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ABSTRACT
Many studies have shown a correlation between postcranial anatomy and locomotor
behavior in mammals, but the postcrania of small mammals (<5 kg) is often
considered to be uninformative of their mode of locomotion due to their more
generalized overall anatomy. Such small body size was true of all mammals during
the Mesozoic. Anatomical correlates of locomotor behavior are easier to determine in
larger mammals, but useful information can be obtained from the smaller ones. Limb
bone proportions (e.g., brachial index) can be useful locomotor indicators; but
complete skeletons, or even complete long bones, are rare for Mesozoic mammals,
although isolated articular surfaces are often preserved. Here we examine the
correlation of the morphology of long bone joint anatomy (specifically articular
surfaces) and locomotor behavior in extant small mammals and demonstrate that
such anatomy may be useful for determining the locomotor mode of Mesozoic
mammals, at least for the therian mammals.
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INTRODUCTION
The correlation of postcranial morphology with locomotor function in mammals is well
known, as reviewed by Polly (2007). The median body mass of extant mammals is less than
a kilogram (Blackburn & Gaston, 1998): how well does the postcranial anatomy of
small mammals (i.e., <5 kg) reflect their locomotor behavior? Most functional anatomy
studies of postcranial morphology in association with locomotion have focused on larger
mammals, especially on primates, carnivorans, and rodents, and of course there are
obvious differences between fully aquatic mammals and terrestrial ones (our focus here
is on terrestrial mammals). Jenkins (1974) proposed that there was little difference
between adaptations for terrestrial (i.e., ground-dwelling) vs arboreal (i.e., tree-dwelling)
locomotion in small mammals: at small body sizes the perceived environment, in terms
of the obstacles encountered, would be similar whether in the trees or on the ground.
However Sargis (2002a) challenged that proposal, noting various authors who had
reported anatomical differences between small mammals of different habitat preferences
(Gebo & Sargis, 1994; Sargis, 2002a, 2002b; Argot, 2001, 2002; Szalay & Sargis, 2001):
see later discussion of the work of Chen & Wilson (2015).
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Mammalian species have traditionally been assigned to one of several distinct
locomotor modes relating to substrate use (e.g., arboreal, scansorial (semi-arboreal),
terrestrial, fossorial, semi-fossorial, semi-aquatic: see Van Valkenburgh (1987), Polly
(2007), and Samuels & Van Valkenburgh (2008)). The arboreal and terrestrial modes,
especially, can be further subdivided into more specialized types of locomotion:
arboreal mammals can be above-branch quadrupedal climbers, below-branch suspensory
climbers (usually larger mammals), vertical clingers and leapers, or gliders (the latter two
categories mainly containing small mammals); terrestrial mammals can be generalized,
ricochetal (hopping), ambulatory, or cursorial (the latter two categories mainly containing
larger mammals). Fossorial (digging) and semi-fossorial mammals are of course terrestrial
by default: these categories represent behavior rather than locomotor mode, but the
functional demands of digging especially are reflected in the postcranial osteology (Hedrick
et al., 2020). Although any given species may exhibit some diversity of locomotion
behavior among different locomotor modes or within a particular locomotor mode
(e.g., diversity of climbing behaviors in arboreal primates; see Granatosky (2018)),
nevertheless there is a concept of a “locomotor mode morphotype” that typifies the
habitual behavior of the species (Szalay & Dagosto, 1980), and that we apply here.

There have been numerous studies of mammalian postcrania in a comparative
ecomorphological context, relating morphology to habitat preference and locomotor
mode. Such studies are usually at the ordinal level (although sometimes at the level of
the family), although few studies have specifically focused on small mammals. Earlier
studies were primarily descriptive in nature, but over the past couple of decades later
studies have demonstrated statistical correlations of mammalian limb morphology with
locomotor mode, employing linear measurements and geometric morphometrics (both
two dimensional and three dimensional). Dunn (2018) provides an excellent review of
these methodologies and past studies on the functional anatomy of mammalian postcrania,
including an evaluation of why 3-D geometric morphometrics may not always be superior
to 2-D studies (see also Gould, 2014; Santana et al., 2019).

The most common taxa of interest have been primates (e.g., Szalay & Dagosto, 1980;
Rose, 1988, 1989, 1994; Gebo & Sargis, 1994; Godfrey et al., 1997; Schmitt, 2003; Youlatos,
2003; Dunn et al., 2016; Elton, 2002; Elton et al., 2016; Arias-Martorell, 2018—this is
but a small sample of the voluminous primate literature); carnivorous mammals (Taylor,
1974, 1976; Van Valkenburgh, 1987; Gebo & Rose, 1993; Iwaniuk, Pellis & Whishaw,
1999; Schutz & Guralnick, 2007; Polly & MacLeod, 2008; Meachen-Samuels & Van
Valkenburgh, 2009; Walmsley et al., 2012; Fabre et al., 2013; Meloro et al., 2013; Janis &
Figueirido, 2014; Martín-Serra, Figueirido & Palmqvist, 2014a, 2014b, 2016; Fabre et al.,
2015a, 2015b; Ercoli & Youlatos, 2016; Panciroli et al., 2017; Dunn et al., 2019; Meloro &
De Olivera, 2019; Tarquini, 2019); and rodents (Elissamburu & Vizcaíno, 2004;
Weisbecker & Schmid, 2006; Dunn & Rasmussen, 2007; Samuels & Van Valkenburgh, 2008;
Morgan, 2009;Morgan & Álvarez, 2013; Boivin et al., 2018; Calede, Samuels & Chen, 2019;
Hedrick et al., 2020). Studies of other mammalian orders (excluding here larger mammals
such as ungulates and large diprotodontid marsupials) include smaller marsupials
(Lemelin, 1999; Argot, 2001, 2002; Szalay & Sargis, 2001; Weisbecker & Warton, 2006;
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Bassavora, Janis & Archer, 2009; Flores & Díaz, 2009; Warburton et al., 2011; Den Boer,
Campione & Kear, 2019); scandentians (Sargis, 2002a, 2002b); lagomorphs (Reese,
Lanier & Sargis, 2013); and xenarthrans (Toledo, Bargo & Vizcaíno, 2013; Amson &
Nyakatura, 2018; De Oliveira & Santos, 2018). A few such comparative studies have
included a diversity of mammalian orders within each study (MacLeod & Rose, 1993;
Shockey, Croft & Anaya, 2007; Salton & Sargis, 2008; Croft & Anderson, 2008; Seckel &
Janis, 2008; Kelly & Sears, 2011; Ercoli, Prevosti & Álvarez, 2012; Álvarez, Ercoli & Prevosti,
2013; Gould, 2014; Chen & Wilson, 2015; Figueirido, Martín-Serra & Janis, 2016:
Marchi et al., 2016; DeBay & Wilson, 2017; Muñoz et al., 2017).

