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Abstract

Background: Relation extraction is a fundamental technology in biomedical text mining. Most of the previous
studies on relation extraction from biomedical literature have focused on specific or predefined types of relations,
which inherently limits the types of the extracted relations. With the aim of fully leveraging the knowledge described
in the literature, we address much broader types of semantic relations using a single extraction framework.

Results: Our system, which we name PASMED, extracts diverse types of binary relations from biomedical literature
using deep syntactic patterns. Our experimental results demonstrate that it achieves a level of recall considerably
higher than the state of the art, while maintaining reasonable precision. We have then applied PASMED to the whole
MEDLINE corpus and extracted more than 137 million semantic relations. The extracted relations provide a
quantitative understanding of what kinds of semantic relations are actually described in MEDLINE and can be
ultimately extracted by (possibly type-specific) relation extraction systems.

Conclusion: PASMED extracts a large number of relations that have previously been missed by existing text mining
systems. The entire collection of the relations extracted from MEDLINE is publicly available in machine-readable form,
so that it can serve as a potential knowledge base for high-level text-mining applications.

Keywords: Predicate-argument structures, Biomedical relation extraction, Open information extraction

Background
The increasing amount of scientific articles in the biomed-
ical domain leads to a growing demand from biologists
to access information in the literature in more structural
form [1]. This demand motivates many researchers and
scientists to work on relation extraction, an information
extraction task that attempts to extract semantic relations
between important biomedical concepts. Most of the pre-
vious work on relation extraction from biomedical litera-
ture focuses on specific or predefined types of relations,
such as protein-protein interactions [2-5], protein-gene
interactions [6], drug-drug interactions [7], drug-disease
treatment [8], and biomolecular events [9]. The types of
relations that can be extracted by existing approaches are,
therefore, inherently limited.

Recently, an information extraction paradigm called
Open Information Extraction (OIE) has been introduced
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to overcome the above-mentioned limitation [10-12]. OIE
systems aim to extract all triples consisting of argument
phrases (argl, arg2) from the input sentence and a rela-
tional phrase (rel) that expresses the relation between
arguments, in the format of (argl; rel; arg2). OIE sys-
tems that have been developed so far include TextRunner
[10], ReVerb [11], and OLLIE [12]. They first identify
relation phrases by using part-of-speech patterns and syn-
tactic and lexical constraints, and then detect arguments
by some heuristics. Recently, advanced OIE systems have
been built to tackle nominal relations [13] and n-ary
relations [14]. Although the concept of OIE is certainly
appealing, our preliminary experiments using ReVerb and
OLLIE have suggested that these state-of-the-art OIE sys-
tems for the general domain do not perform well on
biomedical text.

This observation has motivated us to develop PAS-
MED, a wide-coverage relation extraction system for
biomedical text. Our system uses Predicate-Argument
Structure (PAS) patterns to detect the candidates of
possible biomedical relations. A PAS is composed of
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a predicate and its arguments and describes (shallow)
semantic relationships between words in a sentence. For
example, the sentence “Macrophages are activated by
LPS” has a PAS consisting of the predicate ‘activate’ and its
two arguments ‘LPS’ (subject) and ‘macrophages’ (object).
We decided to use PAS patterns because they are well-
normalized forms that represent deep syntactic relations.
In other words, multiple syntactic variations are reduced
to a single PAS, thereby allowing us to cover many kinds
of expressions with a small number of PAS patterns.

Using PASs has been a practical approach to domain-
independent information extraction. Some annotated cor-
pora of PAS frames in general domains such as PropBank
[15], VerbNet [16], and FrameNet [17] have been pub-
lished for the research community. BioProp [18] and PAS-
Bio [19] are PAS frames for the biomedical domain based
on PropBank. BioProp contains 2382 predicates for 30
biomedical verbs. PASBio includes the analyzed PASs of
30 verbs describing molecular events.

Syntactic structures of the types other than PASs have
also been employed in biomedical relation extraction
[6,8,20,21]. Rinaldi et al. [20] introduced three levels
of patterns to detect protein-protein interactions in the
GENIA corpus. The first level is syntactic patterns that
capture some important syntactic phenomena (e.g. active,
passive, nominalizations). Next, they combined different
syntactic patterns to create a semantic rule. On the third
level, the semantic rules were combined with lexical and
ontological constraints to obtain specialized queries that
can detect a domain-specific relation. RelEx [6] also used
a pattern-based approach to extract protein-gene interac-
tions. The patterns include three crafted rules constructed
based on the dependency parse tree of a sentence.

