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INTRODUCTION 
 

Clear cell renal cell carcinoma (ccRCC), which accounts 

for 70-80% of all renal cell carcinoma (RCC) patients, is 

one of the most lethal malignancies of the urinary system 

[1]. The genetic changes underlying ccRCC include 

alterations in genes regulating the hypoxia pathway (for 

example, VHL) and maintaining chromatin states (for 

example, PBRM1 and ARID1A) [2]. Prognostic 

biomarkers play an important role in stratifying patients to 

avoid both overtreatment and inadequate treatment of 

ccRCC [3]. Currently, numerous studies on the hypoxia 

pathway have been reported, but few prognostic factors 

are widely accepted in ccRCC. Recent studies have shown 

that ARID1 and PBRM1 have significant prognostic 

value and distinguish the sensitivity of patients to therapy 

in RCC [4–9]. Interestingly, both ARID1 and PBRM1 are 

chromatin-remodeling genes. This strongly suggests that 

chromatin-remodeling genes are crucial in determining 

the prognosis and guiding the treatment of ccRCC. 

Therefore, the exploration of novel prognostic biomarkers 

involved in chromatin remodeling in ccRCC is urgently 

required. 

 

Chromatin remodeling is the process of dynamic 

modification of the chromatin structure to control gene 
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ABSTRACT 
 

The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients 
with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-
remodeling genes were established. The random forest algorithm was used for feature selection to identify 
BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was 
indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations 
indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and 
that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good 
prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another 
independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with 
results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that 
predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes 
BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further 
degradation of oncoproteins in ccRCC. 
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expression by allowing regulatory transcription proteins 

access to condensed DNA. In addition, chromatin 

remodeling plays epigenetic regulatory roles in many 

processes related to cancer development, including cell 

cycle progression, cell death, cell pluripotency, and DNA 

repair [10–12]. During DNA replication, DNA repair and 

transcription, the chromatin structure is continuously 

modified, thereby exposing specific gene regions and 

allowing DNA-interacting enzymes access to specific 

regions of DNA. Chromatin remodelers play critical roles 

in stem and progenitor cell differentiation, lineage 

commitment and organogenesis during mammalian 

development [13, 14]. With advances in gene sequencing 

and an in-depth understanding of the epigenetic regulation 

of DNA-templated processes, numerous studies have 

indicated that extensive dysregulation of chromatin 

remodelers and the resulting inappropriate expression of 

regulatory genes together lead to oncogenesis [15–18]. 

Therapeutic targeting of chromatin remodelers has been 

shown to be effective in controlling tumorigenesis [12]. 

Furthermore, the prognostic value and therapeutic 

decision-making significance of chromatin remodelers in 

ccRCC have been demonstrated [5, 6, 19, 20]. In recent 

years, chromatin-remodeling genes, including ARID1, 

PBRM1, BAP1, SETD2, bromodomain PHD-finger 

transcription factor (BPTF), and SMARCA4, have been 

the focus of research in various types of tumors [4, 21–

24]. However, the prognostic value of chromatin-

remodeling genes as an overall indicator has not been 

evaluated in many types of tumors. Hence, in this study, 

we explored a prognostic model based on chromatin-

remodeling genes and evaluated the prognostic value of 

several characterized chromatin-remodeling genes in 

ccRCC. 

 

In our study, we downloaded data from The Cancer 

Genome Atlas (TCGA) database, International Cancer 

Genome Consortium (ICGC) and Human Transcription 

Factor Database (HumanTFDB). Then, a prognostic 

model based on chromatin-remodeling genes was 

established, and characterized chromatin-remodeling 

genes were identified in ccRCC. In this paper, the 

prognostic value of chromatin-remodeling genes and the 

associated mechanism in ccRCC were explored. The 

study of chromatin-remodeling genes provides new 

insight into the prognostic biomarkers and mechanisms 

of ccRCC. 

 

RESULTS 
 

Identification of subgroups with distinct prognoses 

in TCGA-KIRC patients based on consensus 

clustering 
 

After data processing, a total of 496 TCGA-KIRC 

patients were included, and 86 chromatin-remodeling 

genes were accepted as the definitive input in a first-

step consensus clustering analysis. According to the 

comparison of the cumulative distribution function 

(CDF) curve from 2 to 10 category numbers (Figure 1B, 

1C), two major clusters (cluster A and cluster B) were 

identified for which model stabilization became the 

highest with the optimal classification accuracy of 2 

categories in the consensus matrix (Figure 1A). Patients 

belonging to cluster B (n=290) exhibited significantly 

better prognostic values for overall survival (OS) (P= 

0.00026) and progression-free survival (PFS) (P= 

0.00019), while patients in cluster A (n=206) displayed 

a strong tendency for poor clinical outcomes (Figure 

1D, 1E). Univariate and multivariate Cox regression 

analyses indicated that in addition to age, clinical stage 

and differentiation grade, cluster B was a significant 

factor correlated with OS and PFS endpoints in TCGA-

KIRC patients (hazard ratio (HR): 0.667; 95% 

confidence interval (CI): 0.535-0.831; P <0.001; Table 

1). As the two clusters show substantial differences in 

survival outcomes, their associations with clinical 

parameters and vital mutations were also estimated. 

Clearly, cluster B was significantly related to a 

relatively low clinical stage and good histological 

differentiation (Supplementary Table 1). However, the 

statuses of some top mutant genes in renal carcinoma 

patients, including VHL, PBRM1, TP53 and MTOR, 

which were collected from the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database, did not show 

evident differences between the two clusters. 

 

Characterized chromatin-remodeling factor 

screening by the random forest algorithm 
 

After multiple cross-validations of the random forest 

(RF) process, the relationship between the number of 

selected variables and model accuracy based on the 

consensus cluster A and cluster B grouping was 

evaluated (Figure 2A). The cut-off value of the model’s 

accuracy was defined as 0.9, and the accuracy reached 

90% when at least 3 variables were included in the 

model (Supplementary Table 2). The model achieved its 

highest accuracy when 38 variables were included by 

rank, and the top three variables were CNOT1, SIN3A 

and BPTF (Supplementary Table 3), which means that 

these three factors could represent the original 

chromatin-remodeling model with 90% accuracy. 

According to the RF algorithm, the importance of the 

contributions of all 86 chromatin-remodeling factors in 

the model was also calculated (Figure 2B). The top 

three variables of the green features, which are features 

designated as having robust importance, were CNOT1, 

SIN3A and BPTF. Agreement between the two 

approaches validated the consistency and enhanced the 

confidence of the result. The Z-score-processed 

expression data of the 86 chromatin-remodeling factor 
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dendrogram clustering heatmap based on prespecified 

groups were utilized to discover the differences in 

CNOT1, SIN3A and BPTF expression levels between 

cluster A and cluster B (Figure 2C). Consensus 

clustering based on BPTF, SIN3A and CNOT1 was also 

performed to obtain cluster C and cluster D. 