A seminal study of morphological correlations with locomotion in small mammals was
that of Chen & Wilson (2015), showing that osteological indices (derived from linear
measurements) of the long bones of small mammals could indeed distinguish different
locomotor modes. Using Canonical Variates Analysis, they demonstrated that the more
highly specialized types of locomotion (gliding, fossorial and ricochetal) were easily
distinguished. While there was less obvious separation among more generalist mammals,
there was indeed a clear “morphofunctional continuum” that could be understood in
biomechanical terms. Further analyses with a more restricted set of modes of locomotion
showed clearer separation among the more generalist locomotor types (i.e., arboreal,
terrestrial, and scansorial).

Like Chen & Wilson (2015), our interest in the functional anatomy of the postcrania of
small mammals relates to the interpretation of the locomotor behavior and habitat
preferences of Mesozoic mammals, almost all of which were under five kg in size, most
being of considerably smaller size than this. Chen & Wilson (2015) used their comparative
dataset of extant mammals to determine the likely paleobiology of various extinct taxa
that were known from at least near-complete skeletal material. However, such complete
material is rare: even complete long bones are rarely preserved. The majority of postcranial
remains of Mesozoic mammals consists of the dense bone at the articular ends (epiphyses)
of long bones, or of small dense bones such as tarsals, and is usually not attributable
to taxon (although it may be possible to distinguish metatherians from eutherians, see later
discussion).

In this article we investigate the correlation of the epiphyseal anatomy of a large
diversity of extant small mammals with their locomotor mode, using statistical analysis
of data from 2-D geometric morphometrics. Our ultimate interest here is whether such
remains of Mesozoic mammals may be used to determine the diversity of locomotor
types in fossil deposits, and hence be informative about habitat structure: for example,
a predominance of arboreal mammals would indicate a forested habitat, and a
predominance of terrestrial ones a more open habitat type. However, application of these
correlations to Mesozoic mammals will be the subject of a later article: this article is
intended to serve as a review of the correlates of epiphyseal anatomy with locomotion in
general, as well as a preliminary for further investigations. We followed the taxon
choices of Chen & Wilson (2015), with some of our own additions, but focused only on
more the generalized modes of locomotion: arboreal, scansorial, and terrestrial
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(including semi-fossorial). Further details of the taxa selected, and the analyses performed,
are in the “Materials and Methods” section.

ANATOMY OF THE ARTICULAR ENDS (EPIPHYSES) OF
MAMMALIAN LIMB BONES
In this section we review the existing knowledge about the anatomy of mammalian limb
bone joints in relation to locomotion and habitat preference, focusing on small mammals.
We consider in detail only those joints that we analyzed: those which were likely to be
preserved in extinct taxa, and which also yielded significant results in our analyses. This
includes the shoulder, elbow, hip, and knee joints. We did not analyze the morphology
of the scapula glenoid or the pelvic acetabulum, largely because of the paucity of such
elements in the Mesozoic mammal fossil record. We had had high hopes for the bones
of the ankle joint being a good indicator of locomotor behavior, especially as proximal
tarsal elements are frequently preserved in Mesozoic fossil mammals; however, we
obtained poor results for the astragalus and calcaneum (see discussion in the “Results”
section), and so do not discuss them here.

The shoulder (scapulohumeral) joint
The shoulder of therian mammals is very different from the basal mammalian condition
(Jenkins & Weijs, 1979). The coracoid is lost (at least in the postnatal condition), apart
from the coracoid process that is fused with the scapula and contributes to the glenoid.
The therian scapula differs from the basal mammalian condition, and the monotreme
condition, in the following attributes: the scapula is mobile around the dorsal border, and
its movements during locomotion add to the length of the forelimb stride (Fischer et al.,
2002); a supraspinous fossa (the origin for the supraspinatus muscle) and a scapular
spine are new elements; and the glenoid is shallow and faces ventrally (as opposed to deep
and oriented posterolaterally, or laterally in monotremes). The multituberculate shoulder
approaches the therian condition: the scapula was likely mobile to some extent and the
glenoid faced ventrally, although the supraspinatus fossa was small, the coracoid was
retained, and the posture was more sprawling than in therians (Sereno, 2006).

During propulsion the therian forelimb basically acts as a strut around the mobile
scapula, with the muscles crossing the shoulder and elbow joints acting primarily as
stabilizers. This is especially the case for the shoulder joint, where the shallow glenoid does
not afford a great deal of stability for the humeral head, and joint stability is maintained by
the muscles of the rotator cuff that run from the scapula to the proximal humeral
tuberosities (Jenkins & Weijs, 1979).

The shape of the scapular glenoid (oval, or pear-shaped) does not appear to be
diagnostically different between arboreal and terrestrial forms among small mammals
(Szalay & Sargis, 2001; Salton & Sargis, 2008). However, in arboreal didelphids the anterior
portion is more ventrally oriented, forming a bony stop for motions of the humerus, and in
terrestrial forms the glenoid cavity is hemispherical rather than elongated (Argot, 2001).
In terrestrial carnivorans the glenoid is deeper than in arboreal ones (Taylor, 1974;
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Heinrich & Rose, 1997), and in the terrestrial (cursorial) Patas monkey (Erythrocebus
patas) the glenoid is more square in shape (Gebo & Sargis, 1994).

The size of the humeral tuberosities (= tubercles), and whether or not they project above
the humeral head, reflects the degree of stabilization of the scapulohumeral joint by the
rotator cuff muscles. These comprise the supraspinatus and infraspinatus, originating
from the lateral side of the scapula (from the supra- and infraspinatus fossae, respectively)
and inserting onto the greater tuberosity (lateral side of the proximal humeral head); and
the subscapularis, originating from the subscapularis fossa on the medial side of the
scapula, and inserting onto the lesser tuberosity (medial side of the proximal humeral
head) (see Janis et al. (2020), for review).

Arboreal mammals have a shoulder joint that maximizes rotational ability at the
expense of stability, whereas the opposite is true in terrestrial mammals. Accordingly,
arboreal mammals have a rounder, more globular humeral head, allowing for multiaxial
rotation of the humerus, whereas terrestrial mammals have a more ovoid, flatter humeral
head, restricting humeral motion to the parasagittal direction. Arboreal mammals have
relatively small tuberosities that do not project above the level of the humeral head,
reflecting not only less stabilization of the humerus on the scapula but also allowing
for a greater degree of movement; terrestrial forms have larger, projecting tuberosities,
especially the greater tuberosity, reflecting a greater degree of restriction of movement as
well as stabilization, as large tuberosities may obstruct humeral rotation (Taylor, 1974;
Heinrich & Rose, 1997; Szalay & Dagosto, 1980; Rose, 1989; Argot, 2001; Szalay & Sargis,
2001; Sargis, 2002a; Salton & Sargis, 2008; Walmsley et al., 2012; Morgan & Álvarez,
2013; Tarquini et al., 2017; Janis et al., 2020). The elongation of the humeral head is
especially pronounced in diggers, which also have an extremely enlarged greater tuberosity
(Salton & Sargis, 2008). Some arboreal forms may have a lesser tuberosity that is robust,
and medially protruding (Sargis, 2002a; Janis et al., 2020); such morphology reflects a
large subscapularis muscle, which is important for medial (internal) rotation of the
humerus, and so may be important for climbing (Arias-Martorell, 2018).

