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A B S T R A C T   

Panduratin A from Boesebergia rotunda was recently reported as a potent anti-SARS-CoV-2 com-
pound. However, the molecular mechanisms underlying the inhibition by Panduratin A and its 
target remained unclear. Molecular docking calculations were performed between panduratin A 
and five important proteins, i.e., main protease (Mpro), papain-like protease (PLpro), receptor 
binding domain (RBD) of spike proteins, RNA-dependent-RNA-polymerase (RdRp), and 2′-O- 
methyltransferase (MTase). The estimated binding free energy and the interaction networks 
extracted from the best docking mode for each complex suggested that MTase was the most 
probable target for panduratin A inhibition. To further validate the ability of panduratin A to 
inhibit MTase, molecular dynamics (MD) simulations and binding free energy calculations were 
performed for panduratin A-MTase complex, in comparison with another MTase complex with 
sinefungin as a positive control. Chemical features of panduratin A and sinefungin were compared 
for their contribution in MTase binding. It was found that both molecules could bind to the S- 
Adenosyl methionine (SAM) binding pocket and prevent the SAM entrance co-substrate, which 
could eventually halt the function of MTase. Despite a slightly weaker binding free energy, the 
equilibrated positional binding of panduratin A was found at a closer distance to the active sites. 
Therefore, this study proposed MTase as a possible target of panduratin A, along with the 
mechanisms of inhibition, prompting another future in vitro study as a verification.   

1. Introduction 

The new coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
dramatically spread worldwide. As a result, the World Health Organization (WHO) raised the severity level of COVID-19 to a pandemic 
disease [1]. SARS-CoV-2 is an enveloped, positive-sense single-stranded RNA virus [2]. The viral RNA genome contains approximately 
30,000 nucleotide bases and 11 open reading frames (ORF). The replicase polyprotein consisted of six functional ORFs: replicase 
(ORF1a/ORF1b), spike (S), envelope (E), membrane (M), and nucleocapsid (N) [3,4]. Ribosomal frameshifting-dependent translation 
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of the replicase genes ORF1a and ORF1b forms two polyproteins, pp1a and pp1ab, which are cleaved into 16 nonstructural proteins 
(nsp1-16) by the viral papain-like protease (PLpro, nsp3) and main protease or 3C-like protease (Mpro or 3CLpro, nsp5) [5]. 

The SARS-CoV-2 infected the host cell with the glycosylated spikes (S) protein, which extended from the coronavirus particles’ 
envelope. The spike protein is strongly related to human pathogens due to its ability to bind with an Angiotensin-converting enzymes-2 
(ACE-2) on a human cell surface, which leads to the fusion of viral and cell membranes [6,7]. Furthermore, other crucial viral proteins 
of the SARS-CoV-2 for the viral life cycle were the RNA dependent RNA polymerase (RdRp) (nsp12), which initiates viral replication 
and transcription [8], and RNA methyltransferases (Mtase or nsp16), which produce new full-length nucleocapsid-encapsidated viral 
RNA genome in the endoplasmic reticulum (ER) involved in several biological processes such as viral signal transduction, nucleic acid 
processing, chromatin remodeling, metabolism, detoxification, and mRNA capping [9,10]. The receptor binding domain (RBD) of 
spike proteins, RdRp, MTase, and PLpro and Mpro, were shown to play important roles in the SARS-CoV-2 infection and life cycles and 
thus became the targets for drug development. 

On November 24, 2021, WHO reported the new variant of concern B.1.1.529, known as omicron. Another dramatic spread caused 
by omicron was in concurrence with the 11 mutations in the RBD of spike proteins, binding to the ACE2 and other human receptors 
during viral infection. Recent studies showed that a mutation replacing a glutamine with an arginine at position 498 (Q498R) resulted 
in an increase of ACE2 binding affinity by more than 1000-fold when combined with the N501Y mutation [11,12]. Furthermore, other 
mutations also caused the omicron variant to evade vaccinations and immune systems [13]. Fortunately, the high binding affinity on 
human receptors should also hamper the ability of omicron to penetrate deep into lung tissues [14]. Thus, the symptoms of omicron 
became 91% less fatal than the delta variant, and COVID-19 became more likely a wider spreading but less severe endemic. 