Perhaps the most similar and relevant to our work is
SemRep [22,23] and the system by Nebot and Berlanga
[24]. SemRep is a rule-based semantic interpreter that
extracts semantic relationships from free text. Their rela-
tionships are represented as predications, a formal rep-
resentation consisting of a predicate and arguments.
SemRep extracts 30 predicate types, mostly related to
clinical medicine, substance interactions, genetic etiol-
ogy of disease and pharmacogenomics. Their predicates
were created by modifying 30 relation types of the
UMLS Semantic Network [25]. The system by Nebot and
Berlanga [24] extracts explicit binary relations of the form
<subject, predicate, object> from CALBC initiative [26].
To detect candidate relations, they proposed seven sim-
ple lexico-syntactic patterns. These patterns are expressed
in part-of-speech tags in which relational phrases reside
between the two entities.

We have designed PASMED with a particular focus on
recall, in regard to its extraction performance. This is
primarily because we wanted to extract all binary rela-
tions between important biomedical concepts described
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in the whole MEDLINE. The use of PAS patterns helped
us to achieve relatively high recall (while keeping reason-
able precision), because PAS patterns effectively represent
many lexico-syntactic patterns at an abstract level and
thus are robust to various syntactic transformations such
as passivization, control constructions, relative clauses,
and their combinations, which are quite common in sen-
tences expressing biomedical relations. To the best of
our knowledge, this is the first time that a PAS-based
approach has been applied to the entire MEDLINE and
evaluated in terms of open-domain relation extraction.

In this article, we first describe details about our PAS
patterns and the extraction model employed by PASMED.
We then briefly explain our guideline of manually evaluat-
ing the extracted relations. The second half of the article
is devoted to presenting and discussing results of our sys-
tem, its comparison with other systems, its limitation and
the output of the whole MEDLINE. Finally, we conclude
our work and propose some future directions.

Methods

Our system uses a set of PAS patterns to detect the
candidates of semantic relations. First, Mogura [27], a
high-speed version of the Enju parser [28], is employed
to extract NP pairs that satisfy predefined PAS patterns
from sentences. Next, named entities in the NP pairs
are identified by MetaMap [29]. Because MetaMap uses
string matching to map biomedical texts to the concepts
in the UMLS Metathesaurus [30], its output contains
many spurious entities. In order to remove false posi-
tives, we conduct post-processing using information on
parts-of-speech and frequencies of entities. Finally, a rela-
tion between two entities is extracted if and only if the
pair of semantic types is included in the UMLS Semantic
Network [25].

Crafting PAS patterns

Since we attempt to extract unrestricted types of relations,
there is no labeled corpora suitable for training a machine-
learning based extraction model. We therefore took a
practical approach of creating PAS-based extraction pat-
terns manually by observing actual linguistic expressions.
We decided to use PASs in this work primarily because
PASs are a viable formalism for building shallow seman-
tic representations of biomedical verbs [31]. As a result of
recent advances in parsing technology, there are now pub-
licly available deep parsers that can output PASs and are
both scalable and accurate. The Enju parser is one of those
parsers and has shown to be one of the most accurate
syntactic parsers for biomedical documents [28].

In order to find appropriate PAS patterns, we have
first observed textual expressions that represent biomed-
ical relations in the GENIA corpus [32] and found that
those relations are usually expressed with verbs and
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prepositions. Examples of those are Entity, {affect, cause,
express, inhibit ...} Entityg and Entitys {arise, happen, ...}
{in, at, on ...} Location. Based on these observations, we
create patterns that consist of three elements: (1) NP;
containing Entitya, (2) NPy containing Entityg and (3) a
verbal or prepositional predicate that has the two NPs as
arguments. Our patterns in predicate-argument form and
their corresponding examples are presented in Table 1. It
should be noted that no sentences in the GENIA corpus,
which we examined for developing these patterns, were
used in our evaluation experiments.

Pattern 1 and 2 capture expressions of transitive verbs in
active and passive voices respectively. Their relevant NP
pairs consist of subjects and objects of the verbs. Pattern 3
deals with verbal structures in which transitive verbs mod-
ify a noun phrase to present specific actions, e.g., ‘play a
role’ and ‘produce changes’ Pattern 4 is used for linking
verbs. A linking verb modifies an adjective. Hence, if a
noun phrase related to the adjective is found, the phrase
and the subject of the verb form a relevant NP pair. To
deal with intransitive verbs, we use Pattern 5. An intran-
sitive verb has no direct object, but it can be modified
by a prepositional phrase to describe the action in detail.
In this case, the prepositional phrase and the subject of
the verb constitute a relevant NP pair. The final pattern
(Pattern 6) is used for prepositions, which would capture
localization and whole-part relations.

The elements NP; and NP; in each pattern shown in
Table 1 are used to create candidates of our relation
extraction step.