In terrestrial forms the head of the humerus appears to be more “beaked”: not only
deeper proximodistally, but more sharply defined at the posteroventral lip of the articular
surface (Taylor, 1974; Szalay & Sargis, 2001). Taylor (1974) attributes the lack of beaking
in arboreal carnivores to the presence of the insertion of a large medial triceps, which
would be important in supporting the body in making a controlled descent head-first
down a tree. Arboreal forms also have a more distinct bicipital groove (anteriorly, between
the two tuberosities), reflecting a large tendon for the biceps brachii, a muscle important
in climbers for pulling themselves up a tree, elevating the body on the forelimbs
(Taylor, 1974; Heinrich & Rose, 1997; Salton & Sargis, 2008).

Figure 1 illustrates the difference between arboreal and terrestrial taxa, showing both
marsupials and placentals.

The elbow (humeroulnar/humeroradial) joint
The elbow joint is one of the best indicators of locomotor behavior and habitat choice
(substrate use) in mammals. This is because its morphology reflects not only the extent
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Figure 1 Diagrammatic depictions of humeral morphology. (A) Proximal humerus superior view,
arboreal placental (Saimiri sciurus, based on MCZ 4247). (B) Proximal humerus superior view, terrestrial
placental (Eupleres goudotii, based on MCZ 45958). (C) Proximal humerus superior view, arboreal
marsupial (Pseudochirus peregrinus, based on UCMP 84683). (D) Proximal humerus superior view,
terrestrial marsupial Perameles nasuta, based on AMNH 65659. (E) Distal humerus anterior view,
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to which the body weight habitually borne on the forelimbs, and the compromise
between mobility and stability (as discussed above for the humeroscapular joint), but also
whether that weight is borne with the joint in a flexed or extended position. Arboreal forms
moving along discontinuous, uneven support surfaces tend to have a flexed elbow
while locomoting, and this also maintains their center of gravity close to the branch,
important for avoiding falling. In contrast, the extended forelimb of terrestrial forms is
better for propulsion along the ground (Szalay & Sargis, 2001; Sargis, 2002a). A further
important function of the elbow joint is in the rotation of the forelimb in pronation
and supination, a motion important for maneuverability in arboreal mammals but less
important in terrestrial ones, although terrestrial mammals may need to retain this ability
to a certain extent for food manipulation (Figueirido, Martín-Serra & Janis, 2016).

The therian humerus has a trochlear type of joint, in contrast to the condylar joint
in nontherian mammals (Jenkins, 1973). The trochlear notch of the ulna has a spiral
configuration that allows the ulna to extend in a parasagittal plane as the humerus moves
through a propulsive stroke, with the result that despite the complex adduction and
rotation of the humerus at the shoulder joint, the forearm remains parallel to the direction
of motion of the animal (Jenkins, 1973). This reconfiguration of the elbow joint in therians
may allow for the elbow to be held in a relatively adducted and retracted position
during locomotion, in contrast to a more abducted position in other mammals, and may
be correlated with the mobile scapula of therians that enables bounding locomotion
with forelimb extension. The elbow joint is relatively similar in marsupials and placentals,
with the exception of a couple of details: in marsupials (and in all Cretaceous therians),
the zona conoidea between the trochlea and the capitulum articulates with the ulna,
while in placentals this is an area of articulation with the radius; and the radial head tends
to be circular in all marsupials whereas it varies shape with locomotor mode in placentals
(see later discussion) (Szalay & Sargis, 2001).

Despite the complex morphology of the therian proximal ulna articular surface,
which must necessarily be echoed in the articular surface of the distal humerus, the
majority of comparative studies of the elbow joint focus on aspects of the humerus and
ulna that reflect muscle attachment and lever arms. Perhaps the most studied aspect of the
elbow joint is the proportions of the olecranon process of the ulna, which serves as the
insertion point for the triceps muscle. In general, arboreal forms have a relatively short
olecranon process that is curved forwards, reflecting a short lever arm for the triceps
with a limb in a habitually flexed position; in contrast, terrestrial forms (and especially

Figure 1 (continued)
arboreal placental (Saimiri sciurus, based on MCZ 4247). (F) Distal humerus anterior view, terrestrial
placental (E. goudotii, based on MCZ 45958). (G) Distal humerus anterior view, arboreal marsupial
(Pseudochirus peregrinus, based on UCMP 84683). (H) Distal humerus anterior view, terrestrial mar-
supial (Isoodon obeslus, based on UCMP 77305). All elements right hand side. Key to museum abbre-
viations: AMNH, American Museum of Natural History; FMNH, Field Museum of Natural History
(Chicago); MCZ, Museum of Comparative Zoology (Harvard University); ROM, Royal Ontario Museum
(Toronto); UCMP, University of California Museum of Paleontology (Berkeley).

Full-size DOI: 10.7717/peerj.9634/fig-1
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cursors) have a long, straight (or even backwardly-curved) olecranon process, reflecting
a long moment arm for the triceps and a limb that is extended during propulsion
(although in smaller terrestrial mammals the olecranon process is not always lengthened as
is seen in larger cursorial forms) (Van Valkenburgh, 1987; Taylor, 1974; Hildebrand &
Goslow, 2001; Argot, 2001; Sargis, 2002a; Salton & Sargis, 2008; Samuels & Van
Valkenburgh, 2008; Ercoli, Prevosti & Álvarez, 2012,Martín-Serra, Figueirido & Palmqvist,
2014a). Digging mammals (fossorial and semi-fossorial) tend to have a particularly
long (and straight) olecranon process, reflecting powerful retraction of the forelimb and
hand (Hildebrand & Goslow, 2001; Salton & Sargis, 2008; Samuels & Van Valkenburgh,
2008; Martín-Serra, Figueirido & Palmqvist, 2014a).

Aspects of the anatomy of the distal humerus that are often included in comparative
studies are the relative size of the epicondylar processes, including the extension of
the lateral epicondylar region into a crest or ridge extending along the shaft of the
humerus. These processes are the areas of origin for the hand flexors (medial epicondyle/
entepicondyle) and extensors (lateral epicondyle/ectepicondyle), and so tend to be larger
in mammals that do more manual manipulation, as is true for arboreal mammals but
also for diggers (Taylor, 1974; Argot, 2001; Szalay & Sargis, 2001; Sargis, 2002a; Salton &
Sargis, 2008). The importance of the hand flexors in arboreal mammals is not only because
of the need for grasping, but also because the flexors support the body weight with the
limb in a flexed position, while in terrestrial mammals the extensors support the body
weight (Argot, 2001).