Interestingly, we found that BPTF, SIN3A and CNOT1 

were all highly expressed in cluster B, a group 

previously associated with relatively good outcomes, 

and the patient proportions and distributions of cluster C 

and cluster D were consistent with those of cluster A 

and cluster B. Then, comparisons of OS and PFS 

between cluster C and cluster D for the 496 TCGA-

KIRC patients were performed to verify conformity. As 

shown in Figure 2D, 2E, compared with those in cluster 

C, the ccRCC patients in cluster D had better OS (P= 

0.0011) and PFS (P= 0.00031). The risk-predicted 

accuracy of the combined model including clinical 

stage, BPTF, SIN3A and CNOT1 was higher than that 

of the univariate clinical stage model for one-year, 

three-year and five-year OS (Supplementary Figure 1A, 

1B). The prediction of long-term survival varied even 

more between the two models. In summary, the 

discovery that a model based on BPTF, SIN3A and 

CNOT1 could faithfully represent the model resulting 

from the original input of chromatin-remodeling factors 

was confirmed in a variety of ways. 

 

Survival analysis and correlation analyses of clinical 

parameters with BPTF, SIN3A and CNOT1 

 

The OS and PFS estimations of BPTF, SIN3A and 

CNOT1 were performed for 496 TCGA-KIRC patients. 

After dividing ccRCC patients into three equal quantile 

divisions based on selected gene expression, we found 

that compared with the low expression group, the high 

BPTF expression group exhibited better OS (P< 0.0001) 

and PFS (P< 0.0001) (Figure 3A, 3B). Likewise, ccRCC 

patients with high CNOT1 expression had better OS (P< 

0.0001) and PFS (P= 0.00018) than those with low 

expression (Figure 3C, 3D), and patients in the high 

SIN3A expression group also had better OS 

 

 
 

Figure 1. Consensus clustering algorithm identified two clusters with prognostic value. (A) 496 TCGA-KIRC patients were group 

into a consensus matrix with Cluster A (n=206) and Cluster B (n=290) based on 86 chromatin-remodeling factors and consensus clustering 
algorithm. (B) Consensus matrix among cumulative distribution function (CDF) curves from 2 to 10 clusters. (C) Relative changes in delta area 
under the CDF curve for each k category from 2 to 10. (D) Comparison of overall prognostic differences between Cluster A and Cluster B upon 
all stage patients. (E) Comparison of progression-free prognostic differences between Cluster A and Cluster B upon all stage patients. 
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Table 1. Univariate and multivariate cox regression of Cluster A and Cluster B for overall survival and progression-
free survival in TCGA-KIRC (n=496). 

Variable 
Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value 

TCGA-KIRC OS (n=496) 

Cluster Cluster B vs Cluster A 0.667(0.535-0.831) < 0.001 0.767(0.613-0.96) 0.02 

Age Continuous 1.03(1.017-1.044) < 0.001 1.032(1.018-1.047) < 0.001 

Gender Male vs Female 0.961(0.766-1.206) 0.731   

Stage Stage IV vs Stage I-III 3.037(2.419-3.812) < 0.001 2.672(2.102-3.398) < 0.001 

Grade Grade III-IV vs Grade I-II 2.06(1.595-2.661) < 0.001 1.565(1.196-2.048) 0.001 

TCGA-KIRC PFS (n=496) 

Cluster Cluster B vs Cluster A 0.695(0.573-0.843) < 0.001 0.799(0.656-0.973) 0.025 

Age Continuous 1.021(1.009-1.032) < 0.001 1.021(1.009-1.033) < 0.001 

Gender Male vs Female 1.118(0.912-1.371) 0.282   

Stage Stage IV vs Stage I-III 3.788(3.073-4.668) < 0.001 3.431(2.761-4.263) < 0.001 

Grade Grade III-IV vs Grade I-II 2.011(1.618-2.499) < 0.001 1.652(1.32-2.069) < 0.001 

 

(P= 0.00081) and PFS (P= 0.00015) outcomes than 

those in the low expression group (Figure 3E, 3F). 

Associations between the expression levels of these 

three characterized chromatin-remodeling genes and 

clinicopathological parameters were also evaluated. As 

the clinical stage advanced, the expression levels of 

BPTF, SIN3A and CNOT1 appeared to decrease 

gradually (Figure 4A–4C). In regard to differentiation 

grade, significantly reduced expression was found in 

poorly differentiated tumor tissue compared with 

normal renal tissue or neoplastic tumor tissue with a 

level I grade (Figure 4D–4F). 

 

Functional annotation of CNOT1, SIN3A and BPTF 

and property analysis of their highly correlated 

genes 

 

Since the results of the survival analysis and correlation 

analysis between clinicopathological parameters and 

BPTF, SIN3A and CNOT1 in TCGA-KIRC were highly 

consistent, we investigated the potential mechanisms of 

these three chromatin-remodeling genes and their highly 

correlated genes (Pearson r>0.5; P<0.001) in ccRCC. 

As shown in Figure 5A–5C, gene ontology (GO) 

analysis indicated that BPTF, SIN3A and CNOT1 

function in the biological process of chromatin 

regulation, which is consistent with current knowledge. 

In addition, some of their correlated genes were found 

to be involved in the process of utilizing the autophagic 

mechanism. Furthermore, the top 5 Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment 

analysis terms indicated that genes associated with 

ubiquitin-mediated proteolysis pathways were relatively 

enriched (Figure 5D–5F). Because the genetic 

annotations and gene sets both largely associated with 

protein degradation pathways, we focused on the 

properties of their intersected genes. The Venn diagram 

shown in Figure 6A illustrates the number and overlap 

of the significantly highly correlated genes of BPTF, 

SIN3A and CNOT1 (Pearson r>0.6; P<0.001) in ccRCC 

patients. Univariate Cox regression analysis of OS was 

utilized to evaluate the prognostic value of 165 

intersected genes. We found that the majority of these 

genes (92.7%; 153/165) significantly predicted a good 

prognosis, while only a small group of them (1.8%; 

3/165) were significantly associated with poor survival 

outcomes or were nonsignificant (5.5%; 9/165) in 

ccRCC (Figure 6B). Comprehensive GO analysis 

performed on the 165 intersected genes suggested that 

processes related to posttranscriptional gene silencing 

regulation and protein polyubiquitination were the top 

enriched processes (Figure 6C). An interactive network 

of the top 15 enriched pathways among the intersected 

genes determined by KEGG analysis was constructed, 

and it was very consistently found that ubiquitin-

mediated proteolysis pathways ranked as the second 

highest score in the enrichment analysis (Supplementary 

Figure 2A). Hence, we hypothesized that BPTF, SIN3A 

and CNOT1 all play roles in the occurrence and 

development of ccRCC by affecting autophagy 

regulation and activating ubiquitin-mediated 

proteolysis, which might account for their good 

prognostic value. 