In order to estimate the coverage of our patterns, we
applied them to three protein-protein interaction (PPI)
corpora (AIMed, Biolnfer and LLL [3,33]), two drug-drug
interaction (DDI) corpora (MedLine and DrugBank [7]),
and the GENIA corpus [32]. We then checked if the enti-
ties in the annotated relations are included in the NP pairs
of our patterns. For instance, according to the AIMed cor-
pus, there is a PPI between IFN-gamma’ and ‘IFN-alpha’
in the sentence “Levels of IFN-gamma is slightly increased
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following IFN-alpha treatment". This PPI is covered by
Pattern 2, in which NP is ‘Levels of IFN-gamma’ and NP,
is IFN-alpha treatment!

The results in Table 2 show that the patterns cover over
80% of the entities in the GENIA events and PPIs of the
LLL corpus sufficiently. This is somewhat expected since
our PAS patterns are created based on the observations on
the GENIA corpus and the LLL corpus contains only 50
sentences. However, for the other cases, our patterns only
cover a small portion, e.g., 46% relations of the Biolnfer,
and 53% of the AIMed. Relations that our patterns miss
can be categorized into two groups: (1) nominal relations,
e.g., ‘CD30/CD30L interaction, and (2) relations that need
other information, such as coreference resolution, to be
inferred. These kinds of relations are hard to identify by
only using a pattern-based approach and are left for future
work.

Extracting semantic relations

Named entity recognition (NER) is an important text
processing step that needs to be performed before rela-
tion extraction. Most of previous machine-learning NER
tools have focused on detecting gene/protein names [34],
gene/protein, cell line and cell type [35], drugs and chem-
icals [36]. Those tools perform well with the targeted
entities but it is not easy to extend them to other types of
entities. Moreover, they only locate entities in text and do
not offer other information such as global identifiers (IDs)
of the recognized entities, which will be useful for linking
them with information stored in biomedical databases. In
this work, we use MetaMap [29], a dictionary-based tool
that maps biomedical texts to the concepts in the UMLS
Metathesaurus [30].

The Metathesaurus is a large database that contains
biomedical and clinical concepts from over 100 dis-
parate terminology sources. In order to integrate them
into a single resource, a unique and permanent con-
cept identifier (CUI) is assigned to synonymous con-
cepts or meanings [37]. For instance, the Metathesaurus

Table 1 Our PAS patterns focus on verb and preposition predicates

No. PAS Patterns

Examples

1 NPy < Verb — NP,

Protein RepA(cop) <« affects — a single amino acid

2 NPy < Verb — by + NP, Diabetes < induced — by streptozotocin injection
3 NP7 < Verb — NP’ Endothelin-1 (ET-1) «<— had — a strong effect
Pr£p. — NP, iTn — all trabeculae
4 NPy <« Link.Verb — ADJP < Prep. — NP, EPO receptor <— be — present <« in — epithelial cells
5 NP; < Verb <« Prep. — NP, Apoptosis <— involved <« in — CD4 T lymphocytes
6 NPy < Prep. — NP, vitronectin < in — the connective tissue

An arrow going from a to b means that a modifies b, where a is called a predicate, and b is called an argument. < NP;, NP, > is a relevant NP pair in each pattern.
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Table 2 Expected recall of our PAS patterns on various
corpora

PPI DDI
GENIA
AlMed Biolnfer LLL MedLine DrugBank
53% 46% 82% 64% 62% 80%

maps the two strings of ‘Chronic Obstructive Lung
Disease’ from Medical Subject Headings (MSH) and
‘COLD’ from National Cancer Institute thesaurus (NCI)
to a concept whose CUTI is ‘C0009264' By using MetaMap,
we can obtain the CUI and the source names of an entity.
Although MetaMap does not perform as well as machine-
learning tools in terms of recognition accuracy, it meets
our requirement of detecting every entity in texts and out-
puts the Metathesaurus CUI, i.e., a global ID for each
entity.

Since MetaMap uses string matching techniques to
identify entities, it generates many false positive entities.
We apply two post-process steps to remove these entities
from MetaMap’s output. In the first step, we remove all
entities that are verbs, adjectives, prepositions or numbers
because we are only interested in noun or noun phrase
entities. The second step is used to avoid common noun
entities, e.g., ‘study; ‘result’ and ‘relative’ We first construct
a dictionary of named entities based on MetaMap’s results
of the whole MEDLINE [38] and remove highly frequent
entities from it. This dictionary is then used to check the
validity of named entities.

To evaluate the effectiveness of these post-processing
steps, we conducted a small set of experiments using
several annotated corpora. We employed MetaMap to
detect proteins in AIMed, Biolnfer and LLL [3,33], and
drugs in the SemEval-2013 task 9 corpus [7]. We then
post-processed these outputs and compared them with
labeled entities to evaluate the performance of our post-
processing. The scores in Table 3 show that our filtering
improved the F-scores significantly for both proteins and
drugs, resulting in F-scores of 51.37% on proteins and
71.38% on drugs. This performance is comparable to that

Table 3 Performance of our post-processing on proteins
and drugs detection

Protein Acc. Pre. Re. F. (%)

MetaMap 58.10 15.72 63.21 25.18

After filtering 88.93 55.77 4761 51.37
Drug

MetaMap 6261 20.86 79.51 33.04

After filtering 93.96 83.26 62.47 71.38

These scores were generated by using the evaluation script of CoNLL 2000.
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of CubNER, an unsupervised NER tool for biomedical text
[39].

