg human mRNA and its formulation is 77 = -3.67 log;o(S)+ 146
(R* = 0.396). The perforated line indicates average T value of the negative controls.

Detection of 742-base-long in vitro transcribed human
CD4 mRNA, which is expected to take complicated sec-
ondary structure according to the mfold program (20),
was investigated by 3WIJ probes and PG-RCA (Figure
7A and B). RNAS0O is a mock gene of human CD4
mRNA, therefore 3WJ probes Pl and Tlc can be
applied to detect CD4 mRNA (0-250 amol) without any
modification. A good dose-response data were obtained
between 250 zmol and 250 amol. The obtained detection

limit was 143 zmol (8.60 x 10* molecules) CD4 mRNA,
which was slightly lower than that of RNAS5O (Figure
SA and B), probably because of the complicated second-
ary structure of CD4 mRNA.

Lastly, detection of CD4 mRNA naturally expressed in
human mRNA was investigated (Figure 7C and D).
Human mRNA (0-1000pg) was analyzed using 3WIJ
probes P1 and Tlc, and it was confirmed that 7t values
of human mRNA samples were meaningfully lower than
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that of the negative controls, suggesting that CD4 mRNA
naturally expressed in human mRNA was successfully
detected. Unfortunately, its dose—response trend was not
as linear as those of RNAS5O or in vitro transcribed CD4.
This may be because CD4 gene expressed in human
mRNA is more than 3000 base long and expected to
have much more complicated RNA structure than
RNASO and in vitro transcribed CD4 (742 base long),
therefore 3WJ formation might be more difficult. It is
also possible that the mRNA amounts in the reaction
might affect the PG-RCA reaction speed as observed in
Figure 6 as well.

DISCUSSION
RNA detection by 3WJ probes and PG-RCA

In this manuscript, we introduced 3WJ probes to detect
desired RNA sequences by PG-RCA. 3WJ probes (3WJ
primer and template) hybridize to target RNA in close
proximity and form a 3WIJ structure with target RNA.
Under the reaction condition of PG-RCA, signal
primers can be generated from the 3WJ structure to
initiate the reaction cycle of PG-RCA. We demonstrated
that a combination of 3WJ probes and PG-RCA allows
detection of specific RNA sequences using 50-base-long
synthetic RNA (RNAS50) and in vitro transcribed CD4
mRNA with the sensitivities of 15.9 zmol and 143 zmol,
respectively.

Using 3WJ probes, it is possible to detect any RNA
sequences by changing the hybridization sequences of
3WIJ probes to target RNA. Also, 3WJ probes can recog-
nize not only RNA but also DNA in the same manner,
therefore the limitation of PG-RCA in DNA detection
described before is not an issue any more, where target
DNA requires a nicking sequence (16). Unlike other
nucleic acid detection methods, this method does not use
target nucleic acids as templates for signal amplification;
therefore, it may be possible to detect even heavily
damaged nucleic acids as long as 3WJ probes can hybrid-
ize to the target sequences.

3WIJ probes can recognize target RNA very specifically
even in the presence of excess non-target mRNA. Such
specificity is necessary to detect a low copy number of
target RNA because non-target mRNA such as house-
keeping genes is expected to exist in excess in biological
samples. Each of 3WJ probes may not recognize target
RNA specifically and may hybridize to non-target RNA
or even to non-target regions of the target RNA because
these probes are regular DNA probes without any nucleo-
tide modifications and hybridization condition is not strin-
gent. However, non-specific bound 3WJ probes do not
initiate signal primer generation or PG-RCA because it
is very unlikely for both probes to be in close proximity
or interact with each other on non-target sequences.
Instead, only target RNA promotes both 3W1J probes to
be in close proximity for signal primer generation and
PG-RCA. This recognition mechanism can be categorized
as proximity assay as well as ligation-PCR, proximity
ligation assay, open sandwich ELISA or SMART assay
(21-24).
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3WJ structure formation mechanism

It was confirmed that 3WJ probes and target RNA form
stable double strands at 60°C by melting curve analysis;
however, we were not able to detect a melting peak
that can be assigned to the 7-base-long complementary
sequences of 3WJ probes (Supplementary information 1),
which may require alternative analytical method with
higher resolution such as high-resolution melting curve
analysis (24). Since primer extension and signal primer
generation were observed, we concluded that a 3WJ struc-
ture is formed at the reaction temperature (Figure 2).