Therefore, herbal medicine could be another good choice for boosting immunity against the COVID-19 variants due to lower prices 
and fewer side effects. Apart from the experimental studies on testing the bioactivities of the herbal extract on COVID-19, compu-
tational approaches were used to gain insight into the inhibition mechanisms at the molecular level. The examples included a study by 
Almeida-Neto et al. that discovered the molecular mechanisms of 4′-acetamidechalcones on inhibiting critical enzymes during the 
post-translation process of SARS-CoV-2 virus [15]. Another study by Nouadi et al. employed the molecular docking approach to predict 
the potential treatment for COVID-19 by compounds from medicinal plants in Morocco, including taxol, rutin genkwanine, and 
luteolin-glucoside [16]. Considering the structure of the repurposed nucleoside analogs, including remdesivir, the 
RNA-dependent-RNA-polymerase (RdRp) could also be targeted and also had proven effective in clinical trials. Gao et al. [18,19] used 
a comparative analysis model of the remdesivir-RdRp complex to design new antiviral therapeutics that target viral RdRp. Similarly, 
Singh et al. [20] used molecular docking to compare the binding affinity and interaction networks of selected tea bioactive compounds 
with the standard molecule sinefungin to demonstrate their ability to inhibit the non-structural protein 16 (nsp16) of SARS-CoV-2. 

This study focused on another herbal medicine of great interest in Thailand, inspired by a recent work of Kanjanasirirat et al. (2020) 
[21], which reported a potent anti-SARS-CoV-2 activity of panduratin A from Boesebergia rotunda. The exact target protein inhibited by 
panduratin A and the molecular mechanisms of inhibition remained unidentified. Therefore, inhibition of panduratin A will be 
theoretically investigated at the molecular level using molecular docking and atomistic molecular dynamics (MD) simulations to 
analyze the intermolecular interactions between panduratin A and five candidates for protein target: (i) RBD of a spike protein, (ii) 
Mpro, (iii) PLpro, (iv) RdRP, and (v) MTase, identified earlier as essential parts for COVID-19 infection and viral life cycle. A total 
understanding of inhibition mechanisms at the molecular level should provide insight into the development of panduratin A as an 
immunity booster or to reduce the symptom of COVID-19 infection. 

2. Material and methods 

2.1. Compounds and protein target models preparations 

The three-dimensional structure of a panduratin A molecule for molecular docking calculation was obtained from the PubChem 
database. Then, the molecular structures were optimized by the MMFF94 force field implemented within the Avogadro software. 
Crystal structures of some important protein targets for panduratin A were retrieved from the Protein Data Bank (https://www.rcsb. 
org/): the SARS-CoV-2 spike receptor-binding domain bound with ACE2 (PDB ID: 6M0J), SARS-CoV-2 main protease (Mpro) (PDB ID: 
6LU7), the enzyme SARS-CoV-2 papain-like protease (PLpro) (PDB ID: 6WX4), RNA-dependent RNA polymerase (RdRP) (PDB ID: 
4WTG), 2′-O-methyltransferase (nsp16-nsp10 heterodimers)) (PDB ID: 6WKQ). Then, the protein structures were prepared for mo-
lecular docking calculations by removing all water and non-protein residues. 

2.2. Molecular docking 

Molecular docking was employed as a tool for the first-step prediction of compound binding postures to the target proteins of SARS- 
CoV-2. Firstly, three-dimensional coordinates of compounds and target proteins were imported to AutoDockTools [22] for docking 
setting up; Gasteiger partial charges were assigned to all-atom, and non-polar hydrogen atoms were merged with carbon atoms using 
the united atom representation to reduce the degrees of freedom. The interaction interface residues were then defined within a 
three-dimensional grid that limit the atomic positions of the docked compounds. The search space was created for each docking 
calculation by setting the coordinates of the box center at a sidechain atom of a catalytic residue and setting the search space dimension 
to cover the binding pocket. The search spaces for the five target proteins were set to (1) dimension 26 Å × 40 Å × 18 Å, centered at 
− 36.686, 30.239, − 3.055 (XYZ coordinates), for the spike protein (6M0J), (2) dimension 26 Å × 24 Å × 32 Å, centered at − 18.503, 
16.174, 64.314 (XYZ coordinates) for Mpro (6LU7), (3) dimension 26 Å × 16 Å × 34 Å centered at 9.087, − 19.201, − 39.27 (XYZ 
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coordinates) for PLpro (6WX4), (4) dimension 40 Å × 40 Å × 40 Å centered at 185.542, 170.172, 159.465 (XYZ coordinates) for RdRp 
(7L1F), and (5) dimension 36 Å × 28 Å × 40 Å centered at 91.817, 10.607, − 0.713 (XYZ coordinates) for nsp16 interface (6WKQ). 
Then, molecular docking with the Lamarckian genetic algorithm and knowledge-based scoring function was performed using the 
AutoDock Vina software by a modified protocol from Muhammad et al. (2020) [23]. The best 20 conformers of the compound-target 
protein complex, ranked by the estimated binding free energy score, will be generated during the docking process and were visualized 
by the AutoDockTools program. Finally, the protein target with the best binding energy score among all five docking calculations was 
chosen as the starting structure for an explicitly solvated molecular dynamics simulation. 