 

Prediction of YY1 as a transcriptional factor of the 

intersected genes 

 

The iRegulon plugin was used to predict the putative 

transcription factors of all 165 intersected genes with 

Cytoscape Java software. According to iRegulon, YY1 

was the most likely transcription factor of these genes, 

and the predictive results of other regulators were not 

sufficient with strong evidence. After excluding genes 

that did not match YY1 (44/165; blue module) and 
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genes with a correlation factor less than 0.3 with YY1 

by Pearson’s correlation analysis (11/165; gray 

module), the remaining genes showed at least two 

evidence-based relationships with YY1, including 

enriched motif mapping information obtained from the 

Encyclopedia of DNA Elements (ENCODE), JASPAR 

and HOMER databases, ChIP-seq track signal 

calculations and correlation analysis (Figure 7). Four 

out of the top 10 enriched pathways identified by 

KEGG analysis were verified by single-gene YY1 gene 

set enrichment analysis (GSEA), the TGF-beta 

signaling pathway, the Wnt signaling pathway, RCC 

and ubiquitin-mediated proteolysis (Supplementary 

Figure 2B); these results were consistent with the 

 

 
 

Figure 2. Characterized chromatin-remodeling factors selection based on random forest algorithm. (A) The relationship between 
the number of variables and model accuracy after multiple cross-validations of the random forest process was shown. The auxiliary line was 
added at 0.9 accuracy and the first point indicated 2 variables while the following points added one variable compared to the previous one. 
(B) The importance of each variable in model contribution was shown. The horizontal axis represents the position of 86 chromatin-
remodeling factors in the rank of high to low importance from right to left. Red features were confirmed unimportant, yellow features were 
designated as tentative and green features were confirmed important. Three blue boxplots mapped to minimal, mean and maximum Z scores 
of shadow attributes respectively. (C) Z score gene expression level of 86 chromatin-remodeling factors among consensus cluster A and 
cluster B. Clinicopathological stage, outcome status and groups (cluster C and cluster D) of consensus cluster based on BPTF, CNOT1, and 
SIN3A were annotated in the heatmap. (D) Comparison of overall prognostic differences between Cluster C and Cluster D upon all stage 
patients. (E) Comparison of progression-free prognostic differences between Cluster C and Cluster D upon all stage patients. 
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enrichment results for the intersected genes 

(Supplementary Figure 2A), which could be considered 

additional evidence supporting YY1 as the potential 

transcriptional factor due to the similar pathway 

annotations. Five E3 ubiquitin ligase genes, CBL, 

UBE4B, TRAF6, HUWE1, and PIAS1, that were 

enriched in the ubiquitin-mediated proteolysis pathway 

identified by the previous interactive KEGG analysis 

(Supplementary Figure 2A), were predicted to be 

regulated by YY1. Because ubiquitin E3 ligases have an 

impact on almost every aspect of eukaryotic biological 

processes by promoting protein ubiquitination and 

degradation, it was necessary to predict the possible 

substrates of CBL, UBE4B, TRAF6, HUWE1 and 

PIAS1 to elucidate their mechanisms. Based on five 

relationship predictive methods provided by the 

UbiBrowser online tool, some potential targets were 

found and are listed in Supplementary Figure 3, and 

many of them are best known as oncoproteins in 

multiple cancer types, such as proteins in the JAK 

family, AKT1 and BRAF. As shown in Supplementary 

Figure 4, OS and PFS analyses with patients stratified 

by the median cut-off values for the five E3 ubiquitin 

ligases were also performed for the 496 TCGA-KIRC 

patients. Obviously, patients with high CBL, UBE4B, 

TRAF6, HUWE1 or PIAS1 expression exhibited better 

ccRCC outcomes than those with corresponding low 

expression.

 

 
 

Figure 3. Prognostic analysis of three characterized chromatin-remodeling factors upon 496 TCGA-KIRC patients. Comparison 

of overall and progression-free prognostic differences between two groups divided by BPTF (A, B), CNOT1 (C, D) and SIN3A (E, F) expression 
levels based on median expression level. 
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Figure 4. Association between three characterized chromatin-remodeling factors expression levels and clinicopathological 
parameters. Differentiated expression of BPTF, CNOT1 and SIN3A between normal renal tissue, disparate clinicopathological stages (A–C) 

and clinicopathological grade (D–F). The Wilcoxon test was used for group comparison. 
 

 
 

Figure 5. Function prediction of three characterized chromatin-remodeling factors. (A–C) Top 10 biological process enrichment 

results of genes in which correlation with BPTF, CNOT1 or SIN3A were greater than 0.5. (D–F) Top 5 KEGG pathway enrichment results of 
genes which correlation with BPTF, CNOT1 and SIN3A were greater than 0.5. The results were ranked by the enrichment scores and displayed 
corresponding to -log10(q-value) and gene ratio enriched in the selected pathways. 
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Figure 6. The properties of the intersected genes. (A) Venn diagram shows the number of intersection genes of genes in which 

correlation with BPTF, CNOT1, and SIN3A was greater than 0.6. (B) Univariate Cox regression results for the overall survival of all 165 
intersected genes were displayed by ratio pie plot. "*" means the statistic P-value was significant (P<0.05). (C) Top 20 results of gene ontology 
analysis upon all 165 intersected genes. 

 

 
 

Figure 7. Prediction of YY1 as intersected genes regulator. All 165 intersected genes predictive network of transcription factor YY1 

performed by iRegulon. Genes in the left circle were found regulated by YY1 according to both motif's matching and ChIP-seq tracks signals. 
Genes in the right circle were found regulated by YY1 based on ChIP-seq tracks signals. Genes in the inner right circle were found regulated by 
YY1 based on motif's matching. Genes in blue modules were not mapped to YY1. Genes in grey color are those that are less than 0.3 
correlated with YY1. 
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Relationship predictions for YY1 and the 

characterized chromatin remodelers 
 

Another function encoded in iRegulon was exploited 

to query the targets of BPTF, a transcription-

associated chromatin remodeler. According to 

MSigDB, GeneSigDB and Ganesh Clusters, YY1 and 

CDKN1A were predicted to be in the top 20 matching 

results (Figure 8A). Studies have identified CNKN1A 

as a target gene of YY1 that binds to the BRCA2 

protein to have a role in tumor suppression [25]. 

Through experimental determination and text mining 

performed with the STRING database, confirmed co-

expression relationships were found among the 

expression of BPTF, SIN3A and YY1 with SIN3A 

acting as the crosslinking bridge, but CNOT1 did not 

show any connectivity in the protein network (Figure 

8B). One-year, three-year and five-year receiver 

operating characteristic (ROC) curves of a combined 

model including clinical stage, BPTF, SIN3A and 

CNOT1 and YY1 were constructed, and by 

comparison, this model had better risk-prediction 

performance than the previous two models, especially 

for long-term OS (Supplementary Figure 1A, 1B). 

