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The international community has made significant efforts to
flatten the COVID-19 curve, including predicting transmission
[1,2], executing unprecedented global lockdowns and social dis-
tancing [3,4], promoting the wearing of facemasks and social dis-
tancing measures [5], and isolating confirmed cases and contacts
[6]. Because of the adverse consequences of these lockdown mea-
sures [7], many cities have reopened so they can rebuild their
economies. However, as mobility has gradually returned towards
normal, imported cases from unknown sources have disrupted
the recovery situation, and cities are continually at high risk of
new waves of infection [8,9] since airborne transmission is the
dominant transmission route [10]. Unlike studies that focused on
the effect of COVID-19 on changes in mobility [11], our study aims
to determine the causative relationship and quantify the effects
between travel modes and travel destinations and transmission
of the pandemic, which is helpful to control the pandemic,
especially during the reopening period as mobility progressively
returns to normal.

By specifically focusing on urban mobility, one epidemiological
study suggested that the transmission risk associated with public
transportation, such as trains with confined spaces, can lead to
changes based on travel time and seat location, with the highest
risk being found among passengers adjacent to an infected patient
[12]. However, it remains unclear how different travel modes and
activities at travel destinations affect the transmission of COVID-
19, and understanding this relationship is crucial for people with
frequent commutes as part of their daily lives. It is because air-
borne transmission is the dominant transmission method for
COVID-19 that people can be infected with a much higher proba-
bility [10]. Without rigorous study, the population at large may
consider that travel modes and activities at travel destinations they
newly adopted have a relatively lower risk. This perception may
create a relatively safe situation during a certain period while it
may also lead to new waves of the pandemic when there is a struc-
tural change of travel modes (e.g., major commuting shifting from
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subways to walking) or there are new infection groups associated
with specific activities. In addition, risk travel modes may be differ-
ent between cities, and people having no such awareness may end
up using the riskier modes [13], which is also influenced by public
health interventions (i.e., increasing awareness, disinfection, and
stay-at-home policy) that can help control the spread of disease
[14]. Thus, it is crucial to quantify these effects on daily confirmed
cases at a global scale to inform policy making and to provide use-
ful guidance regarding safe forms of transit for the general public.

The correlations of population density (Fig. S1 online) and face-
mask wearing (Fig. S2 online) to daily infections are discussed in
the Supplementary materials (SM). To determine the causative
relationship and quantify the travel mode effect, this study devel-
oped a vector autoregression model (VAR) by incorporating a time
series of daily confirmed cases (c) using the daily proportions of
those individuals driving (d), using public transit (t), and walking
(w) and applying the model to each of the 58 cities in 31 countries
(Fig. 1a) from February 15, 2020 to December 31, 2020. Similarly,
to quantify the travel destination effect, we developed the same
model to incorporate c with six types of travel destinations, i.e.,
retail and recreation (rr), groceries and pharmacies (gp), parks
(pk), transit stations (st), workplaces (wk), and residences (re),
applied to the same 58 cities and the same period. The travel mode
data are the daily proportions of each travel mode relative to the
number of the corresponding users on a referenced day in each
city, the same for the travel destination data. The persistence cal-
culated by the auto-correlation function is significantly greater
Fig. 1. The Granger-causality matrix between the four variables in worldwide cities. (a) T
Europe, and Oceania. (b) One variable is the Granger-causality of the other three vari
information in the original data set.
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than 0.2 for each of the four variables c, d, t, and w (Fig. S3 online).
This means that they exhibit stable persistence in most cities and
the daily confirmed cases, and the three travel modes create trend
patterns in the series that can help establish a robust model to
identify the causal relationship (see SM). Meanwhile, rr, pk, st,
and re also obtain stable persistence in most cities, but gp and
wk have relatively low persistence (Fig. S4 online), suggesting that
the global pandemic and lockdown have disrupted the mobility
trend for groceries and pharmacies and that for workplaces. In
addition, none of the three travel modes or six travel destinations
in any of the 58 cities show any structural break in the residuals, as
none of the stability curves exceed the upper and lower confidence
intervals, which demonstrates that the established models for each
city are stable.