We obtain named entities in candidates of NP pairs
after our post-processes. Next, each entity in NP; is cou-
pled with every entity in NP, to create a candidate of
semantic relation. It should be noted that separate enti-
ties inside a noun phrase are not considered to constitute
a relation. We then use the UMLS Semantic Network as
a constraint to filter out relations that are likely to be
spurious. More specifically, the Semantic Network pro-
vides a relation ontology that consists of a set of relations
between semantic types, such as relations between ‘Gene
or Genome’ and ‘Enzyme; or ‘Hormone’ and ‘Disease or
Symptom. We check if the pair of semantic types of the
two entities in a candidate exists in the ontology or not.
If it does, the candidate is included in the output of the
system; otherwise, we reject it.

Our process can be described formally as follows. Let
us denote by < NP;,NP; > a relevant NP pair, by ey;
(i = 1,2,...) entities in NP1, and by ey; (j = 1,2, ...) entities
in NP,. Every pair of entities < ey;, ey > can compose a
candidate of semantic relation. Let us denote by < 51,57 >
the pair of semantic types of < ey; ey >. If and only if
< 81,82 > exists in the Semantic Network, < ey;, es; > is
considered to constitute a relation.

SemRep also uses the Semantic Network in its extrac-
tion procedure. First, a predicate ontology was con-
structed by adding ‘indicator’ rules which map verbs
and nominalizations to predicates in the Semantic Net-
work; for example, ‘treat’ and ‘treatment’ are mapped to
the predicate TREATS. Next, meta-rules that enforce the
semantic types of the two arguments were also created
on top of the indicator rules; an example of meta-rule
is “Pharmacologic Substance TREATS Disease or Syn-
drome” SemRep then matches predicates in text to these
indicator rules and arguments’ semantic types to the
meta-rules to identify relations. By using the ontology,
SemRep can specify the name of the extracted relation,
e.g., TREATS, AFFECTS, and LOCATION_OF, but limits
itself in a fixed set of verbs. By contrast, PASMED is not
restricted with a specific set of verbs, but it cannot assign
a name to the extracted relation.

Evaluating general relations

For the purpose of evaluation, we have created our orig-
inal test set by randomly selecting 500 sentences from
MEDLINE. Our system was given this set as input, and
returned a set of binary relations as output. A binary rela-
tion in our setting is composed by two biomedical enti-
ties and it usually represents some association or effect
between the entities. We call those binary relations general
relations to distinguish them from those of specific types,
e.g., PPI or DDI. To evaluate the general relations, we have
defined evaluation criteria for entities and relations.
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Evaluating entities:

An entity is correct if and only if (1) it is a noun or a base
noun phrase (a unit noun phrase that does not include
other noun phrases), and (2) its content words repre-
sent the complete meaning within the sentence containing
it. The first condition is set up in this criterion because
MetaMap can only detect entities that are nouns or base
noun phrases. The second one is to guarantee the meaning
of the annotated entities. For example, Figure 1(a) shows
a relation between two entities ‘Laminin’ and ‘membrane!
In this case, the entity ‘Laminin’ is correct, but the entity
‘membrane’ is not. The reason is that ‘membrane’ does not
reflect the full meaning intended in this sentence; the right
entity should be ‘basal membrane’

Evaluating relations:
A correct relation must satisfy the following two
conditions:

e The two entities composing the relation must be
correct according to the above-mentioned criterion.

e The relationship between two entities in a correct
relation must be described explicitly by some
linguistic expression.

Any relations that break one of the above conditions
are considered to be incorrect. For example, the extracted
relation in Figure 1(c) is correct since it meets our crite-
ria, while the extracted relations in (a) and (b) are not.
The relation in (a) does not meet the first criterion since
the entity ‘membrane’ is not correct. The relation in (b)
does not meet the second criterion because this sen-
tence only lists two selected parameters that are related
to ‘Sertoli cells’ and ‘tubular basal lamina, and no rela-
tionship between these two entities is mentioned. More
details about our evaluation guideline can be seen in the
Additional file 1.

Results and discussion

In this work, we conducted evaluations in two scenarios:
(1) extraction of all possible relations in sentences ran-
domly sampled from MEDLINE, in which we attempt to
estimate the performance of PASMED from a perspec-
tive of open-domain relation extraction from MEDLINE,
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and (2) extraction of relations predefined in PPI and DDI
corpora.