The binding models were examined using PyMOL Stereo 3D Quad-buffer (licensed version 2.5.1, Schrödinger Inc, USA) and 
Discovery Studio 2021 (free version, BIOVIA Inc, China) was used to predict the interaction network between the target proteins and 
ligands. 

2.3. Molecular dynamics (MD) simulations and analysis 

Explicitly solvated MD simulations for the protein-ligand complexes of 1) the selected protein target and panduratinA, and 2) the 
selected protein target and a known drug molecule to that protein target, were carried out with the GROMOS54A7 force field [24] in 
GROMACS package version 5.1.2 [25]. The starting structure of each compound-protein complex was taken from the molecular 
docking results by the AutoDock Vina. The Force field for each ligand was generated from the Automated Topology Builder (ATB) 
webserver [26] with the GROMOS54A7 force field. The simple point-charge (SPC) solvent model with 1 nm buffer distance and Na+ or 
Cl− counterions that neutralized the system was then used to solvate the structure of NSP16 complexes (Table 1). Each simulation was 
subjected to energy minimization using the steepest descent technique, and a 1-ns equilibration run was performed for each simu-
lation, in which each structure was gradually heated from 100 K to 300 K. Finally, each equilibrated structure was put into a 50 ns 
productive MD run in the NPT ensemble at 300 K and 1 atm pressure. The velocity-rescale algorithm was used to control the tem-
perature, while the Berendsen barostat was used to control the pressure. The Particle-Mesh-Ewald (PME) approach was utilized to 
establish the periodic boundary condition for the explicitly solvated systems and the 1-nm cutoff distance was used for the short-range 
interaction. Finally, the P-LINC algorithm applied geometrical constraints on the covalent bonds associated with hydrogen atoms so 
that a 2-fs timestep size was allowed. After all simulations finished, water molecules were removed from the trajectory along with the 
translational and rotational motions. Only internal motions of the protein-ligand complex were analyzed. Then root mean square 
deviation (RMSD) was calculated from each simulation to track the overall conformational changes of the protein and the ligand. The 
per-residue root mean square fluctuations (RMSF) were calculated to assess the local flexibility and rigidity induced by ligand binding. 
For each simulation, minimum distance between the catalytic site and the inhibitor was also presented for each timestep by consid-
ering the distance between all possible atom pairs from two groups: (i) catalytic residues and (ii) inhibiting compound. The visual 
molecular dynamics (VMD) software was used to visualize the molecular trajectories [27]. 

Table 1 
Docking score of the Panduratin A against the SARS-CoV-2 target proteins using AutoDock Vina.  

SARS-CoV-2 target proteins Vina scores (kcal/mol) 

Receptor-binding domain (RBD) of spike glycoprotein -6.5 
-6.5 
-6.3 
-6.0 
-5.9 

Main protease (Mpro) -6.6 
-6.5 
-6.2 
-6.1 
-6.0 

Papain-like protease (PLpro) -4.9 
-4.8 
-4.8 
-4.6 
-4.6 

RNA-dependent RNA polymerase (RdRp) -6.9 
-6.7 
-6.7 
-6.7 
-6.7 

2′-O-methyltransferase (MTase) -7.2 
-7.1 
-7.1 
-7.1 
-7.0  
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2.4. MM/PBSA calculations of binding free energy 

The binding free energy was calculated by using an MM/PBSA from the g_mmpbsa package. Binding free energy of the protein- 
ligand complex could be formally calculated as follows: 

ΔGbind ꞊ ΔGcomplex – ΔGprotein – ΔGligand (1)  

ΔGbind ꞊ ΔEMM + ΔGsolv (2)  

ΔEMM ꞊ ΔEelec + ΔEvdw (3)  