The results of Pearson’s correlation analyses of BPTF, 

SIN3A, CNOT1 and YY1 in TCGA-KIRC patients 

were all positive and significant, and only the 

coefficient between CNOT1 and YY1 was relatively 

low (Figure 8C), which was consistent with the 

protein interaction results. Significantly positive 

correlations among BPTF, SIN3A, CNOT1 and YY1 

could also be acquired with a TCGA pan-cancer 

analysis performed by Gene Expression Profiling 

Interactive Analysis (GEPIA) (Supplementary Figure 

5); however, their prognostic values, which were 

consistent in ccRCC, were not as consistent across 

other cancer types (Supplementary Table 4). Finally, 

high expression of YY1 was associated with relatively 

good OS in TCGA-KIRC patients (Figure 8E), which 

implied that there might be a distinct interaction 

relationship among BPTF, SIN3A, CNOT1 and YY1 

in ccRCC patients that leads to an unclear tumor-

suppressive function that promotes improved clinical 

outcomes. 

 

 
 

Figure 8. Relationship between characterized chromatin-remodelers and YY1 (A) Top 20 predicted target genes of BPTF. (B) The interactive 

relationship between BPTF, SIN3A and YY1 produced by STRING. (C) Pearson correlation between the expression levels of BPTF, CNOT1, 
SIN3A and YY1 upon 496 TCGA-KIRC patients. (D) Comparison of overall prognostic differences between YY1 high and low expression groups 
by median cut-off value. 
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Validation in ICGC dataset 

 

We downloaded another RNA-Seq dataset from ICGC 

which containing 91 patients with renal cancer for 

validation. Patients in ICGC dataset can be divided into 

3 groups with differential expression of BPTF, CNOT1 

and SIN3A by consensus clustering. Patients with low 

BPTF, CNOTA and SIN3A expression have 

significantly worse OS and no pathways were enriched 

from KEGG database. Patients with relatively median 

or high expression of BPTF, CNOT1 and SIN3A suffer 

better OS and ubiquitin-mediated proteolysis pathway 

was enriched (NES=1.78, P=0.000) as one of the top 10 

enrichment, which was consistent with the result 

acquired from TCGA (Supplementary Figure 6). 

Furthermore, patients with high expression level of 

BPTF and SIN3A have significantly better OS but the 

result of CNOT1 was insignificant . The expression 

levels of BPTF, CNOT1 and SIN3A significantly 

decreased in stage IV patients compared with stage I 

patients. Since BPTF, CNOT1 and SIN3A were 

identified as protective factors in the progression of 

ccRCC in TCGA dataset, that conclusion was validated 

in ICGC dataset (Supplementary Figure 7). Using 

iRegulon plugin of cytoscape, YY1 was identified as 

the most likely predicted transcriptional factor of 

overlapped correlated genes according to both motif's 

matching and ChIP-seq tracks signals. Pearson 

correlation between the expression of BPTF, CNOT1, 

SIN3A, YY1 and the 5 E3-ligases were significantly 

high, which suggested closed relationships of them. 

High expression of CBL and HUWE1 indicated 

significantly better OS while the similar prognostic 

tendency could be obtained in PIAS1, TRAF6 and 

UBE4B but were not significant. The results of 

transcriptional factor's prediction, correlation analysis 

and survival analysis in ICGC dataset were consistent 

with TCGA (Supplementary Figure 8). 

 

DISCUSSION 
 

In this study, based on 86 chromatin-remodeling genes, 

two subgroups of TCGA-KIRC patients with distinct 

prognoses were defined by consensus clustering of 

ccRCC samples. The clustering of three genes (BPTF, 

SIN3A and CNOT1) could effectively represent 90% of 

chromatin-remodeling genes and indicate the prognosis 

of ccRCC. Furthermore, each of the three genes was 

also identified to be indicative of a good prognosis, and 

high expression was related to relatively low clinical 

stage and good histological differentiation in ccRCC. 

The results of a functional analysis indicated that BPTF, 

SIN3A and CNOT1 were all involved in ubiquitin-

mediated proteolysis in ccRCC. In addition, YY1 was 

indicated to be an important transcription factor of 

genes highly related to BPTF, SIN3A and CNOT1. 

Correlation and protein network analyses indicated that 

BPTF, SIN3A and CNOT1 were highly correlated with 

YY1 and that YY1 might be a regulatory target of 

BPTF and co-express with SIN3A in ccRCC. 

Furthermore, another RNA-Seq dataset from ICGC 

which containing 91 patients with renal cancer was used 

to validate the results, indicating the results in TCGA 

were not database-specific. The highlight of our study is 

the first demonstration that BPTF, SIN3A, CNOT1 and 

YY1 are novel biomarkers of good prognosis in ccRCC. 

 

BPTF and SIN3A are new prognostic biomarkers for 

predicting survival in ccRCC. BPTF is the largest subunit 

of the nucleosome-remodeling factor (NURF) complex 

and plays a vital role in chromatin remodeling for gene 

activation through its association with histone acetylation 

or methylation [20, 26]. The important roles of BPTF in 

thymocyte maturation, embryonic development, and T 

cell homeostasis and function have been confirmed [27–

30]. Recent studies have indicated that BPTF promotes 

tumor cell growth in several types of cancers [26, 31–35]. 

Interestingly, in this paper, BPTF was first identified as a 

gene positively associated with a good prognosis in 

ccRCC. SIN3A is a core component of the histone 

deacetylation activity-associated transcriptional repressor 

complex [36]. In mammals, Sin3 proteins can recruit 

histone deacetylases (HDACs) to chromatin-bound 

transcription factors to repress the expression of target 

genes [37]. SIN3A regulates processes important for 

development and homeostasis including mitochondrial 

biogenesis, cell death and neuronal fate selection [38, 

39]. In breast cancer cells, interference with SIN3A 

function induces epigenetic reprogramming and 

differentiation, and the SIN3A/HDAC complex plays an 

important role in maintaining sensitivity to chemotherapy 

in breast cancer [40, 41]. In this study, we demonstrated 

for the first time that high SIN3A expression suggests a 

good prognosis in ccRCC. Consistent with high BPTF or 

SIN3A expression suggesting a good prognosis in 

ccRCC, we confirmed that high expression of BPTF or 

SIN3A was significantly associated with a relatively low 

clinical stage and good histological differentiation in 

ccRCC, respectively. According to the TCGA database 

and existing studies, BPTF and SIN3A in most types of 

tumors have no prognostic value. Thus, the clear 

mechanistic understanding of the unique prognostic 

significance of BPTF and SIN3A in ccRCC needs to be 

further developed. 