Despite the utility of the olecranon process of the ulna and the humeral epicondyles
in determining locomotor mode in mammals, we note that they are often broken or absent
in the fossils of Mesozoic mammals, whereas the articular surface themselves remain
intact. We will thus focus on how the anatomy of the humeroulnar/humeroradial
articulatory surfaces reflects locomotor mode, especially in small mammals. The following
description is taken from Jenkins (1973), Taylor (1974), Argot (2001), Szalay & Sargis
(2001), Sargis (2002a), and Szalay & Sargis (2001) emphasize how this articulation reflects
the importance of positioning the hand and maintaining the forearm in a flexed position
in arboreal forms, versus the loading of the forelimb in an extended position and enduring
shock absorption (especially during rapid locomotion) in terrestrial ones. However, the
form of the articulation differs in suspensorial arboreal forms where locking of the elbow
joint is important (Szalay & Sargis, 2001): as only larger mammals (sloths and some
anthropoid primates) practice this type of locomotion, this is not of concern here.

The distal humeral surface consists of the capitulum (lateral), which articulates
with the radius, and the trochlea (medial), which articulates with the semilunar notch
(= trochlear notch, or olecranon fossa) of the ulna, and with the coronoid process on the
medial side of the notch. More arboreal forms have a spherical capitulum that allows for a
large extent of movement of the radius on the humerus for pronation and supination;
the trochlea is relatively small, and long and slender. In more terrestrial forms the
capitulum is flatter and more spindle-shaped, and bordered by a lateral crest, the capitular
tail (= the lateral flange of Szalay & Sargis (2001)). The trochlea in terrestrial forms is
expanded both anteriorly and posteriorly at the expense of the capitulum, and becomes
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more wedge-shaped, with a medial keel. A sulcus may be present separating the capitulum
from the capitular tail, which allows for the passage of the radial sesamoid (if present).

The two portions of the humeral articular surface are more equal in size terrestrial
forms: in some forms they form a more continuous surface, but in others they may be
separated by a depression or “gutter” (Sargis, 2002a). The size and shape of the trochlea in
terrestrial forms reflects a greater amount of surface area for the articulation with the
ulna, allowing for greater load absorption and repetitive loading during rapid locomotion.
This morphology emphasizes joint stability over manouverablity, and the motion of the
elbow joint becomes more restricted to the parasagittal plane.

The semilunar notch of the ulna reflects the shape of the humeral trochlea. The notch
is both more narrow and deeper (i.e., more concave) in terrestrial forms than arboreal
ones, while in arboreal forms the semilunar notch is especially wider distally. In terrestrial
forms there is a prominent “beaked” anconeal process (= olecranon beak of Argot (2001),
and ulnar proximal process of Szalay & Sargis, 2001), and the crests on either side of
the process are wider, especially on the medial side. This anatomy allows for stability of
the humeral trochlea through a wide range of motions, and the crests come into play
at full extension, when they come into contact with the distal humerus, providing a
stabilizing locking function (Szalay & Sargis, 2001). In particular, the crest on the lateral
margin of the anconeal process contacts the posteriorly-projecting medial margin of the
trochlea, effectively locking the joint in full extension (Heinrich & Rose, 1997).

The coronoid process (distal medial side of the notch, = ulnar distal trochlear crest)
fits into the coronoid fossa on the distal humerus proximal to the articular surface when
the elbow is fully flexed (Salton & Sargis, 2008). It extends further anteriorly in arboreal
forms, allowing for stability of the joint in a flexed position, and in the absence of a
prominent anconeal process and associated crests (Szalay & Sargis, 2001). In contrast, the
coronoid process in terrestrial forms is deeper and more concave, articulating with the
convex extension of the medial humeral trochlea (Argot, 2001). The radial notch, on
the lateral side of the distal part of the semilunar notch, is for the articulation of the head
of the radius. The notch faces more anteriorly in arboreal forms, where it is also more
extensive in size. In terrestrial forms the notch is offset more laterally, and is more deeply
set, and the articular surface also extends onto the lateral side of the coronoid process; both
features reflect a radius that is more restricted in its rotational abilities (Taylor, 1974;
Szalay & Sargis, 2001).

The head of the radius itself is round and relatively deep in arboreal forms, reflecting
the spherical nature of the capitulum, and allowing for rotation of the elbow to permit
pronation and supination. In contrast, in terrestrial forms (at least in placentals) the radial
head tends to be more oval in shape, or even rectangular, and more shallow, reflecting
restriction of this motion (MacLeod & Rose, 1993). While a rounded radial head is not
essential for supination, this motion is facilitated if the curvature of the head abutting the
ulnar surface is convex rather than flat.

Figure 1 illustrates the difference between arboreal and terrestrial taxa in the form of
the distal humerus, showing both marsupials and placentals. Figure 2 illustrates the
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Figure 2 Diagrammatic depictions of ulna and radial morphology. (A) Proximal radius superior view,
arboreal placental (Loris tardigradus, based on ROM 75742). (B) Proximal radius superior view, ter-
restrial placental (Fossa fossana, based on FMNH 85196). (C) Proximal radius superior view, arboreal
marsupial (Phalanger sericus, based on AMNH 191203). (D) Proximal radius superior view, terrestrial
marsupial (Metachirus nudicaudatus based on AMNH 266449). (E) Proximal ulna medial view, arboreal
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difference between arboreal and terrestrial taxa in the form of the proximal ulna and
radius, showing both marsupials and placentals.

The hip joint
Like the shoulder joint, the hip joint is a ball-and-socket joint, and differences between
arboreal and terrestrial mammals largely reflect the ability in arboreal forms to abduct and
rotate the leg, as well as the more abducted limb posture during normal stance, vs the
restriction of motion in terrestrial forms to the parasagittal plane and the more adducted
limb posture. These differences in turn relate to the functional demands of climbing
and negotiating a variable and discontinuous substrate, vs propulsion along an even
substrate always positioned directly under the body. Szalay & Sargis (2001) consider that
the hind limb better reflects both locomotor mode and substrate preference than the
forelimb.

Stability of the hip joint is of less concern than for the shoulder joint. There is no
equivalent in the shoulder of the round ligament that affixes the head of the femur into the
acetabulum in the pelvis, and thus there is no equivalent of the rotator cuff of muscles
seen in the shoulder: nevertheless, analogies have been made between the stabilizing roles
of the supraspinatus muscle in the shoulder and the gluteus medius muscle in the hip
(Argot, 2002).

The morphology of both the acetabular articulation and femoral head reflect wide vs
narrow ranges of motion, and also reflect the resting limb posture. The acetabulum faces
laterally in arboreal taxa, reflecting a more abducted resting limb posture; whereas in
terrestrial forms it faces ventrolaterally, and even more ventrally in diggers, reflecting hind
limbs held more directly under the body (Salton & Sargis, 2009). In arboreal forms the
acetabulum is elongated and elliptical in shape, relatively shallow, and with a concave
dorsal border, allowing for a wide range of movements of the femoral head; while in
terrestrial forms femoral motion is restricted to the parasagittal plane by a round and deep
acetabulum, with a straight dorsal border (Gebo & Sargis, 1994; Szalay & Sargis, 2001;
Argot, 2002; Sargis, 2002b; Salton & Sargis, 2009). The cranial expansion of the articular
surface may reflect posture during climbing on vertical supports, resulting in loading from
supporting the body weight on the dorso-cranial portion of the acetabulum (Sargis, 2002b).