ΔGsolv ꞊ ΔGpolar + ΔGnonp (4)  

where, ΔGbind, ΔGcomplex, ΔGprotein, ΔGligand in equation (1) are the total binding free energy, the free energy of the binding complex, 
protein, and ligand, respectively. Within an implicit solvent environment described in the term ΔGsolv, components within the total 
binding free energy ΔGbind in equation (2) also included the contribution from molecular mechanics (ΔEMM) term. ΔEMM is the po-
tential energy in vacuum as defined by the molecular mechanics model, which exhibits the total change in non-covalent molecular 
mechanics energy in the gas phase using the GROMOS54A7 force field. According to equation (3), the contributions from molecular 
mechanics energy included the van der Waals term (ΔEvdw) for the non-polar and hydrophobic contacts and the Coulombic term 
(ΔEelec) for polar contacts and hydrogen bonding. Finally, ΔGsolv is the free energy of solvation from the Poisson-Boltzmann surface 
area (PBSA) approach. From equation (4), ΔGsolv is contributed by a polar (ΔGpolar) and a non-polar (ΔGnonp) terms from the calcu-
lations of PBSA energy from polar solvation and the calculations of non-polar solvation energy from the solvent accessible surface area 
(SASA). Protein dielectric constant was set to 4, solvent dielectric constant to 80, and ion concentration to 0.006 M, corresponding to 2 
Cl- counterion. Next, the non-polar solvation energy was calculated using the solvent-accessible surface area (SASA) model. Non-polar 
solvation energy due to surface tension increases linearly with surface area in the SASA model. Therefore, the surface tension of the 
solvent was set to 0.0226778 kJ/(mol Å2) in our calculation, and the SASA energy constant was set to 3.84982 kJ/mol. For snapshots 
taken every 0.1 ns from the last NSP16 complex MD trajectories, MM/PBSA calculations were performed, generating time averages of 
total binding free energy and contributions from MM energy, polar and non-polar solvation. Per residue energy decomposition was also 
performed to determine the contribution of each amino acid residue to total binding free energy. 

3. Results and discussions 

3.1. Binding interactions of panduratin A with target proteins from molecular docking calculations 

Panduratin A from Boesenbergia rotunda was recently reported as a potent anti-SARS-CoV-2 compound. Molecular structure of a 
panduratin A molecule (see Fig. 1) consisted of three ringed structures: (i) phenyl ring (Ring I), (ii) methyl cyclohexene (Ring II), and 
(iii) methoxylated benzenediol (Ring III). The Ring II was connected to a 2-methyl-2-butane tail and a carbonyl group linked to Ring III. 
The exact molecular mechanisms for how panduratin A was active against SARS-CoV-2 remained unknown. Therefore, molecular 
docking calculations were performed to search for the most probable binding postures of panduratin A on five important target 
proteins of SARS-CoV-2. Table 1 displayed the estimated binding affinity of the five best binding modes from each complex calculated 
from the combined knowledge-based and empirical scoring function of Autodock Vina. After that, interaction network diagrams were 
obtained from the best binding mode of all protein-ligand complexes (Fig. 2) and contribution of each panduratin A functional groups 
was summarized in Table 2. 

Fig. 2a showed the best panduratin A docked configuration on the SARS-CoV-2 spike receptor-binding domain (RBD) with a 
binding energy score of − 6.5 kcal/mol. A hydrogen bond was formed between the Ser494 residue of RBD and a hydroxyl group of Ring 
III, while another was formed between the backbone of Gly496 and the linking carbonyl group. Moreover, six hydrophobic contacts 

Fig. 1. Schematic representation of a Panduratin A molecule displaying all functional groups. Ringed structures labelled as Ring I, Ring II, and Ring 
III were used as references for Tables 2 and 4. 
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found at the Arg403, Tyr495, Phe497, and Tyr505 residues of spike receptor-binding domain were contributed by the Ring I, Ring II, 
and the 2-methyl-2-butane tail. The best-docked configuration of panduratin A on the Mpro protein in Fig. 2b was with a binding 
energy score of − 6.6 kcal/mol. Thr24 and Thr26 residues of Mpro formed a carbon-hydrogen bond and a hydrogen bond with Ring III, 
respectively. Similarly, the linking carbonyl group formed a carbon-hydrogen bond with Asn142, and a hydrogen bond with Gly143. 
The Met49 residue formed hydrophobic contacts both with the Ring I and the 2-methyl-2-butane tail and brought the ligand into 
proximity with the catalytic site of residues Cys145 and His41 [28,29]. Hydrophobic interactions contributed by Met49, Asn142, 
Gly143, and the catalytic residue Cys145 were also found in the interaction network of an N3 inhibitor docked within the Mpro binding 
cleft with additional hydrophobic contacts (Supplementary Fig. 1). 