 

In our study, BPTF, SIN3A and CNOT1 were all 

involved in processes utilizing the autophagic 

mechanism and ubiquitin-mediated proteolysis in 

ccRCC. However, how these three genes participate in 

the process of ubiquitination remains unknown. 

Ubiquitination is an important posttranslational 

modification that controls many biological processes, 
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such as cell division and differentiation, in all 

eukaryotes, and it also controls many steps in autophagy 

[42]. Furthermore, autophagy deficiency induces 

inhibition of histone ubiquitination [43]. These results 

are consistent with high expression of BPTF, SIN3A 

and CNOT1 indicating a good prognosis in ccRCC. We 

predict that BPTF, SIN3A and CNOT1 enhance 

genomic stability and inhibit tumor cell formation by 

positively regulating ubiquitination in ccRCC. 

 

YY1 was identified as the intersected gene regulator in the 

network based on chromatin-remodeling genes highly 

related to BPTF, SIN3A and CNOT1. In ccRCC, YY1 

was identified as a novel biomarker of a good prognosis. 

 

YY1, a ubiquitously expressed transcription factor, 

plays an essential role in early embryogenesis, adult 

tissue formation and the regulation of Th2 cell and B 

cell differentiation [44–47]. However, the mechanism 

underlying YY1 involvement in ccRCC progression has 

not been reported. Interestingly, like BPTF, SIN3A and 

CNOT1, YY1 is also enriched in ubiquitin-mediated 

proteolysis. Since YY1 is highly correlated with BPTF, 

SIN3A and CNOT1 in ccRCC, we conclude that YY1, 

along with the three chromatin-remodeling genes, is 

involved in the regulation of ubiquitination. 

 

The possible regulatory effects of BPTF and SIN3A on 

YY1 were investigated via functional and correlation 

analyses in our study. Five ubiquitin E3 ligases, CBL, 

UBE4B, TRAF6, HUWE1 and PIAS1, were predicted to 

be regulated by YY1. Based on five relationship predictive 

methods provided by the UbiBrowser online tool, some 

potential targets were found and many of the substrates of 

these five E3 ubiquitin ligases, such as proteins in the JAK 

family, AKT1 and BRAF, are well-known oncoproteins in 

multiple cancer types. In patients with ccRCC, many of 

these substrates have been identified as poor prognostic 

factors, such as: JAK2 [48], JAK3 [49], CSK [50], RET 

[51], AR [52], AHR [53, 54], IRF4 [55], SHC1 [56], 

TGFBR2 [57]. Interestingly, consistent with the prognostic 

value of BPTF, SIN3A, CNOT1, and YY1, high 

expression of any of the five E3 ubiquitin ligases indicated 

a good prognosis in ccRCC. In addition, BPTF, SIN3A, 

CNOT1 and YY1 were highly positively correlated in both 

pan-cancer and ccRCC datasets. We further mined ccRCC 

datasets in GEO to verify our conclusions in ccRCC. In 

GSE36895 containing 29 samples from ccRCC patients, 

positive correlation was found among 

BPTF/CNOT1/SIN3A/YY1, in which the correlation 

between SIN3A and CNOT1/YY1 was significant (data 

not shown) [58]. This result supports the relationship of 

BPTF/CNOT1/SIN3A/YY1 found in TCGA. Protein 

network analysis indicated that BPTF might have a 

targeted regulatory effect on YY1. Confirmed co-

expression relationships were found among BPTF, SIN3A 

and YY1, with SIN3A acting as the crosslinking bridge. 

Based on the above results, we predict that BPTF, SIN3A 

and YY1 are involved in one pathway that is likely 

associated with ubiquitination in ccRCC. Therefore, we 

conclude that the good prognostic value of BPTF and 

SIN3A is caused by their involvement in the regulation of 

YY1, which further degrades oncoproteins through five E3 

ubiquitin ligases in ccRCC. 

 

The Ccr4-Not complex is a highly conserved regulator of 

mRNA metabolism, and CNOT1 is the large human 

subunit of the Ccr4-Not complex [59]. CNOT1, a 

transcriptional repressor, is crucial for maintaining 

embryonic stem cells in a pluripotent state, and a specific 

CNOT1 mutation can lead to holoprosencephaly and the 

novel syndrome of pancreatic agenesis [60]. CNOT1 can 

target heterochromatin to regulate gene expression and 

protect genome integrity [61]. In our study, we found that 

CNOT1 played an important role in chromatin 

remodeling, and we demonstrated for the first time that 

high CNOT1 expression suggested a good prognosis in 

ccRCC. Interestingly, like BPTF, SIN3A and YY1, 

CNOT1 is also involved in ubiquitin-mediated 

proteolysis. However, the mechanism underlying CNOT1 

involvement in ccRCC needs further study, and we hope 

that more research will focus on CNOT1 in ccRCC. 

 

To evaluate the reproducibility of the results in TCGA, 

another additional independent RNA-Seq dataset from 

ICGC which containing 91 patients with renal cancer 

was used to compare the results to our preceding 

findings in TCGA dataset. Significantly, a strong 

consistency between TCGA and ICGC database was 

found, suggesting the results in our study were solid and 

not database-specific. 

 

In conclusion, we identified three chromatin-remodeling 

genes, BPTF, SIN3A and CNOT1, that could predict a 

good prognosis, which was related to a relatively low 

clinical stage and good histological differentiation in 

ccRCC. We confirmed that BPTF, SIN3A, CNOT1 and 

YY1 are all involved in ubiquitin-mediated proteolysis. 

We predicted that BPTF and SIN3A may be involved in 

regulating YY1, which regulates E3 ubiquitin ligases to 

promote further degradation of oncoproteins in ccRCC. 

The limitation of this study is the lack of experimental 

validation. Further experiments are necessary to 

validate the prognostic value of BPTF, SIN3A, CNOT1 

and YY1 in ccRCC. 

 

MATERIALS AND METHODS 
 

Datasets preparation 
 

Raw RNA-seq count data, fragment per kilobase per 

million (FPKM) values and the corresponding 
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clinicopathological features of 611 ccRCC patients were 

retrieved from the TCGA using TCGAbiolinks R 

packages version 2.13.6 [62]. After preprocessing to 

integrate the OS and PFS outcome information obtained 

from the TCGA clinical data resource [63], patients 

who met the following criteria were excluded from this 

study: (1) prior receipt of neoadjuvant therapy; (2) an 

unclear histopathological definition; (3) missing 

survival records; and (4) a follow-up period less than 30 

days. Thus, a total of 496 tumor cases and 72 normal 

renal samples satisfying the inclusion criteria were 

evaluated in the final research. The mutational 

annotation format (MAF) of somatic mutation data was 

also downloaded from the TCGA database. A dataset 

included (reads per kilobase per million) RPKM 

expression profile of 91 patients with renal cancer and 

the corresponding clinical information was downloaded 

from ICGC database (https://icgc.org/) for validation. 