In order to discuss the stability of the 3WJ structure, the
melting temperatures of the complementary sequences
of 3WJ probes before (7 bases long) and after primer
extension (13 bases long) were calculated assuming these
sequences are connected by 0-100-base-long poly(dT)
linker using the mfold program (Supplementary informa-
tion 4) (21). When target RNA exists, the 7 base sequences
are in close proximity due to the stable double-strand for-
mation between 3W1J probes and target RNA, therefore it
can be considered that the complementary sequences are
connected by a short linker in order to predict the melting
temperature. When the linker length is 4 bases long, the
melting temperature reaches maximum (56.5°C), which is
slightly below the reaction temperature of PG-RCA.
However, when the complementary sequences are extended
to 13 bases long by primer extension, the melting tempera-
ture becomes 66.9°C or above the reaction temperature.
Therefore, it is suggested that the 7 base complementary
sequences of 3WIJ probes may not form a stable double
strand at 60°C, but probably in equilibrium between dis-
sociation and hybridization (Supplementary informa-
tion 4). Only after primer extension, the 3WJ structure
may be stabilized by the extended complementary se-
quences. Considering this 3W1J structure formation mech-
anism, the distance between the hybridization sites
between 3WJ probes and target RNA may play a key
role to form a stable 3WJ structure. Indeed, the 3WJ
probes used in this study were designed to hybridize to
the target RNA with a distance of 2 bases between
them; however, the 3WJ probes designed to hybridize
without any space failed to detect RNA under the same
reaction condition (data not shown). On the other hand,
when target RNA does not exist, 3WJ probes are not in
close proximity, therefore it can be considered that the
7-base-long sequences are connected by an infinite
linker. When the linker length is more than 80 bases
long, the melting temperature of the 7-base-long sequences
is predicated to be <30°C, which is well below the reaction
temperature of PG-RCA. Therefore, without target RNA,
3WJ probes may not interact with each other at all.

Suppression of background amplification and improvement
of assay sensitivity

The sensitivity we obtained for RNA detection in this
study was 15.9zmol RNAS50. Since PG-RCA is able to
detect DNA with greater sensitivity (84.5ymol synthetic
DNA) as described before (16), the sensitivity of RNA
detection can be improved further. In this study, the back-
ground signal amplification associated with 3WJ template
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was observed, which was estimated almost 100 times
stronger than that of PG-RCA itself, and successfully sup-
pressed by introducing chemical modifications such as a
3’-phosphate poly(dT) tail and an internal C3 linker to
3WJ template. Therefore, inhibition of complementary
strand synthesis by modified 3WJ template may be one
of the ways to improve the sensitivity of RNA detection
further. For example, 3WJ template with non-natural nu-
cleotide modifications such as peptide nucleic acid (PNA)
and locked nucleic acid (LNA) may be useful to prevent
complementary strand synthesis further as DNA polymer-
ase does not polymerize on these modified nucleotides in
addition to the improvement of hybridization specificity.

Also, the signal generation reaction efficiency may
affect the assay sensitivity as well. Under the PG-RCA
reaction condition, the signal primer was generated at
0.69 amol/min from 250amol RNAS50, or only about
0.33 molecules of signal primer per each RNAS50
molecule were generated in a 2-h reaction. This means
that the reaction efficiency of signal primer generation
has some space for further improvement by optimizing
the reaction condition. For example, Bst DNA polymer-
ase is known to have stronger strand displacement activity
than Vent(exo-) DNA polymerase used in this study;
therefore, the use of Bst DNA polymerase may improve
signal primer generation efficiency further by dissociating
the signal primer from 3WJ template more actively. Since
we recently confirmed that the use of Bst DNA polymer-
ase accelerates PG-RCA reaction speed without
compromising the sensitivity of DNA detection (unpub-
lished data), it may be possible to improve not only sen-
sitivity but also reaction speed for RNA detection
although the reaction condition requires further optimiza-
tion for this enzyme.

CONCLUSION

In this manuscript, we presented a novel RNA detection
method using 3WJ probes and PG-RCA in a one-step and
isothermal reaction format. The use of 3WJ probes
expanded the applicability of PG-RCA to detection of
desired RNA sequences without additional enzymes or a
complicated protocol, and thus both versatility and feasi-
bility in RNA assay are sufficiently fulfilled. This assay
method is especially advantageous to judge whether
target RNA is, to notable extent, expressed in clinical
samples in molecular diagnostics. Furthermore, detection
of target DNA in cell extracts is also facilitated by this
method, since no nicking sequence is required in the DNA
sample and thus one of the most critical limitations of
PG-RCA can be solved. Therefore, the combination of
3WIJ probes and PG-RCA can be a useful nucleic acid
detection technology in the field of molecular diagnostics.
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