The best-docked configuration of panduratin A on a PLpro is shown in Fig. 2c. The Ring III formed a weak carbon-hydrogen bond 
with Lys92 residue of PLpro and formed weak Pi-Alkyl interactions with the Trp93, Lys105, Ala107, Ala288, and Leu289. Despite the 
Trp106 residue forming a Pi-sigma interaction with the 2-methyl-2-butane tail, the predicted binding energy score between a pan-
duratin A on a PLpro was − 4.9 kcal/mol, relatively weaker than the other protein targets. The interaction network between a PLpro 
and remdesivir also displayed the contribution from Ala288 and Leu289, but with significantly larger subnetwork of pi interactions 
with Trp106 (Supplementary Fig. 1). The panduratin A was also docked into the catalytic site of an RdRp enzyme of SARS-CoV-2 
(Fig. 2d). The Arg555, Tyr619, and Cys622 residues of RdRp formed hydrogen bonds with the Ring III, while another hydrogen 
bond was formed between the Asp623 residue and the linking carbonyl group. Moreover, Arg555 formed another strong Pi-cation 
interaction with the Ring I, along with the four weak Pi-Alkyl interactions at the Lys621 and Cys622 residue pair. The highest 
amount of hydrogen bonds formed between panduratin A and RdRp relative to other ligands brought the lowest binding energy to 
reach − 6.9 kcal/mol. The best docked configuration of remdesivir on the RdRp protein also displayed interactions contributed by 

Fig. 2. Molecular interactions between Panduratin A and the SARS-CoV-2 target proteins were generated using PyMOL: (top) (a) Receptor-binding 
domain (RBD) of spike glycoprotein (magenta), (b) Main protease (Mpro) (blue), (c) Papain-like protease (PLpro) (green), (d) RNA-dependent RNA 
polymerase (RdRp) (light orange) and (e) 2′-O-methyltransferase (nsp16) (red). The 2D images were generated using the Discover studio 2021 
Client. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

P. Boonserm et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e12780

6

Arg555, Tyr619, Cys622, and Asp623, but with a significantly larger number of hydrogen bonds (Supplementary Fig. 1). 
Finally, the best-docked configuration of panduratin A on a 2′-O-methyltransferase (MTase) shown in Fig. 2e formed two hydrogen 

bonds between the Asn46 residue and the linking carbonyl group, and between the Asp133 residue and the hydroxyl group of Ring III. 
In addition, the ligand also formed Pi-alkyl interactions with Met134, Tyr135, and Pro137, as well as the Pi-Pi T-shape interaction 
between Tyr135 and the Ring I. Moreover, three Pi-cation and Pi-anion interactions involving residues Lys140, Lys173, and Glu206 
and Ring I, along with two more hydrogen bonds, contributed to the strongest ligand binding on the target protein with the binding 
energy score of − 7.2 kcal/mol. The best docked configuration of sinefungin on the MTase also displayed interactions contributed by 
residues 133–137, but not the catalytic residues Lys49 and Glu206 (Supplementary Fig. 1). 

The interaction networks between each functional group of panduratin A and amino acids of the five proposed target proteins were 
summarized in Table 2. It was found that the binding pocket residues of RdRp and MTase occupied almost all the functional groups of 
panduratin A. Moreover, MTase had the highest number of amino acid residues involving the interactions, suggesting the highest 
coverage of panduratin A on the binding pocket, and was in concurrence with the strongest binding energy predicted by molecular 
docking calculations. Therefore, MTase could be a possible target of panduratin A and became the main focus of further simulations 
and analysis through molecular dynamics simulations. 

3.2. Molecular dynamics simulations and analysis on the binding mechanisms of panduratin A compared with a known inhibitor 

Molecular docking calculations and interaction analysis between panduratin A and five important protein targets for the SARS- 
CoV-2 life cycle showed that binding of panduratin A on the 2′-O-methyltransferase (MTase) protein, was with the highest affinity, 
in concurrence with the highest degree of the protein-ligand interaction network. Therefore, molecular docking results suggested that 
MTase became the most probable target for panduratin A. The nsp16 domain of MTase (see Fig. 3) contained a large beta-sheet 
surrounded by alpha helices at the core of the domain. Furthermore, the panduratin A from our docking calculation was shown to 
partly interact with the S-Adenosyl methionine (SAM) binding pocket, near another pocket for RNA substrate binding [28]. SAM was 
the co-substrate for the methyl group transfer as it donated a methyl group from the sidechain for the RNA substrate. It was an 
interesting target for inhibitors, e.g., sinefungin, a natural nucleoside from Streptomyces species previously known for antiviral and 
antifungal activities. 