 
Clustering of chromatin-remodeling factors 

 

We required a list of all 136 chromatin-remodeling 

genes from the Human Transcription Factor Database 

(HumanTFDB; http://bioinfo.life.hust.edu.cn/Human 

TFDB#!/) after excluding 6 factors in the chromatin Y 

family to avoid a sex bias and 4 factors in the histone 

cluster 1 H1, which have relatively low expression 

levels in renal tumor samples. The paired Wilcoxon test 

(P < 0.01) was applied to compare differential gene 

expression between renal cancer tissue and nontumoral 

tissue samples; subsequently, 105 genes were selected 

as significant factors related to tumorigenesis. We then 

took the intersection of these genes and the top 50% 

variant genes were determined by the median absolute 

deviation (MAD) of FPKM expression data. Finally, 86 

chromatin-remodeling genes were accepted as the 

definitive input for downstream clustering analysis. 

Based on the K-Means method and Euclidean distance 

estimation of the gene expression matrix, a consensus 

clustering algorithm embedded in the R package 

ConsensusClusterPlus [64] was performed with the 

following parameters: the clustering number was no 

more than 10, the proportion of items and features of 

clusters were no more than 80%, and the number of 

subsamples was set as 1000 to define the major 

differentiated groups between samples. The optimal 

clustering number was identified according to the CDF 

curve. The same consensus clustering process was 

performed in TCGA and ICGC datasets after three 

characterized chromatin remodeling-associated genes 

were selected. 

 

Characterized gene selection 

 

Machining learning RF wrapper approaches 

implemented in the R packages caret [65] and Boruta 

[66] were applied as feature selection classifiers. Based 

on the consensus clustering group, we employed a 

random resampling iteration procedure performed 10 

times with 100-fold cross-validations through the caret 

package on chromatin-remodeling gene expression data 

to confirm the accuracy of the prediction and to reduce 

the variability in model performance. By comparing the 

importance of the original features with randomly 

accessible shadow-attributed importance through the 

Boruta package, nonsignificant or low-contribution 

features were gradually rejected after 30 rounds of 

tracing regression, while strong or tentatively confirmed 

features were sustained to stabilize the result of the 

selection test. After establishing an integrated risk 

model of clinical stage and selected chromatin-

remodeling genes by multivariate Cox regression, we 

assessed the one- to five-year predictive accuracy of the 

computed OS prognostic scores by generating ROC 

curves and comparing their time-dependent areas under 

the curve (AUCs). The ROC curves were generated 

with the “timeROC” R package [67]. 

 

Survival analysis 
 

OS and PFS were defined as the clinical endpoints to 

evaluate survival outcomes. For survival analysis 

(Kaplan-Meier) performed with the survival (https:// 

CRAN.R-project.org/package=survival) R package, 

patients in TCGA and ICGC cohorts were divided into 

two groups of equal size based on the median 

expression value of BPTF, CNOT1, SIN3A, YY1, CBL, 

UBE4B, TRAF6, HUWE1 and PIAS1. The differences 

between groups were estimated by the log-rank test. 

Univariate Cox proportional hazard regression was used 

to test the HR and significance of the prognostic value 

of the intersected genes. Pan-cancer survival analysis 

results of TCGA datasets were retrieved from the 

GEPIA website (http://gepia.cancer-pku.cn). 

 

GSEA 

 

To mine possible biological pathways in which the 

selected chromatin-remodeling genes might be 

enriched, GSEA was performed. We estimated the 

correlations between these genes and all other genes by 

scoring the Pearson correlation coefficient. The genes 

that presented a relatively high correlation over 0.5 with 

BPTF, SIN3A and CNOT1 were collected as GO: BP 

and KEGG input gene sets for subsequent enrichment 

analysis with the clusterProfiler R package [68]. Java 

desktop GSEA software (version 4.0.1) was used to 

evaluate the c2.cp.kegg.v6.1.symbols enriched 

annotation on YY1 expression by ranking the Pearson’s 

correlation coefficients to produce the gene list and to 

evaluate the enriched pathways of patients in ICGC 

dataset with differential expression of BPTF, CNOT1 

https://icgc.org/
http://bioinfo.life.hust.edu.cn/HumanTFDB#!/
http://bioinfo.life.hust.edu.cn/HumanTFDB#!/
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
http://gepia.cancer-pku.cn/
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and SIN3A. To explore the connection between each 

enriched module, an interactive web-based analytic 

platform that could construct a visual relational 

network, NetworkAnalyst (https://www.networkanalyst. 

ca/NetworkAnalyst/home.xhtml), was utilized to 

visualize the KEGG pathway results for the intersected 

genes. GO analysis of the intersected genes was carried 

out with the Metascape online tool (http:// 

metascape.org). 

 

Regulator prediction 

 

With Cytoscape Java version 3.5.0 (https:// 

cytoscape.org) software, the iRegulon [69] plugin was 

used to predict the putative transcription factors of 

target genes and to generate a regulator interactive 

network. The signature query parameters were 

determined by default; the enrichment score threshold 

was 3, and the maximum false discovery rate (FDR) for 

motif similarity was strictly defined as 0.001. 

According to both enriched motifs matching from 

several databases (including JASPAR, HOMER and 

Elemento) and ENCODE raw ChIP-seq track signals, 

some significant predictive transcription factors and 

their calculated targets were filtered to remain and be 

ranked on the results panel. Genes in which Pearson’s 

correlation with the predicted regulators was smaller 

than 0.3 were shadowed in the network analysis of 

TCGA dataset. Based on the MSigDB, GeneSigDB and 

Ganesh Clusters gene set sources, the target genes of 

selected transcriptional regulators were queried and then 

visualized in a network form with the Query TF-target 

database function. 

 

Protein network construction 

 

The STRING (https://string-db.org) database was used 

to analyze the coexpression relationships between 

chromatin remodelers and transcription factors in  

this study. UbiBrowser (http://ubibrowser.ncpsb.org/ 

ubibrowser/) is a website application that provides a 

confident prediction of human ubiquitin ligase (E3) and 

corresponding substrate interactions based on a naïve 

Bayesian computational framework. The biological 

evidence that supports the predicted result is derived 

and combined from multiple approaches: published 

data, protein orthologs, protein domains, protein motifs 

and network topology. 