The vast majority of the 58 cities revealed an optimal lag at 7 d
(note that for Riyadh, it was 6 d) based on four indicators—the
Akaike information criterion, Hannan-Quinn criterion, Schwarz cri-
terion, and the final prediction error; this is the same as the longest
incubation period, i.e., 5.2 d, with a 95% confidence interval (CI)
between 4.1 and 7.0 d [15]. As some people are asymptomatic car-
riers, this also indicates that they may continue the same travel
behaviour during the incubation period until they test positive.
Since urban mobility can spread the infection, and simultaneously,
the pandemic can influence the rates of travel modes and travel
destinations, a Granger-causality analysis is performed to deter-
mine the causality of one variable on the other variables (SM). It
is found that d, t, and w cause the changes of the other three vari-
he study investigates 58 cities in 31 countries across the continents of America, Asia,
ables with the 95% CI. The grey tiles in public transit (t) are null due to missing
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ables (P < 0.05) in 89.7%, 91.5%, and 87.9% of the cities, respectively,
and c Granger-causes the changes of travel modes in 51.7% of the
cities (Fig. 1b). In comparison, pk (75.9%), st (86.2%), wk (91.4%),
rr (96.6%), gp (96.6%), and re (100%) Granger-cause the other six
variables, and daily confirmed cases cause a change in travel desti-
nations in 83.1% of the cities (Fig. S5 online). The results suggest
that travel modes and travel destinations can influence the cases
in the vast majority of the cities. Since the effect of daily confirmed
cases on travel modes and destinations is only in 51.7% and 83.1%
of the cities respectively, it indicates that travel modes are more
stable than travel destinations in face of the pandemic shock as
they are less affected by daily confirmed cases.

Next, we calculate the changes in daily confirmed cases (Dc)
caused by a positive shock (i.e., random variation within a standard
deviation) to each of the three travel modes (Figs. S6–S8 online)
and each of the six travel destinations (Figs. S9–S14 online) using
the impulse response function (IRF) with 100 iterations and a
95% CI, which allows us to test the impacts of the travel modes
and destinations on daily confirmed cases based on the mean
and standard errors. Here, we only consider the variables in each
city that have been determined to Granger-cause the other vari-
ables. Overall, driving, walking, and public transit can accelerate
infection in 22 cities (42.3%), 30 cities (58.8%), and 38 cities
(88.4%) (Fig. S15 online), respectively. The standard errors are sig-
nificantly small in most cities, which suggests that the results exhi-
bit high reliability. Notably, the IRF also obtains negative values for
the three travel modes; however, this does not mean that travel
modes in these cities can decelerate the infection. A reasonable
explanation is that increasing the share for one mode (e.g., driving)
may lead to a decrease in the number of cases, that is not because
of some healthy impact of the act of driving but rather that an
increase in the relative mode share for driving can represent a sub-
stitute for the share of another mode (e.g., public transit), which
consequently mitigates pandemic transmission. In addition, travel
destinations for those trips associated with specific activities also
play an important role in changing the infection numbers. Travel
destinations associated with parks (10 cities, 22.7%), groceries
and pharmacies (17 cities, 30.4%), retail and recreation (26 cities,
26.4%), residences (29 cities, 50.9%), workplaces (33 cities, 62.3%),
and transit stations (37 cities, 74.0%) have an increasing effect on
the pandemic transmission at a global scale (Fig. S16 online).

Figs. S15 and S16 (online) reveal four critical findings. First,
public transit causes more disease spread than driving or walking.
It is assumed that passengers in public transit (e.g., buses and met-
ros) are confined to small, enclosed spaces, which makes it chal-
lenging to maintain the one-meter-plus social distancing rule.
Second, a positive shock to driving or walking may represent a sub-
stitute for another mode share and thus have a relatively ‘‘mitiga-
tion” effect on COVID-19 transmission in some cities, such as
London, Chicago, Paris, and New York City. The other possible rea-
sons are that people in these cities have a strong awareness of self-
protection, policies in these cities restrict the number of people
moving in public spaces, and disinfection activity is increased in
these cities [14]. Third, all travel modes promote COVID-19 trans-
mission in some cities (e.g., Budapest, Madison, Manchester,
Miami, Osaka, Ottawa, and Pittsburgh) which suggests that urban
mobility can represent a major transmission route in these cities.
Fourth, the travel destinations of transit stations, workplaces, and
residences are the three most influential factors in the spread of
COVID-19, which indicates that lockdown measures with a work-
from-home policy can be an effective way to control the pandemic
transmission [14].