Although the femoral head morphology broadly reflects that of the acetabulum,
there are nevertheless differences between marsupials and placentals. In arboreal
marsupials the femoral head is cylindrical, vs hemispherical in terrestrial forms (Szalay &
Sargis, 2001; Argot, 2002); but in arboreal placentals the femoral head is only semi-
cylindrical in vertical clinging and leaping primates (Anenome & Covert, 2000), and
spherical and deep in most other arboreal placentals (Heinrich & Rose, 1997; Sargis, 2002b;

Figure 2 (continued)
placental (Callithrix jaccus, based on MCZ 439). (F) Proximal ulna medial view, terrestrial placental
(Herpestes auropunctatus, based on MCZ 63333). (G) Proximal ulna medial view, arboreal marsupials
(Phalanger sericus, based on AMNH 191203). (H) Proximal ulna medial view, terrestrial marsupial
(Perameles nasuta, based on AMNH 65659). All elements right hand side. Key to museum abbreviations
as in Fig. 1. Full-size DOI: 10.7717/peerj.9634/fig-2
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Salton & Sargis, 2009). This difference between marsupials and placentals may be related
to differences in the knee joint (see “Discussion” below), where in marsupials the
asymmetry of the distal femoral condyles signifies a more extensive range of motion of the
lower leg on the femur than in placentals.

In all arboreal mammals the head of the femur is relatively large, corresponding to a
greater range of motion especially in abduction; the articular surface may extend onto
the femoral neck (Szalay & Sargis, 2001; Sargis, 2002b; Heinrich & Rose, 1997), providing
for articular surface contact when the femur is abducted (Jenkins & Camazine, 1977).
Arboreal taxa have a relatively short femoral neck, while terrestrial taxa have a longer one,
with the femoral head more distinct from the neck. The orientation of the head and neck to
the shaft also differs, being more perpendicular in terrestrial taxa, reflecting both a less
abducted resting limb posture and restriction of the limb to parasagittal motion (Jenkins &
Camazine, 1977; Sargis, 2002b; Salton & Sargis, 2009). The position of the fovea capitis
(the insertion of the round ligament) also differs, being located more medially and
proximally in arboreal forms, reflecting the more abducted limb posture (Jenkins &
Camazine, 1977; Argot, 2002).

Differences also exist between arboreal and terrestrial forms in the morphology of
the femoral trochanters: the greater trochanter for the insertion of the main hip extensor and
abductor, the gluteus medialis; the lesser trochanter for the insertion of the main hip flexor
and adductor, the iliopsalis; and the third trochanter, for the insertion of the gluteus
superficialis. Differences here relate to the demands for slower and more powerful motions
of the hip joint in arboreal forms, reflecting elevation of the body as well as propulsion,
versus an emphasis on speed rather than power in terrestrial forms, especially in hip flexion.

In terrestrial forms the greater trochanter is larger, projecting higher than the femoral
head, providing a longer moment arm for the medial gluteus, and reflecting the more
powerful extension of the hip joint for “push off” in terrestrial locomotion (Heinrich &
Rose, 1997; Gebo & Sargis, 1994; Argot, 2002; Szalay & Sargis, 2001; Sargis, 2002b; Salton &
Sargis, 2009). However, as with the height of the greater tuberosity in the humerus, a
long greater trochanter limits the ability to abduct the limb (Sargis, 2002b). The shorter
greater trochanter of arboreal forms reflects the more habitually flexed position of the hind
limb (Sargis, 2002b). In contrast, the lesser trochanter is larger in arboreal forms, and
it is also oriented more distally and medially, reflecting powerful (rather than rapid)
limb protraction and also lateral rotation (Taylor, 1976; Heinrich & Rose, 1997; Szalay &
Sargis, 2001; Argot, 2002; Sargis, 2002b; Salton & Sargis, 2009). The smaller, more
posteriorly and proximally placed lesser trochanter in terrestrial forms reflects rapid
hip flexion (Argot, 2002), presumably during the recovery phase of the limb cycle.
The third trochanter is variably present among mammals, its absence related more to
phylogeny than to function (Sargis, 2002b; Salton & Sargis, 2009). In mammalian lineages
where it is present (e.g., prosimian primates, tupaiids, some carnivorans), the third
trochanter tends to be larger and laterally expanded in terrestrial forms, and more distally
positioned, especially in diggers (Salton & Sargis, 2009).

Figure 3 illustrates the difference between arboreal and terrestrial taxa in the form of the
proximal femur, showing both marsupials and placentals.
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Figure 3 Diagrammatic depictions of femoral and tibial morphology. (A) Proximal femur posterior view, arboreal placental (Perodicticus potto,
based on ROM 77539). (B) Proximal femur posterior view, terrestrial placental (Fossa fossana, based on FMNH 85196). (C) Proximal femur
posterior view, arboreal marsupial (Caluromys lanatus, based on MCZ 37857). (D) Proximal femur posterior view, terrestrial marsupial (Perameles
bougainville, based onMCZ 52970). (E) Distal femur inferior view, arboreal placental (P. potto, based on ROM 77539). (F) Distal femur inferior view,
terrestrial placental (F. fossana, based on FMNH 85196). (G) Distal femur inferior view, arboreal marsupial (C. lanatus, based on MCZ 37857).
(H) Distal femur inferior view, terrestrial marsupial (P. bougainville, based on MCZ 52970). (I) Proximal tibia superior view, arboreal placental
(P. potto, based on ROM 77539). (J) Proximal tibia superior view, terrestrial placental (F. fossana, based on FMNH 85196). (K) Proximal tibia
superior view, arboreal marsupial (C. lanatus, based on MCZ 37857). (L) Proximal tibia superior view, terrestrial marsupial (Macrotis lagotis, based
on AMNH 35685). All elements right hand side. Key to museum abbreviations as in Fig. 1. Full-size DOI: 10.7717/peerj.9634/fig-3
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The knee (femorotibial) joint
As with the joints in the forelimb, a prime difference between arboreal and terrestrial
taxa is the issue of mobility in the former and stability in the latter. Yet the form of the knee
articulation is more related to locomotor and postural behaviors than to substrate use
(Szalay & Sargis, 2001; Argot, 2002). This may be because the hind limb has a different
role in locomotion from the forelimb: it is more concerned with the generation of
propulsive force, and less concerned with absorbing repetitive impacts on landing
(although the latter might not be as true for bipedal forms).