Evaluation results on general relations

For comparison, we conducted experiments using two
state-of-the-art OIE systems for general domains, namely,
ReVerb [11] and OLLIE [12]. We employed these two sys-
tems to extract relevant NP pairs in place of our PAS
patterns. The other processes were applied in exactly the
same way as our system. We also compared our system
with the latest version of SemRep [40] on the test set.

Two annotators were involved in evaluating general
relations. The two annotators, who are not co-authors of
this article, have different backgrounds. Annotator A has
a PhD in biology, majoring in genetics. Annotator B has
a master degree of computer science, majoring in natu-
ral language processing; he is also a bachelor of medical
biotechnology. The annotators were required to strictly
follow our criteria when evaluating the outputs of the four
systems: ReVerb, OLLIE, SemRep and PASMED. Both
Annotator A and B were blind to the identity of the sys-
tems, i.e., they do not know which output was given by
which system.

Both ReVerb and OLLIE assign a confidence value to
each extracted triple instead of simply classifying them as
true or false. In our experiments, this value was used as
the threshold for extracting relations. We selected the val-
ues generating the best harmonic mean of precision and
the number of true positives in our experiments, which
turned out to be 0.7 for both systems. On our test set,
ReVerb, OLLIE, SemRep and PASMED extracted 77, 164,
346, and 781 relations, respectively.

Figure 2 shows the numbers of true relations output
by the four systems according to the two annotators.
PASMED identified the highest number of true relations
than the other systems. Specifically, the number of true
relations extracted by PASMED was 71% higher than that
of SemRep, which was the second best among the four
systems. It should be noted that we can decrease the
thresholds of ReVerb and OLLIE to increase their recalls.
However, even when the thresholds were 0.3, their num-
bers of true positive relations were much lower than that
of PASMED, which were about 52 and 103 on average,
respectively.

e

(a) was located in the zone of the basal .

(b) For the quantitative investigation, 2 parameters were selected: a) the mean nucleolar

area of the Sertoli celld ; and b) the mean thickness of the fubular basal Taminal .

,,,,,,,,,,,,,,,,,, ]

L

77777 |

(c) IApoptosiy is involved in elimination of [CD4

Figure 1 Examples of biomedical binary relations. (a) The relation is not correct because of one incorrect entity. (b) The relation is not correct
because the relationship between the two entities is not represented explicitly by any semantic clue. (¢€) The relation is correct because it satisfies

our two criteria of manually evaluation.
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Figure 2 The number of true relations of the four systems on our
test set according to the agreement of the two annotators. The
mean numbers are 40.5, 77.5, 216, and 370.5, respectively. PASMED
achieved the highest ones in all cases.

In order to estimate the recall of these systems, we used
relative recall defined by Clarke and Willett [41]. Let a4,
b, ¢ and d denote the true relations of ReVerb, OLLIE,
SemRep and PASMED respectively. We created a pool of
gold-standard relations by merging a, b, ¢, d and remov-
ing duplicates. Let r denote the number of relations in the
pool (a,b,¢c,d < r < a+ b+ ¢ + d), the recall of ReVerb
is calculated as a/r and similarly for the other systems.
We reported all scores of the four systems in Table 4. The
higher recalls of PASMED in the table are in large part
explained by the fact that the system has no restriction
in predicate types, thereby accepting diverse biomedical
relations. SemRep achieves a better precision score than
PASMED by restricting the predicate types with its ontol-
ogy but misses many relations due to the constraint. These
results will be analyzed in more detail in the next section.

A significance test on the F-scores of SemRep and
PASMED was conducted by using approximate random-
ization [42]. We performed 1000 shuffles on the output
of SemRep and PASMED and the approximate p-values
according to the two annotators A and B are 0.35 and 0.02,
respectively. These p-values indicate that with a rejection
level of 0.05, there is a chance that the difference between
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SemRep and PASMED is statistically significant, which
can be interpreted as the overall performance of PASMED
is better than SemRep.

We have also calculated the Inter-Annotator Agreement
(IAA) rates between the two annotators in each system
by using « statistics adapted to multiple coders [43]. We
reports the values and their scales according to Green
(1997) [44] in Table 5. The IAA scales indicate that the
evaluation results are reliable enough.