 

Statistical analysis 

 

The chi-square test and corrected chi-square test (values 

lower than 5 but larger than 1 prompted calibration for 

continuity) were applied to intergroup comparisons and 

to assess associations with clinical features. Pearson’s 

correlation analysis was used to calculate the correlative 

relation between selected genes. Univariate and 

multivariate Cox regression models were created to 

detect the significant risk and protective factors for 

patients. The two-sided Wilcoxon rank sum test was 

performed to measure the differences between two 

variables. All statistical analyses were conducted with R 

version 3.6.2, and P values below 0.05 were considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Predicted overall survival from one to five years of different models. (A) AUC performance of five years 

survival among clinical stage model, clinical stage+BPTF+CNOT1+SIN3A model and clinical stage+ BPTF+CNOT1+SIN3A+YY1 model. (B) 
Comparison of time-dependent ROC curves of three different models. 
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Supplementary Figure 2. GSEA of intersected genes and YY1. (A) An interactive network of the top 15 KEGG enriched pathways upon 
165 intersected genes. (B) Four out of the top 10 KEGG pathway enrichment results of YY1 single gene GSEA. 
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Supplementary Figure 3. Target prediction of E3 ubiquitin ligases. (A–E) Possible substrates of the five identified E3 ubiquitin ligases 
predicted by multiple approaches. The size of the target stands for the confidence of their interaction with E3. 

 

 
 

Supplementary Figure 4. Survival analysis of E3 ubiquitin ligases. (A–J) Overall survival outcomes of 5 E3 ubiquitin ligases upon 

median cut-off values. 
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Supplementary Figure 5. TCGA pan-cancer correlation exploration. (A–F) Pan-cancer Pearson correlation between log2(TPM) 

expression of BPTF, CNOT1, SIN3A and YY1 performed by GEPIA. 
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Supplementary Figure 6. ICGC patients grouping based on the expression of BPTF, CNOT1 and SIN3A. (A, B) Consensus matrix 
among CDF curves increase from 2 to 10 clusters and groups acquisition. (C) The comparison of the expression level of BPTF, CNOT1 and 
SIN3A among groups. (D) Comparison of overall survival outcome among groups. (E) KEGG pathways enrichment of patients in cluster B and 
cluster C. 
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Supplementary Figure 7. Validation of the prognostic values and clinicopathological parameters comparison of BPTF, CNOT1 
and SIN3A in ICGC dataset. (A–C) Validation of the overall survival. (D–F) Expression level among different stage. 
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Supplementary Figure 8. Validation of transcriptional factor prediction of correlated genes and prognostic value of E3 
ubiquitin ligases in ICGC dataset. (A) Transcriptional factor prediction of 398 overlapped correlated genes (Pearson r>0.6, p<0.001) of 

BPTF, CNOT1 and SIN3A. (B) Pearson correlation analysis between BPTF, CNOT1, SIN3A, YY1 and 5 E3 ubiquitin ligases. (C–H) Overall survival 
analysis of YY1, CBL, TRAF6, HUWE1, PIAS1 and UBE4B. 
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Supplementary Tables 
 

Supplementary Table 1. Association between Cluster A, Cluster B, clinicopathological parameters and common renal 
carcinoma genomic mutation characteristics in TCGA-KIRC (n=496). 

 Cluster A (n=206) Cluster B (n=290) Total (n=496) P value 
Age     
Mean±SD 61.4 (11.7) 59.8 (12.3) 60.5 (12.1) 0.175 
Gender     
Female 67 (32.5%) 106 (36.6%) 173 (34.9%)  
Male 139 (67.5%) 184 (63.4%) 323 (65.1%) 0.406 
Stage     
I 84 (40.8%) 166 (57.2%) 250 (50.4%)  
II 22 (10.7%) 30 (10.3%) 52 (10.5%)  
III 60 (29.1%) 58 (20.0%) 118 (23.8%)  
IV 40 (19.4%) 36 (12.4%) 76 (15.3%) 0.002* 
Grade     
I-II 72 (35.0%) 149 (51.4%) 221 (44.6%)  
III-IV 131 (63.6%) 136 (46.9%) 267 (53.8%) 3e-04* 
VHL status     
Wild-type 62 (35.0%) 95 (51.4%) 157 (44.6%)  
Mutant 56 (63.6%) 98 (46.9%) 154 (53.8%) 0.652 
PBRM1 status     
Wild-type 69 (33.5%) 108 (37.2%) 177 (35.7%)  
Mutant 49 (23.8%) 85 (29.3%) 134 (27.0%) 0.751 
TP53 status     
Wild-type 113 (54.9%) 191 (65.9%) 304 (61.3%)  
Mutant 5 (2.4%) 2 (0.7%) 7 (1.4%) 0.146 
MTOR status     
Wild-type 107 (51.9%) 184 (63.4%) 291 (58.7%)  
Mutant 11 (5.3%) 9 (3.1%) 20 (4.0%) 0.165 

 
Supplementary Table 2. Referenced model accuracy corresponding to the number of variables included in features 
selection. 