Unlike the other joints considered here, the knee joint shows some profound differences
between marsupials and placentals. This is an especially important consideration for
small mammals, as the differences are much less among more terrestrial forms in both
groups, and larger mammals tend to be more terrestrial in their habits. A prime anatomical
difference is in the metatherian lack of a patella: a patella appears to be a basal eutherian
feature, although several clades of specialized terrestrial marsupials (caenolestids
(possum rats), notoryctids (marsupial moles), and peramelids (bandicoots and bilbies))
have independently evolved a patella (Szalay & Sargis, 2001). However, the lack of a patella
has surprisingly little effect on the one aspect of femoral morphology that might be
expected to show a difference—the length and form of the patella groove—as will be
discussed below. The real difference seen in the distal femur is in the relative sizes of
the femoral condyles. The generalized condition in marsupials, retained in all but
specialized terrestrial forms, is for the lateral condyle to be considerably larger than the
medial one, while in placentals the condyles are more or less subequal in size in all
locomotor types (Szalay & Sargis, 2001). In placentals the medial condyle may be the
slightly larger one (Salton & Sargis, 2009). These differences in the femoral condyles are
reflected in the tibial articulatory surfaces: the medial and lateral tibial condyles are of
similar size in small placentals, but in all but highly specialized terrestrial marsupials
the lateral one is larger than the medial one (Szalay & Sargis, 2001; Argot, 2002).
In terrestrial therians the tibial condyles tend to be slightly different in shape, with the
lateral condyle being slightly convex and the medial one concave, which increases the
stability of the knee articulation (Argot, 2002).

Szalay & Sargis (2001) propose that this difference in the symmetry of the femoral
condyles reflects the different ancestral habits of the earliest members of the two therian
lineages, metatherians having an arboreal ancestry and eutherians a terrestrial one.
This difference in morphology relates to the somewhat abducted position of the hind limb
in most marsupials (e.g., Didelphis, see Jenkins, 1971); with the attainment of a less
abducted position of the lower leg during push-off with the foot (i.e., a more parasagittal
stance), reduction of the lateral condyle would bring the hind limb under the body more
rapidly during locomotion (Szalay & Sargis, 2001).

In terrestrial therians, in comparison with arboreal forms, the distal femur is longer in
an anterior–posterior direction (i.e., deeper in distal view), with a deeper and narrower
patella groove with more prominent margins (Taylor, 1976; Heinrich & Rose, 1997;
Szalay & Sargis, 2001; Argot, 2002; Sargis, 2002b; Salton & Sargis, 2009; Gould, 2014).
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This anatomy increases the moment arm for the tendon of the quadriceps muscle
(which is enhanced by the presence of a patella), and the mechanical advantage of the
muscle itself in extending the lower leg. The morphology of a deeper distal femur is
mirrored by a more prominent tibial tuberosity (where the quadriceps tendon inserts),
resulting in a more triangular-shaped proximal tibial articulatory surface (Heinrich &
Rose, 1997; Argot, 2002; Sargis, 2002b). Among small mammals, this knee anatomy is
especially prominent (along with femoral condyles that are subequal in size) in specialized
cursors, both in placentals (e.g., the bounding elephant shrew, Petrodromus tetradactylus
(Salton & Sargis, 2009)), and marsupials (bounding peramelids and the hopping
kultaar, Antechinomys laniger (Argot, 2002)). However, a similar anatomy can also be
seen in some small arboreal primates, in leapers such as galagos, that require rapid
propulsion generated by the hind limb (Szalay & Sargis, 2001; Sargis, 2002b; Salton &
Sargis, 2009). Some small terrestrial placentals can have more shallow and wide patella
grooves, as seen in diggers such as the lipotyphlan Solenodon paradoxurus (the solenodon)
and the tenrecoids Oryzorictes hova and O. tetradactylus (rice or mole tenrecs), probably
related to the lateral abduction and rotation of the lower limb while bracing with the
hind limb during digging with the forelimbs (Salton & Sargis, 2009).

While terrestrial forms usually need restricted and rapid movement at the knee, arboreal
forms can benefit from having a knee that allows for a greater degree of independent
rotation of tibia in relation to the femur, especially in postures where the body is oriented
relative to fixed feet, as in grabbing a branch and reaching with the forelimbs (Argot, 2002).
In arboreal mammals stability at the knee joint is achieved via extensive ligamentous
connections rather than by the form of the articulatory surfaces (Argot, 2002). The femoral
condyles are larger in terrestrial forms and project more posteriorly, increasing the
leverage of the quadriceps by increasing the diameter of the pulley formed by the
distal epiphysis; however, the actual articular surfaces project more posteriorly in arboreal
forms, reflecting a more habitual posture with a flexed knee (Argot, 2002; see also Gould,
2014).

Figure 3 illustrates the difference between arboreal and terrestrial taxa in the form of the
distal femur and proximal tibia, showing both marsupials and placentals.

MATERIALS AND METHODS
We employed 2D geometric morphometrics on the limb bone epiphyses of 76 species
of extant small (<5 kg) therian mammals (24 marsupials, 52 placentals) of known
locomotor mode (arboreal, scansorial, terrestrial). Usually only one individual was
sampled. Although it would have been preferable to have sampled multiple individuals for
each taxon, postcranial material is scarce in museum collections. Additionally, especially in
the case of small mammals, the limb elements are often in articulation and bound by
ligaments, and so the articulatory surfaces cannot be photographed. In the instances where
more than one individual was included, this was usually to make up for missing limb
elements in the original specimen. In order to avoid taxonomic over-sampling, we usually
only included one species of each genus; occasionally a second species of a genus was
included to enable sampling of each element. Table 1 shows an abbreviated listing of the
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taxa included and their locomotor affinity: a full accounting, including the taxonomic
abbreviations used in the figures and the elements used for each individual animal, can be
found in Tables S1–S4.

Table 1 Summary of taxa used in these analyses, including numbers in three different locomotor
categories. A more complete listing of the taxa sampled can be found in Tables S1–S4.