Error analysis

We have listed the numbers of PASMED’s false positive
relations caused by different types of errors in Table 6.
On average, our system generated 410.5 false positive
relations; among them (1) about 69.18% of them (284
false positive ones) are due to incorrect entitiy extrac-
tion (criterion 1), (2) 20.71% of false positive ones are not
presented explicitly by linguistic expression (criterion 2)
and (3) 10.11% break both criteria. The reason for the
first case is that MetaMap occasionally fails to capture
named entities with multiple tokens like the example in
Figure 1(a). The second case is caused by parser errors
and our greedy extraction. For instance, with this input
“{[Laminin]}np, was located in {the zone of the basal
[membrane], whereas [tenascin] was mainly found in the
mucosal [vessels]}np,’, based on the NP pair < n1, NPy >
the system returned three relations: r;(Laminin, mem-
brane), ry(Laminin, tenascin), and r3(Laminin, vessels).
Among them, rp and r3 break both evaluation conditions.
In this example, the parser failed to detect the second
NP of the pair; the correct one should be ‘the zone of
the basal membrane; not including ‘whereas’ clause. Then,
from this incorrect pair, our greedy extraction generated
ry and r3 since we assume that every pair of entities in
a NP pair constitutes a relation; even using the Semantic
Network could not help in this case.

As reported in the previous section, PASMED extracted
much more relations than the other three systems. In
the case of ReVerb and OLLIE, the main reason for their
low performance is that these systems failed to capture
NP pairs in many sentences. More specifically, ReVerb
and OLLIE could not extract NP pairs from 150 sen-
tences and 95 sentences respectively; our system could

Table 4 Evaluation results of the four systems according to the two annotators

Annotator A Annotator B Mean
System
Pre. Re. F. Pre. Re. F. Pre. Re. F.
ReVerb 4415 6.75 11.72 61.04 9.34 16.20 52.59 8.05 13.96
OLLIE 40.85 1332 20.10 53.65 17.49 2638 47.25 1541 2324
SemRep 59.37 40.95 4847 65.13 38.83 48.65 62.25 39.89 4856
PASMED 4327 67.19 52.65 51.50 69.24 59.13 4739 6822 55.89

SemRep achieves the highest precision, PASMED achieves the highest relative recall.
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Table 5 The inter-annotator agreement rates between the
two annotators in each system and their corresponding
scale according to Green (1997) [44]

IAA ReVerb OLLIE SemRep PASMED
0.664 0.598 0.680 0.741
Scale Good Good Good Good

not extract pairs only from 14 sentences. Given the
input sentence: “{[Total protein], [lactate dehydrogenase]
(LDH), [xanthine oxidase] (XO), [tumor necrosis factor]
(TNEF), and [interleukin 1] (IL-1)}xp, were measured in
{[bronchoalveolar lavage fluid] (BALF)}np,.; ReVerb and
OLLIE could not extract any triples, while our system gen-
erated a NP pair of < NP;,NP; > and returned five
correct relations between ‘bronchoalveolar lavage fluid’
and five entities in NP;. This can be explained by the fact
that these systems use general language parsers and those
parsers do not perform well on biomedical texts, which
contain more complex vocabularies and structures than
the general one. In the case of SemRep, the main rea-
son why it detected fewer relations than PASMED is that
SemRep is restricted with a fixed set of verbs, which lim-
its itself in a set of relations. For instance, SemRep also
fails to extract relations in the above sentence because its
ontology does not include the verb ‘measure!

Since our PAS patterns focus on verbs and preposi-
tions, there are relations that our system misses unlike
SemRep, e.g., relations in the forms of modification/head
of noun phrases. For example, SemRep identified a rela-
tion between ‘tumor’ and ‘malignancy’ in the sentence
“Spontaneous [apoptosis] may play a role in evolution
of [tumor] [malignancy]” while our system could not. It,
instead, extracted the relation of (‘apoptosis, ‘malignancy’)
based on the phrase ‘play a role in’

PASMED does not extract some relations that SemRep
does since it filters MetaMap’s output. Given the sentence
“We monitored a group of [patients] with [pollinosis]
sensitive to Olea” SemRep output a relation between
‘patients’ and ‘pollinosis. PASMED ruled out ‘patients’
from MetaMap’s output at its filtering step because this
entity is an overly frequent entity in MEDLINE.

Table 6 Numbers of false positive PASMED's relations
according to the two annotators

C1 c2 Both Total
Annotator A 257 120 66 443
Annotator B 311 50 17 378

284 85 415 410.5
Mean

69.18% 20.71% 10.11%

We have classified them into three types of errors: C1-false positives caused by
incorrect entity extraction (criterion 1), C2-false positives caused by not
presented explicitly by linguistic expressions (criterion 2), and Both—false
positives due to both C1 and C2.
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Nevertheless, this filtering step helps our system to
discard many spurious relations. For example, given the
phrase “Morbidity risk for [alcoholism] and [drug abuse]
in [relatives] of [cocaine addicts]’, two relations (‘relatives,
‘alcoholism’) and (‘relatives; ‘drug abuse’) were extracted
by SemRep. The two annotators assessed these relations
as incorrect on the ground that the word ‘relatives’ alone
is not specific enough. By contrast, PASMED discarded
‘relatives’ because this entity is too frequent in MED-
LINE. No relation composed by the entity was thus iden-
tified. Instead, PASMED detected two other relations,
(‘alcoholism; ‘cocaine addicts’) and (‘drug abuse; ‘cocaine
addicts’), which were assessed as correct by the annota-
tors. We should note, however, that these relations are
not strictly correct either, since the full description for the
latter entity should be ‘relatives of cocaine addicts.