To further confirm the prediction from molecular docking results, the positional binding of panduratin A on MTase was compared 
to that of sinefungin, an inhibitor for MTase. In this section, molecular dynamics (MD) simulations, and conformational analysis and 
binding free energy calculations, were performed to investigate the binding stability and molecular interactions of panduratin A and 
sinefungin binding on the MTase protein domain. Temperature and pressure regulation in each simulation brought the environment of 
the explicitly solvated simulation box closer to the physiological conditions. 

Table 2 
Types of hydrogen bonds and hydrophobic contacts between functional groups of panduratin A and the amino acids of protein 
targets. 
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After each of the 50-ns simulations finished, root mean square deviation (RMSD) was calculated along each simulated trajectory to 
investigate the stability of ligand binding under the condition near the physiological environment. The RMSD of the protein structures 
from both simulated complexes rapidly increased to 0.25 nm during the first 2 ns and then converged to around 0.3 ns after 10 ns. The 
sharp increase of the RMSD at the beginning signified the global changes in the protein structures from both simulations when the 
environment was switched from the crystalized state to the solvated state. The convergence of both RMSD plots suggested that both 
simulations reached their equilibriums and remained equilibrated from 10 ns to 50 ns (Fig. 4a). Only an insignificant difference was 
observed between the RMSD of both simulations, indicating that the stability of the MTase protein under a solvated environment was 
unaffected by the different ligands. Then, the local flexibility of the protein in both simulations was assessed through the per-residue 
root mean square fluctuation (RMSF). From the RMSF profiles in Fig. 4b, peaks with high RMSF reflected the high flexibility of loop 
regions linking between alpha helices and beta sheets, at which RMSF values were lower. Interestingly, RMSF peaks of the two 
simulated complexes were found to be the difference at the ligand-bound residues. RMSF around the β3/β4 loop and β4/α5 loop 
regions (residues 100–114) of the MTase-panduratin A complex were with the higher RMSF, suggesting that both β3/β4 and β4/α5 
regions of MTase-panduratin A complex were relatively unstable. However, another binding site within the long α6/α7 loop (residues 
137–147) of the MTase-panduratin A complex was lower RMSF and higher stability than the MTase-sinefungin complex. Therefore, the 
conformational analysis by RMSD and RMSF calculations from the trajectories of both complexes containing a panduratin A and a 
sinefungin, as a known inhibitor, suggested that these two ligands caused an insignificant difference in global conformational changes 
of the MTase protein, but local flexibility of binding sites were varied by binding of different ligands. The ligand RMSD in Fig. 4c for 
both simulations also became converged to around 0.3–0.5 nm after 10 ns, indicated that the positional binding of both panduratin A 
and sinefungin was slightly shifted. The RMSD profiles calculated from MD simulations during 10–50 ns were in agreement with RMSD 
calculated from the first five binding modes relative to the best binding modes (See Supplementary Table 1). 

The molecular mechanics and Poisson-Boltzmann surface approximation (MM/PBSA) calculations further elucidated the binding 
mechanism and strength. The molecular mechanics (MM) terms accounted for the potential energy from electrostatics and van der 
Waals terms, mainly contributed by hydrogen bonds and hydrophobic contacts, respectively. The Poisson-Boltzmann surface 
approximation (PBSA) term accounted for the energy from solvation or the surface contact between the complexes and the solvent. 
Binding free energy was obtained by the difference between the MM/PBSA energy of a protein-ligand complex and the total MM/PBSA 

Fig. 3. (top) topological diagram of all secondary structures within the nsp16 domain of 2′-O-methyltransferase (MTase) from SARS-CoV-2. Amino 
acid residue numbers are labelled along with alpha helices (cylinders) and beta sheets (arrows), (bottom) 3D conformation of the nsp16 domain with 
all alpha helices and beta sheets labelled. RNA and SAM pocket were also highlghted. 