Variables Accuracy Kappa AccuracySD KappaSD 
2 0.885 0.76685814 0.15621254 0.31530365 
3 0.90183333 0.79766067 0.14147878 0.28676197 
4 0.91633333 0.8291625 0.11966986 0.23714195 
5 0.91233333 0.81825341 0.12669989 0.26149403 
6 0.927 0.85192641 0.11011625 0.22121793 
7 0.95016667 0.89943057 0.09585972 0.19280668 
8 0.956 0.91039794 0.09246348 0.1873606 
9 0.94566667 0.88912754 0.09456677 0.19169125 
10 0.95366667 0.9039627 0.08562768 0.17805629 
11 0.9695 0.93625874 0.07313161 0.15326379 
12 0.9695 0.93695804 0.07313161 0.15161329 
13 0.9655 0.92932401 0.08186432 0.16845566 
14 0.967 0.93201632 0.08140806 0.16819983 
15 0.969 0.93516317 0.07970273 0.16676898 
16 0.9695 0.93631702 0.07846218 0.16410564 
17 0.9715 0.94086247 0.07662548 0.15939759 
18 0.9735 0.94465035 0.06906848 0.14463067 
19 0.9675 0.93317016 0.08020649 0.16558167 
20 0.9735 0.94395105 0.06906848 0.14639705 
21 0.9715 0.93946387 0.07662548 0.1625547 
22 0.9695 0.93631702 0.07846218 0.16410564 
23 0.9695 0.93631702 0.07846218 0.16410564 
24 0.9695 0.93631702 0.07846218 0.16410564 
25 0.96833333 0.93337995 0.07299509 0.15425558 
26 0.9735 0.94395105 0.06906848 0.14639705 
27 0.9735 0.94395105 0.06906848 0.14639705 
28 0.978 0.9527972 0.06289321 0.1354076 
29 0.9775 0.95164336 0.0645008 0.13876189 
30 0.9755 0.9477972 0.0668539 0.14268294 
31 0.978 0.9527972 0.06289321 0.1354076 
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32 0.9755 0.9477972 0.0668539 0.14268294 
33 0.9735 0.94400932 0.07468959 0.15770879 
34 0.974 0.94370629 0.06759953 0.14682918 
35 0.978 0.9527972 0.06289321 0.1354076 
36 0.96783333 0.93228438 0.07957008 0.16766191 
37 0.9715 0.93940559 0.07115746 0.15160319 
38 0.97183333 0.94061772 0.07042022 0.14888174 
39 0.9755 0.9477972 0.0668539 0.14268294 
40 0.974 0.94446387 0.07333333 0.15647684 
41 0.978 0.9527972 0.06289321 0.1354076 
42 0.9755 0.94785548 0.07264658 0.1542658 
43 0.974 0.94440559 0.06759953 0.14506925 
44 0.9755 0.9477972 0.0668539 0.14268294 
45 0.976 0.94895105 0.06531973 0.13945516 
46 0.978 0.9534965 0.06289321 0.13344907 
47 0.976 0.94895105 0.06531973 0.13945516 
48 0.974 0.94370629 0.06759953 0.14682918 
49 0.976 0.94900932 0.07123726 0.1512849 
50 0.976 0.94825175 0.06531973 0.14130776 
51 0.972 0.93991841 0.07531751 0.16137269 
52 0.9715 0.93870629 0.07115746 0.15326508 
53 0.9735 0.94325175 0.06906848 0.14813903 
54 0.9715 0.93940559 0.07115746 0.15160319 
55 0.9675 0.93037296 0.08020649 0.1714723 
56 0.9735 0.94325175 0.06906848 0.14813903 
57 0.976 0.94825175 0.06531973 0.14130776 
58 0.972 0.93916084 0.06974702 0.15201314 
59 0.978 0.9527972 0.06289321 0.1354076 
60 0.9715 0.93800699 0.07115746 0.15490595 
61 0.9695 0.93416084 0.07313161 0.15809319 
62 0.9735 0.94400932 0.07468959 0.15770879 
63 0.976 0.94900932 0.07123726 0.1512849 
64 0.978 0.9527972 0.06289321 0.1354076 
65 0.9775 0.95234266 0.0645008 0.13685734 
66 0.974 0.94370629 0.06759953 0.14682918 
67 0.976 0.94895105 0.06531973 0.13945516 
68 0.976 0.94825175 0.06531973 0.14130776 
69 0.9675 0.92961538 0.075 0.16264989 
70 0.976 0.94755245 0.06531973 0.14313293 
71 0.98 0.95664336 0.06030227 0.13112135 
72 0.9715 0.93870629 0.07115746 0.15326508 
73 0.976 0.94825175 0.06531973 0.14130776 
74 0.978 0.95285548 0.0690191 0.14756065 
75 0.98 0.95664336 0.06030227 0.13112135 
76 0.976 0.94755245 0.06531973 0.14313293 
77 0.974 0.94376457 0.07333333 0.1581101 
78 0.976 0.94825175 0.06531973 0.14130776 
79 0.974 0.94446387 0.07333333 0.15647684 
80 0.9715 0.93870629 0.07115746 0.15326508 
81 0.98 0.95734266 0.06030227 0.12907677 
82 0.978 0.9520979 0.06289321 0.1373346 
83 0.98 0.95664336 0.06030227 0.13112135 
84 0.9755 0.9470979 0.0668539 0.14448852 
85 0.9755 0.9477972 0.0668539 0.14268294 
86 0.9675 0.93037296 0.08020649 0.1714723 
87 0.976 0.94825175 0.06531973 0.14130776 
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Supplementary Table 3. Order of  
the 38 variables to be included  
according to the highest accuracy 
 of the model. 

Variable order Selected genes 

1 CNOT1 

2 SIN3A 

3 BPTF 

4 CHD8 

5 CHD9 

6 DEK 

7 SIRT6 

8 SAP30L 

9 C6orf89 

10 SUPT16H 

11 SMARCA5 

12 CHD6 

13 RBBP5 

14 SMARCA2 

15 CNOT6L 

16 CNOT8 

17 CNOT6 

18 BAZ1B 

19 CHD4 

20 BRMS1 

21 ACTR8 

22 INO80B 

23 BRD3 

24 CNOT7 

25 PHF8 

26 CBX5 

27 RUVBL2 

28 TOP1 

29 ACTR6 

30 MORF4L1 

31 CHD1 

32 ANP32E 

33 INO80E 

34 ACTB 

35 BRD7 

36 PABPC1L 

37 SMARCD3 

38 UTY 

39 PIH1D1 

40 DPF2 

41 BRD1 

42 CAMK2D 

43 MIER2 
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44 ACTR5 

45 PHF1 

46 SS18 

47 CNOT3 

48 DAXX 

49 BRD8 

50 SAP30BP 

51 CHD3 

52 WDR77 

53 SUPT20H 

54 BAZ1A 

55 WDR61 

56 NUDT5 

57 RBBP7 

58 SAP18 

59 LRRK2 

60 INO80C 

61 ACTN4 

62 ANP32B 

63 SIRT2 

64 CNOT9 

65 SMARCB1 

66 HIST1H1C 

67 PHF21A 

68 RBBP8 

69 SMYD2 

70 SS18L1 

71 SUPT5H 

 

 

Supplementary Table 4. TCGA pan-cancer survival analysis of BPTF, CNOT1 and SIN3A. 

  BLCA BRCA CESC CHOL COAD ESCA GBM 
BPTF HR (high) 0.86 1.1 1.2 0.38 0.96 1.2 0.78 
 Logrank p 0.32 0.51 0.42 0.049 0.86 0.54 0.17 
SIN3A HR (high) 1 1 0.85 0.58 1.2 0.86 0.99 
 Logrank p 0.9 0.98 0.48 0.27 0.55 0.51 0.95 
CNOT1 HR (high) 1 1.1 0.86 0.8 0.67 1.7 0.92 
 Logrank p 0.86 0.42 0.53 0.64 0.11 0.03* 0.65 
 

  HNSC KIHC KIRP LAML LIHC LUAD LUSC 
BPTF HR (high) 0.93 3.8 0.92 1.1 1.4 1.4 1.1 
 Logrank p 0.62 0.075 0.78 0.84 0.065 0.025* 0.36 
SIN3A HR (high) 1 3.6 1.4 1.2 1.1 1.1 1.1 
 Logrank p 0.93 0.087 0.32 0.5 0.6 0.67 0.71 
CNOT1 HR (high) 1.1 0.45 0.85 1.4 1.3 1.3 1.1 
 Logrank p 0.7 0.24 0.6 0.19 0.17 0.12 0.47 
 

  OV PAAD PRAD READ STAD THCA UCEC 
BPTF HR (high) 1.1 0.76 1.3 0.51 1.1 2.3 1.1 
 Logrank p 0.59 0.19 0.72 0.17 0.7 0.12 0.84 
SIN3A HR (high) 0.94 1.3 0.79 0.6 1.2 1.7 1.2 
 Logrank p 0.59 0.26 0.72 0.28 0.33 0.3 0.59 
CNOT1 HR (high) 0.95 1.1 1.8 0.53 1.3 1.8 0.98 
 Logrank p 0.67 0.53 0.35 0.19 0.083 0.26 0.96 
 