Order Family No. of
species

# Arboreal # Scansorial # Terrestrial

Marsupialia

Didelphimorphia (Ameridelphia) Caenolestidae 1 0 1 0

Didelphidae 6 1 4 1

Dasyuromorphia (Australodelphia) Dasyuridae 7 1 3 3

Diprotodontia (Australodelphia) Acrobatidae 1 1 0 0

Petauridae 3 3 0 0

Phalangeridae 2 1 1 0

Pseudocheiridae 1 1 0 0

Peramelemorphia (Australodelphia) Peramelidae 3 0 0 3

Placentalia

Afrosoricida Tenrecidae 3 0 0 3

Eulipotyphla Erinaceidae 1 0 0 1

Solenodontidae 1 0 0 1

Soricidae 1 0 0 1

Scandentia Tupaiidae 2 0 2 0

Primates (Lemuriformes) Cheirogaleidae 2 2 0 0

Primates (Anthropoidea) Callitrichidae 1 1 0 0

Cebidae 1 1 0 0

Pithecidae 1 1 0 0

Rodentia (Caviomorpha) Caviidae 2 0 0 2

Chinchillidae 1 0 0 1

Cuniculidae 1 0 0 1

Dasyproctidae 1 0 0 1

Echimyidae 2 2 0 0

Erethizontidae 2 2 0 0

Rodentia (Myomorpha) Cricetidae 3 0 1 2

Gliriidae 1 1 0 0

Rodentia (Sciuromorpha) Sciuridae 6 0 4 2

Carnivora (Caniformia) Mephitidae 1 0 0 1

Mustelidae 2 0 1 1

Procyonidae 6 3 3 0

Carnivora (Feliformia) Eupleridae 5 0 2 3

Herpestidae 2 0 0 2

Nandinidae 1 1 0 0

Prionodontidae 1 0 1 0

Viverridae 2 0 1 1
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The mammal species were assigned to the following locomotor modes (from
information in a diversity of literature sources, including that in Chen & Wilson (2015)):
arboreal (primarily living in trees, rarely locomoting on the ground, 22 taxa); terrestrial
(primarily living on the ground, almost never climbing trees, 30 taxa); scansorial
(= semi-arboreal, regularly locomoting both on the ground and within the canopy,
24 taxa). We included semi-fossorial taxa with the terrestrial forms, and excluded the
specialized fully-fossorial taxa. We also excluded terrestrial forms that had other kinds of
specialized locomotion, such as ricochetal (seen in several rodents and in macropodids)
and cursorial (seen in lagomorphs, macroscelideans, and canid and felid carnivorans,
although we did include a few semi-cursorial rodents such as the agouti (Dasyprocta
punctata)). We also excluded small xenarthrans, due to their highly specialized anatomy.
Some other small mammals that were initially included were later excluded, as their
morphology appeared highly specialized in comparison to other similar forms in the
sample: these included hyraxes (Hyracoidea) and lorises and potos (Primates: Lorisidae).
Hyracoids had especially unusual morphologies of the proximal humerus, and lorisids of
the proximal ulna. Our intention was to create a dataset of animals of relatively
homogenous morphologies for their locomotor type, and we did not want the statistical
significance of any one locomotor category to be driven by the extreme morphology of
essentially outlier taxa.

Specimens were photographed in the collections of a diversity of institutions (see legend
for Fig. 1). All specimens were photographed with a scale bar, either with a Nikon
DSLR camera (larger ones), or with a Celestron Digital Microscope Pro connected to a
MacBook Air (smaller ones). The proximal humeri were photographed in superior
view (similarly to Janis et al. (2020) and Fig. 4A). The distal humeri were photographed in
anterior view, such that most of the surface of the trochlea and capitulum, as well as their
distal projections, were observable (Fig. 4B). The proximal ulnae were photographed in
medial view, such that the depth of the semilunar notch and the projection of the anconeus
and coronoid processes were visible (Fig. 4C). The proximal radii were photographed
in superior view such that the shape of the proximal articular surface was defined (Fig. 4D).
The proximal femora were photographed in posterior view, such that femoral head and
all trochanters were visible (Fig. 5A). The distal femora were photographed in inferior
view, such that the patellar groove and both condyles were observable (Fig. 5B).
The proximal tibiae were photographed in superior view, such that both condyles and
the tibial tuberosity were visible (Fig. 5C). Some of these elements were also photographed
in other views: the proximal femur in superior view, and the proximal ulna in anterior
and lateral views. None of these alternative views yielded good results in analyses.

The data were analyzed in a similar fashion as described in Janis et al. (2020). A set
of eight to ten 2D landmarks were selected for each bone epiphysis following a criterion
of homology and morphological relevance (Figs. 4 and 5; Table S5). We avoided
high-dimensional semi-landmarks curves because the overload of dimensions is not
recommended for some of the subsequent analyses (Canonical Variate Analysis
(Mitteroecker & Bookstein, 2011), see below). This process was developed using the TPS
Util 1.68 and TPS Dig 2.25 (Rohlf, 2016a, 2016b).
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The raw landmark coordinates were imported into the software MorphoJ (Klingenberg,
2011). In order to remove the differences in size, translation and rotation, a Procrustes
alignment (Dryden & Mardia, 1998) was performed for the epiphysis of each bone. To test
the association between shape and locomotor groups independently of size and
phylogenetic structure, a series of phylogenetic Procrustes ANOVAs were carried out
using these Procrustes coordinates. To do this, we downloaded a phylogeny of therian
mammals that included our sampled species from vertlife.org (Upham, Esselstyn & Jetz,
2019) (see Fig. S1), and this tree was then pruned to match with the species available for
each bone epiphysis. We then incorporated the phylogeny and the Procrustes coordinates
into the R environment (R Development Core Team, 2017) and performed a series of
phylogenetic Procrustes ANOVAs using the function procD.pgls of geomorph package
(Adams et al., 2017) with log-transformed centroid size and locomotor categories as
independent variables.

The Procrustes coordinates of each bone epiphysis were used to carry out a Principal
Components Analysis (PCA) and a Canonical Variate Analysis (CVA). The CVAs were
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Figure 4 Anatomy of forelimb epiphyses, illustrating the landmarks used for the Geometric
Morphometric analyses. (A) Proximal humerus (superior view, based on Ailurus fulgens MCZ
64643). (B) Distal humerus (anterior view, based on Mustela nigripes MCZ 42737). (C) Proximal ulna
(medial view, based on Nandinia binotata AMNH 51461). (D) Proximal radius (superior view, based on
Dasyprocta punctataMCZ 5094). All elements right hand side. Key to museum abbreviations as in Fig. 1.
See the Table S5 for detailed information as to the position of the landmarks.

Full-size DOI: 10.7717/peerj.9634/fig-4
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Figure 5 Anatomy of hind limb epiphyses, illustrating the landmarks used for the Geometric
Morphometric analyses. (A) Proximal femur (posterior view, based on Mustela nigripes MCZ 42737).
(B) Distal femur (inferior view, based on M. nigripes MCZ 42737). (C) Proximal tibia (superior view,
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performed classifying each species into one of the three locomotor categories described
above. They were performed using two statistical software packages: MorphoJ
(Klingenberg, 2011) to obtain the shape changes of each canonical axis and the results of
the significance permutation tests for Mahalanobis and Procrustes distances; IBM SPSS
Statistics v.15 was used to obtain the percentages of correct classification using leaving-
one-out cross-validation method. obtained from each CVA. As a cautionary note, this
method is completely valid because we have tested that CVA results obtained from
both packages are identical by regressing their canonical functions (r2 = 0.9995 to 1;
slope = 0.9997 to 1.0027). The values of the Procrustes coordinates for each individual and
each bone are presented in Table S6.

RESULTS
Several limb features were well-differentiated between locomotor groups, and were able to
classify taxa to their known locomotor group (arboreal, scansorial, or terrestrial) with
greater than 70% accuracy (or greater than 50% with cross validation) (see Table 2), and
showed significant differences at distinguishing among the different groups (see Table 3)
in the canonical variates analyses. Almost all of the phylogenetic Procrustes ANOVAs
performed for each bone epiphysis yielded significant results for the separation between
locomotor categories, with the exception of the proximal radius and tibia (Table S6).
In addition, size does not seem to be an important factor as its effect was significant only
for two epiphyses (proximal ulna and proximal femur).

The humerus, ulna and femur all showed good discrimination: all of these elements (both
proximal and distal ends in the case of the humerus and femur) could distinguish between
arboreal and terrestrial taxa, and also arboreal and scansorial taxa, with a significance
level of at least p < 0.05 (and in many cases p < 0.0001), although distinction between
scansorial and terrestrial taxa was more elusive (especially with the Procrustes differences).