Fig. 4. RMSD and RMSF profile for MTase-sinefungin (black line) and MTase-panduratin A (red line): (a) The root mean square deviation (RMSD) of 
the backbone atoms from the equilibrated conformation (0–50 ns), (b) Root mean square fluctuation (RMSF) values of atomic positions computed 
for the backbone atom are shown as a function of residue number, and (c) The root mean square deviation (RMSD) of the ligand atoms from the 
equilibrated conformation (0–50 ns). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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energy of the separated protein and ligand. Table 3 displayed the total MM/PBSA binding energy of panduratin A and sinefungin on the 
MTase domain, along with the contributions from electrostatics, van der Waals, polar solvation, and non-polar solvation terms. MM/ 
PBSA calculations on the simulated MD trajectory of the MTase-sinefungin complex was with the binding free energy of − 155 ± 39 kJ/ 
mol, stronger than the − 128 ± 21 kJ/mol of the MTase-sinefungin complex. The significantly lower electrostatic potential term mainly 
contributed to the stronger binding energy of sinefungin, despite the stronger van der Waals energy of panduratin A. A sinefungin 
possessed more polar functional groups than a panduratin A, so a higher binding energy penalty for polar solvation slightly weakened 
the binding of sinefungin. 

To assess the local contribution of amino acids and functional groups of ligands to the MM/PBSA binding energy, per-residue 
decomposition of the energy was performed before the local interaction networks between binding sites and ligands were visual-
ized (Fig. 5). Per-residue binding energy profiles shown in Fig. 5a for both complexes consisting panduratin A and sinefungin, three 
important binding sites at the regions β2/α4 (His72- Ser77), β3/β4 (Ser101- Asn104), and β6/α6 (Asp133-Asp136) were found with 
low binding energy. Interestingly, these common binding sites of both complexes were within the S-Adenosyl methionine (SAM) 
binding pocket and confirmed the capability of both ligands as MTase inhibitors. The difference in total MTase binding energy of a 
panduratin A and a sinefungin could be further explained from the energy decomposition profiles in Fig. 5a. At the residue Leu103, 
binding energy contribution within the MTase-panduratin A complex became positive and weakened the protein-ligand binding. 

Fig. 5b and c displayed the binding conformations and the interaction networks formed between MTase and the two ligands after 
50-ns explicitly solvated MD simulations. Both sinefungin and panduratin A were shown to reside within the SAM binding pocket and 
near the catalytic tetrad (Lys49, Asp133, Lys173, and Glu206) of SARS-CoV-2 MTase, despite of shifting of binding residues when 
compared to the molecular docking result. The binding of the ligand at the T-junction consisting of RNA and SAM binding pockets 
could potentially inhibit the activity by blocking the entrance of RNA substrates to the binding cleft containing the tetrad and the SAM 
co-substrates to the SAM pocket [29]. 

Detail of hydrogen bonds, hydrophobic contacts, along with other types of electrostatic and van der Waals interactions formed 
between binding cleft amino acids and different functional groups of both ligands was found in Table 4, and the nomenclature for 
functional groups of sinefungin was given in Fig. 6. For the sinefungin-MTase complex, hydrogen bonds were formed between sine-
fungin and the amino acid residues Gly74, Asp102, and Cys118 at the tail, pyranose, and purine groups. Furthermore, two weak carbon 
hydrogen bonds and four hydrophobic contacts contributed to the binding. Interestingly, the purine functional group attracted the 
highest number of interactions at the residues within the α5 region deep into the SAM binding pocket and the β6 region near one of the 
catalytic tetrad residues at the junction between the RNA pocket and the SAM pocket. For the panduratin A-MTase complex, three 
hydrogen bonds were formed between the panduratin A and Ala75, Asp102, and Asp104 with the 2,6-dihydroxy-4-methoxyphenyl 
(Ring III) group. Despite the attractive force from hydrogen bonding, steric clashes at Asp102 still caused stronger repulsion and 
resulted in the positive local MM/PBSA energy. Besides, three more hydrophobic interactions were found at Leu103, Met134, and 
Phe152 via Pi-Alkyl, Pi-Sulfur, and Pi-Sigma interactions, respectively. On the other hand, only two hydrophobic contacts were found 
at the phenyl ring (Ring I) via the Pi-Pi T-shaped and Pi-Alkyl interactions. Table 4 also showed that the simulated complex of MTase- 
panduratin A complex still preserved the interactions contributed by residues Met134, Tyr135, and Pro137 seen in the molecular 
docking results. 

Despite the weaker binding energy of panduratin A on MTase relative to that of sinefungin, the minimum distance analysis in Fig. 7 
showed that positional binding of panduratin A on MTase brought the inhibiting ligand into proximity with the catalytic tetrad. The 
minimum Asp133-panduratin A and Lys173-panduratin A distances were found to be 0.5 ± 0.25 nm and 0.75 ± 0.25 nm, respectively 
(Fig. 7a). Meanwhile, 0.3 ± 0.25 nm and 0.7 ± 0.25 nm minimum distances were found for the Asp133-sinefungin and Lys173- 
sinefungin pairs (Fig. 7b). The relatively closer distance between panduratin A to the catalytic residues, despite weaker binding en-
ergy, still suggested that panduratin A could be an interesting candidate for developing an alternative SARS-CoV-2 MTase inhibitor. 