In the IRF, Dc which denotes the changes of daily confirmed
cases has a different order of magnitudes in different cities. To
make the changes comparable across all cities on the same scale
between [0, 1], the variance decompositions (VDs) of daily con-
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firmed cases, driving, public transit, and walking denoted by {vc,
vd, vt, vw} are computed for 100 iterations (runs) of the method
(Figs. S17–S20 online) and the same computation is made for daily
confirmed cases associated with the travel destinations and
recorded by {vc, vrr, vgp, vpk, vst, vwk, vre} (Figs. S21–S27 online).
Since {vc} decreases with an increase in runs (Figs. S17 and S21
online), the 25th percentile of vc is summarized to investigate their
stable impacts on c. The result shows that 69.0% versus 31.0% of the
cities have vc larger and smaller than 0.5, respectively when asso-
ciating with the effects of travel modes (Fig. 2a), which means that
the infectious source is more effective than travel modes in influ-
encing coronavirus transmission and suggests that strictly control-
ling infectious sources should be considered an urgent measure. In
addition, 44.8% versus 55.2% of the cities meet the same criteria
when associating with the effects of travel destinations (Fig. S28
online), meaning that at a global scale, travel destinations tend to
be the most important factor that contributes to the daily con-
firmed cases when compared with infectious sources. This indi-
cates that strict social distancing should be implemented for
activities at travel destinations. Moreover, the main contribution
to infections in several cities is from both travel modes and travel
destinations as vc < 0.5 in both cases, including Helsinki, Mexico
City, Miami, Osaka, Phoenix, Prague, Utrecht, and Vancouver.

The analysis of VD values of the travel modes and travel desti-
nations also allows us to make a direct comparison of the impacts
of urban mobility, which are organized by the 75th percentile of
the three travel modes and six travel destinations. Overall, public
transit exhibits the largest contribution to daily confirmed cases
in 43.1% of the cities (Fig. 2b), followed by walking (15.5%,
Fig. 2c) and driving (10.3%, Fig. 2d) when their v � 0.2. Fig. 2 dis-
plays four phenomena. First, driving is the safest travel mode given
that, in general, vd is smaller for driving than for the other two
modes. A reasonable explanation is that drivers effectively sepa-
rate themselves from strangers, thus minimizing their chance of
being infected. Second, walking is a risky travel mode in many
cities, which is likely beyond people’s expectations. Third, unlike
the previous notion that public transit, such as metros and buses,
tend to spread the pandemic to a wider and deeper degree because
of the ease of spread in small, enclosed spaces, the transmission via
public transit is insignificant in a few cities, with vw < 0.1. Fourth,
different cities behave differently with respect to the functionality
of the different travel modes. For example, the six largest cities
where walking has a major contribution to infections (i.e., Miami,
Seoul, Tokyo, Kuala Lumpur, Mexico City, and Mumbai) are all
worldwide megacities. Furthermore, the three Nordic cities (i.e.,
Stockholm, Oslo, and Helsinki) are significantly impacted by public
transit.

In comparison, different travel destinations obtain a similar VD
distribution wherein only a few cities (< 17.2%) get v 2 [0.2, 0.6),
while the majority of cities (56.9% to 77.6%) have v 2 [0, 0.1]
(Fig. S29 online). Travelling for transit stations is the major trans-
mission route in the three Nordic cities, which is consistent with
the result obtained for travel modes. Even though the two cities
of Hong Kong and Singapore in Asia share many similarities, the
pandemic in Hong Kong was mainly transmitted via travel for
retail and recreational activities while in Singapore, it was mainly
affected by the travel destination of parks and transit stations.

Our study is important in light of the widespread misconcep-
tions about the effects of travel modes and travel destinations on
COVID-19 transmission. First, travel destinations associated with
various activities (i.e., transit stations, workplaces, and residence)
contribute to pandemic transmission most, as they are places
where individual contacts occur frequently; they are followed by
infectious sources and travel mode. Second, commuting via public
transit is a potential risk in most cities. This finding is vital for
reminding citizens to strictly adhere to preventative measures



Fig. 2. Contribution of infectious sources and travel modes (variance decompositions, VDs) to daily confirmed cases. In the x-axis, the full city names can be referred to Fig. 1.
(a) The blue dashed line divides the box plots when the 25th percentile of VDs is in [0, 0.25), [0.25, 0.5), and [0.5, 1]. There are 2 (3.4%), 16 (27.6%), and 40 (69.0%) cities in the
three corresponding categories, respectively. (b–d) The blue dashed lines divide the box plots when the 75th percentile of VDs is in [0.2, 1], [0.1, 0.2), and [0, 0.1). (b) For
public transit, 25 (43.1%), 10 (17.2%), and 23 (39.7%) cities. Notably, eleven cities are unavailable in the original data set. (c) For walking, 9 (15.5%), 12 (20.7%), and 37 (63.8%)
cities. (d) For driving, 6 (10.3%), 13 (22.4%), and 39 (67.3%) cities.
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when commuting via public transit, such as the wearing facemasks
and maintaining social distancing. Third, walking is not as safe as
the general public perceives even with an increased rate of face-
mask wearing. Even in urban areas with low population density,
pedestrians were exposed to a higher infection risk when they
ignored the suggested preventative measures. Fourth, driving is
the safest way to commute among the three travel modes, as dri-
vers have little risk of being in close contact with strangers.
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