As for the set of PAS patterns used in PASMED, it is
not impossible to extend them to detect more relations.
The maximal recall that could be reached is about 80%
in the best case (the same recall of the GENIA corpus,
see Table 2), but there is a higher risk that the preci-
sion will be decreased substantially due to three sources
of errors, including MetaMap’s errors, parser’s errors and
our greedy extraction. Currently, PASMED relatively cov-
ers 68.22% of general relations on average, which we deem
to be high enough for the current trade-off.

Here we clarify the differences—besides the fact that
PASMED uses deep syntax—between ReVerb, OLLIE,
SemRep and PASMED, which are all based on a pattern-
based approach. Regarding ReVerb and OLLIE, a major
difference is that they employ a parser for the general
domain while PASMED uses a parser specifically tuned
for the biomedical domain. One of the biggest differences
between SemRep and PASMED is the way the extracted
relations are verified. SemRep restricts its relations using a
predefined predicate ontology based on the Semantic Net-
work. PASMED also depends on the Semantic Network
but uses it in a less restrictive manner, which contributed
to the system’s higher recall.

Evaluation results on predefined relations
We also conducted experiments to see how well our
PAS patterns cover predefined relations such as Protein-

Table 7 Performance of our system on AlMed, Biolnfer and
LLL corpora, compared with some state-of-the-art systems
for PPI

AlMed Biolnfer LLL
Pre. Re. Pre. Re. Pre. Re.
Yakushiji et al. [2] 71.8 484 - - - -
Airola et al. [3] 529 61.8 47.7 59.9 72.5 87.2
Miwa et al. [4] 55.0 68.8 65.7 71.1 77.6 86.0
PASMED 304 526 51.1 449 87.2 815
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Table 8 Performance of our system on MedLine and
DrugBank corpora of SemEval-2013 Task 9 [7], compared
with the highest and lowest-performing systems in that
shared task

MedLine DrugBank
Pre. Re. Pre. Re.
Highest-performing system 558 50.5 81.6 838
Lowest-performing system 62.5 421 387 739
PASMED 27.0 62.5 41.0 61.6

Protein Interaction (PPI) and Drug-Drug Interaction
(DDI). Regarding PPI, we applied our patterns to AIMed,
Biolnfer and LLL-three popular corpora in this domain
[3,33]. The gold-standard entities available in these cor-
pora were used instead of MetaMap output. We con-
ducted the same experiment for DDI on the SemEval-2013
task 9 corpus [7].

For comparison and reference, we show the precision
and recall of some notable systems on PPI and DDI. It
should be noted that since these systems used machine
learning methods, they were evaluated by using 10-fold
cross-validation or using the test set; while our method
is pattern-based and thus we simply applied our patterns
to the whole labeled corpora. The experimental results
are shown in Tables 7 and 8. Quite expectedly, PASMED
is outperformed by the supervised systems, although it
shows comparable performance for the LLL corpus.

Besides the parser’s errors and greedy extraction pre-
sented in the previous section, the seemingly low pre-
cision scores of PASMED are caused by the system’s
generality. As stated before, our extraction schema cov-
ers any kinds of relations; it does not only focus on
the interaction relationship. Therefore, even when the
extracted relations are true, if they are not interaction rela-
tions, they are treated as false positives according to the
gold-standard annotations. Figure 3 shows examples that
PASMED extracted true relations between two proteins
‘IFN-gamma’ and ‘IFN-alpha’ in (a) and two drugs ‘fluoro-
quinolones’ and ‘antibiotics’ in (b), but their relationships
are (a) ‘associated_with’ and (b) ‘is_a; which are judged as
false positives when compared with the annotated PPI and
DDI corpora. We may improve the precision of our sys-
tem by setting rules to filter out those kind of relations.
For example, we can use a set of verbs that describe the
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relation of interaction, such as interact and activate, to
validate the extracted relations.

The low recall scores are due to the lack of patterns
and coreference resolution. Figure 4 illustrates an example
that our system missed two PPIs since it has no informa-
tion about coreference that is essential to infer them. In
this example, our system can detect a NP pair of (a novel
factor, PGDF alpha) according to Pattern 5. The system,
then, could not identify any relation since the first NP
does not contain any entity. However, in fact, there are
two PPIs between ‘PGDF alpha’ and the two coreferences
of ‘a novel factor, which are ‘Platelet-derived growth fac-
tor’ and ‘PDGEF-C’ We have investigated 100 false negative
PPIs on the AIMed corpus and found that there are 21
false negative ones (21%) caused by this error. It is clear
that if PASMED could perform accurate coreference reso-
lution, it would cover more interactions. Another solution
would be to create more patterns to capture interaction
expressions, such as ‘an interaction between A and B
‘a complex of/between A and B; ‘A-B complex; and ‘A-B
binding’ There are 28 false negative interactions satisfying
the expressions. However, these patterns are not general
enough for all type relations; they are only specific for PPI
and DDL.