To elaborate on the different structural arrangements of panduratin A and sinefungin within the binding pocket of MTase, the 
chemical characteristics of functional groups could be considered. A sinefungin, known as an MTase inhibitor binding within the SAM 
pocket, was an adenosine derivative consisting of a purine group and a pyranose group (ribose sugar) and was capped with an amino 
acid-like tail. The only difference functional group of sinefungin from the SAM co-substrate was replacing the S-methyl (S–CH3) group 
with a methylamine (CH2–NH2) group. Therefore, the binding of sinefungin within the SAM pocket was already expected with the 
purine group buried deep within the SAM pocket, far from the T-junction containing catalytic tetrad, and with the pyranose ring 
forming up to two hydrogen bonds with Asp102 [30]. However, the tail containing a carboxyl and an amino group became unstable 
during the MD simulation due to their high solubility. This resulted in the high uncertainty found during the minimum distance 
measurement. A panduratin A, however, contained an aromatic phenyl ring (referred to in this study as Ring I), a methyl cyclohexene 
ring (Ring II) connecting to a 2-methyl-2-butene group, and a 2,6-dihydroxy-4-methoxyphenyl (Ring III). According to our analysis, 
Ring III, which contained two hydroxyl groups and a methoxy group, played both the roles of a pyranose ring and a purine within a 
SAM substrate, despite the lower amount of interactions deep inside the SAM pocket. However, replacing the water-soluble tails of 
SAM and sinefungin with a more hydrophobic phenyl group in Ring I of panduratin A could stabilize the interaction with Tyr135 near 

Table 3 
Binding free energy factors for the protein-ligand complexs calculated by MM-PBSA analysis.  

Complex ΔEBinding (kJ/mol) ΔEVander Waal (kJ/mol) ΔEElectrostatic (kJ/mol) ΔEPolar solvation (kJ/mol) ΔEnon-Polar (kJ/mol) 

Panduratin A-MTase -128 ± 21 -174 ± 15 -13 ± 12 75 ± 14 -15 ± 1 
Sinefungin-MTase -155 ± 39 -158 ± 15 -104 ± 46 124 ± 30 -16 ± 2  
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Fig. 5. (a) The per-residue free energy decomposition of sinefungin (red line) and panduratin A (black line). The 3D and 2D interaction of the 
docking complex of sinefungin and panduratin A docked into the binding site of the SARS-CoV-2 2′-O-methyltransferase (MTase) (cyan) after MD 
simulations: (b) Sinefungin (green)-MTase complex, (c) Panduratin A (pink)-MTasecomplex. The docking imaged were generated using PyMOL 
Stereo 3D Quad-buffer and Discover studio 2021 was used to map the binding network of a simulation snapshot. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Schematic representation of a Sinefungin molecule. Functional group labelling as purine, pyranose, and tail were used as references for 
Tables 2 and 4. 

Table 4 
Detail of hydrogen bonds, hydrophobic interactions formed between binding cleft amino acids and different functional groups 
of both ligands. 

Region Residue Sinefungin Panduratin A
tail pyranose purine Ring I Ring III

Fig. 7. The minimum distance graph of protein-ligand interactions. The interaction distance between the protein and ligand in MTase protein shows 
the residues better shielding the catalytic tetrad: (a) MTase-panduratin A and (b) MTase-sinefungin. 
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the catalytic tetrad, which resulted in a smaller distance from a catalytic residue at Asp133. 

4. Conclusions 

In conclusion, we proposed that panduratin A has a strong affinity for SARS-CoV-2 Mtase over the other protein targets and could be 
an interesting alternative to sinefungin. Furthermore, as the inhibition of Mtase could prevent SARS-CoV-2 viral entry, replication, and 
immune response avoidance, the use of panduratin A along with the cocktail of other bioactive chemicals from herbal extracts that 
target different pathways could be improved and developed into novel medications or immune boosters for COVID-19 in the future. In 
addition, the information on the molecular interactions of panduratin A and SARS-CoV-2 target proteins provided by this study could 
be further proved by further in vitro studies to validate the in silico results and to monitor the antiviral mechanisms at the cell level. 
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