Semantic relations in MEDLINE

PASMED has been applied to the whole MEDLINE and
extracted more than 137 millions of semantic relations
in the format of (entity 1, relation phrase, entity 2). The
ten most frequent types of relations are listed in Table 9.
The most common semantic relation type is the rela-
tion between ‘Amino Acid, Peptide or Protein’ entities,
which count up to 3.4 million. This explains partially
why PPI has been attracting considerable attention in
the BioNLP community. Many of the previous studies
focus on improving PPI performance [3-5]. There are
many large-scale databases constructed from MEDLINE
focusing on PPI, e.g., MedScan [45], AliBaba [46], and
Chowdhary et al. [47].

Another type of relation that is also extensively studied
in the community is the relation between genes and pro-
teins, which is ranked third in Table 9. As with PPI, there
are many studies and databases related to this type of rela-
tions, such as Chilibot [48], MEDIE [49], EVEX [50] and
the BioNLP Shared Task [9].

(a) Levels of were slightly increased following treatment.

(a) ‘associated_with' relation. (b) ‘is_a’ relation.

. |
8 - 4] . . g .
(b) The are a rapidly growing class of with a broad

spectrum of activity against gram-negative.

Figure 3 Examples of true extracted relations that are treated as false positive ones according to the annotated PPl and DDI corpora.
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but cannot extract any relations.

PPI
h) a novel factorthat‘bmds U

|NP| |VBz|
ul
Pattern 5

Figure 4 An example of two PPIs that need coreference information to be identified. Our system can detect a NP pair according to Pattern 5

The second most common type of relations in our
extraction result is the ones between cell and protein
entities, which appeared more than 3.1 million times in
MEDLINE. This type of relations contain many localiza-
tion and whole-part relations, the information of which
is potentially very useful in biology. These relations are
covered partially by localization events in the GENIA cor-
pus. The events are represented as ‘Localization of Protein
to Location’ where Location can be cells. Recently, the
CG task [51] has also targeted events on ‘Localization of
Proteins at/from/to Cells!

Somewhat unexpectedly, the relations between genes
and diseases, which are another important type of
biomedical relations [52], turned out to be much less com-
mon than PPIs. More specifically, its rank was the 417 and
the number of relations extracted from MEDLINE was
about 583,000.

The last column in Table 9 shows that the diversity of the
semantic relations is slightly different from their occur-
rences. For instance, the cell-protein relations are more
frequent but less diverse than the gene-protein ones.

Conclusion

In this work, we have developed PASMED to extract
diverse types of relations between biomedical entities
from the literature. Six simple but effective PAS patterns
have been proposed to detect relevant NP pairs. Our
evaluation results have confirmed that our pattern-based
system covers a wide range of relations. Although the
precision scores of PASMED fell short of those of Sem-
Rep, the overall results suggest that PASMED compares
favorably with SemRep, extracting a significantly higher
number of relations.

We have applied PASMED to the entire MEDLINE cor-
pus and extracted 137 million semantic relations. This
large-scale and machine-readable output can be used to
scale-up high-quality manual curation of a relation ontol-
ogy or served as a knowledge base for semantic search.

For future work, we plan to extend our system to address
n-ary relations [53,54]. Relations of this type are more
informative than binary ones since they can include details
about the site, context or conditions under which biomed-
ical relations occur.

Table 9 The ten most frequent types of semantic relations extracted from the whole MEDLINE

Semantic relation type

Rank #Relation #Unique
Entity 1 Entity 2

1 Amino acid, Peptide or protein Amino acid, Peptide or protein 3,424,145 1,057,771
2 Cell Amino acid, Peptide or protein 3,140,492 711,603
3 Gene or genome Amino acid, Peptide or protein 1,821,923 766,084
4 Disease or syndrome Disease or syndrome 1,780,634 599,355
5 Body part, Organ, or Organ component Amino acid, Peptide or protein 1,720,271 561,839
6 Amino acid, Peptide or protein Disease or syndrome 1,621,104 631,343
7 Gene or genome Cell 1,142,425 315,794
8 Organic chemical Organic chemical 1,122,133 365,631
9 Body part, Organ, or Organ component Body part, Organ, or Organ component 1,119,095 270,886
10 Laboratory procedure Amino acid, Peptide or protein 1,109,260 453,359
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Availability of supporting data

The data sets supporting the results of this article are
available in the PASMED repository: http://www.logos.t.
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relations. It explicitly describes some exceptions that the annotators must
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