The proximal femur was the only element that could always distinguish the scansorial
forms, and the distal femur (which had the best cross-validation reclassification scores)
was able to distinguish scansorial forms in all instances except the Procrustes distances of
arboreal vs scansorial. In contrast, the forelimb elements were almost always able to
distinguish scansorial forms from arboreal ones, but were less likely to be able to
distinguish them from terrestrial ones (and here the distal humerus was the poorest
performer). We also analyzed (but do not show the plots of the analyses) the distal
humerus with the inclusion of the medial epicondyle and the proximal ulna (medial view)
with the inclusion of the olecrcanon process. Note that in both cases, the percentage of
forms correctly classified was slightly better (see Table 3), but the significance values
remained unchanged (except for the Procrustes distances in distinguishing between
scansorial and terrestrial forms in the case of the ulna).

The proximal radius and the distal tibia did not yield as good a result as did the
above-mentioned bones. In the case of the proximal radius, this may be in part because
there is much less variation in shape among marsupials than among placentals (see later
discussion), although this element could still correctly classify ~68% of taxa (~42%
with cross validation), and for the most part could distinguish among the locomotor
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categories (although with lower levels of significance than for the humerus, ulna, and
femur). Photographs of the proximal radius were difficult to obtain (as it was often
attached to the ulna), and only 69 specimens were included in the analyses. In the case of
the proximal tibia, the ability to classify taxa was poorer than that of the radius, and
there were few instances where the locomotor groups could be distinguished from one
another. Obtaining data on the proximal tibia was also problematical: not only was the
articular surface difficult to photograph (as it was often obscured by soft tissues), but the
edges of the articular surface in many of the small mammals were indistinct, making it
difficult to place the geometric markers. The morphological changes picked up by the
analyses appear to be subtle, at best, making it difficult to interpret any functional

Table 3 Performance of limb elements in the canonical variates analysis 2.

Element Mahalanobis distance Procrustes distance

A vs S A vs T S vs T A vs S A vs T S vs T

Proximal humerus <0.0001 <0.0001 0.038 0.0028 <0.0001 0.2112

Distal humerus <0.0001 <0.0001 0.4751 0.0011 0.0001 0.4593

Distal humerus + medial epi. <0.0001 <0.0001 0.2326 0.0355 0.0166 0.3636

Proximal ulna <0.0001 <0.0001 0.0002 0.057 0.0003 0.1324

Proximal ulna + olecranon pr. <0.0001 <0.0001 <0.0001 0.1804 <0.0001 0.0003

Proximal radius 0.0165 0.0057 0.0359 0.0153 0.0073 0.2291

Proximal femur <0.0001 <0.0001 <0.0001 0.047 0.005 0.0161

Distal femur <0.0001 <0.0001 <0.0001 0.0608 <0.0001 0.0373

Proximal tibia 0.4085 0.0001 0.0003 0.0591 0.06 0.0637

Calcaneum 0.8843 0.9612 0.948 0.8722 0.9782 0.8959

Note:
Probabilities of pairwise comparison of locomotor groups. A vs S, arboreal vs scansorial; A vs T, arboreal vs terrestrial;
S vs T, scansorial vs terrestrial; epi., epicondyle, pr., process. Values with significance levels <0.05 are in bold.

Table 2 Performance of limb elements in the canonical variates analysis 1.

Element % Arb %A as T % Scans % Terr %T as A TC% TC% XV

Proximal humerus 55 22 48.1 48.4 15 71 50

Distal humerus 60 12 42.3 44.1 5 67.5 47.4

Distal humerus + medial epi. 77 6 33.3 51.9 14.8 76.9 52.3

Proximal ulna 68.4 3.2 45.8 61.3 5.3 78.4 58.1

Proximal ulna + olecranon pr. 52.6 10.5 45.5 78.1 3.1 79.5 61.6

Proximal radius 40 20 44.4 42 23.1 67.8 42.4

Proximal femur 55.6 27.8 74.1 44.8 34.5 81.1 58.1

Distal femur 65 20 67.9 51.4 10 77.1 60.2

Proximal tibia 18.2 27.3 31.3 42.9 19 77.1 33.3

Calcaneum 11.1 55.6 15.4 15.8 36.8 51.2 14.6

Note:
Comparison of percent classification into different locomotor groups. %Arb, percent correctly classified as arboreal; %
Scans, percent correctly classified as scansorial; %Terr, percent correctly classified as terrestrial; %A as T, percent arboreal
forms incorrectly classified as terrestrial; %T as A, percent terrestrial forms incorrectly classified as arboreal; TC%, total %
correctly classified; TC%XV, total % correctly classified with cross validation; epi., epicondyle; pr., process. Results for the
astragalus were even poorer than for the calcaneum, and are not shown here.
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differences between taxa. Good images of the proximal tibia were available for only 46
species (see Tables S1–S4).

As noted in the introduction, we achieved very poor results for the astragalus (anterior
view) and calcaneum (both anterior and lateral views). The lateral view was the best
indicator and this is the one shown in the tables: only ~51% of the taxa were correctly
classified (and only ~15% with cross validation), and none of the locomotor groups could
be distinguished from each other. An additional problem was the low samples for these
bones, in part because they were either lacking entirely in the specimens available to us
(sometimes being preserved as part of the foot in the skins), or they were so tightly bound
by ligaments to each other and/or to the tibia that it was not possible to obtain a good
image. Good images of the calcaneum were available for only 41 species, and for the
astragalus only 26 species (see Tables S1–S4).

Below we discuss the results for each bone in more detail (with the exception of the
astragalus and calcaneum, which we elaborate on further in the “Discussion” section).
A summary of the different “performance” of each element is provided in Table 4.

Proximal humerus
Principal Components Analysis
The first component (explaining 24.5% of the variance) distinguishes proximal humeri
with a more ovoid humeral head, a relatively larger greater tuberosity and a relatively
smaller lesser tuberosity (positive values), from humeri with a more rounded humeral
head, a relatively small greater tuberosity and a relatively large lesser tuberosity (negative
values). The second component (explaining 17% of the variance) distinguishes taxa
primarily on the shape of the greater tuberosity: humeri with the cranial portion of the
tuberosity projecting medially (and a slightly larger lesser tuberosity) have positive values,
while humeri where the cranial portion of the tuberosity projects anteriorly (and a

Table 4 Summary of the performance of the various limb elements.

Element Ability to
reclassify taxa

Distinguishes
Arb. from Terr.?

Distinguishes
Arb. from Scan.?

Distinguishes
Terr. from Scan.?

Proximal humerus 71% (50%) Always Always Sometimes

Distal humerus 68% (47%) Always Always No

with medial epicondyle 77% (52%) Always Always No

Proximal ulna 78% (58%) Always Sometimes Sometimes

with olecranon process 80% (62%) Always Sometimes Always

Proximal radius 68% (42%) Always Always Sometimes

Proximal femur 80% (55%) Always Always Always

Distal femur 77% (60%) Always Sometimes Sometimes

Proximal tibia 77% (33%) Sometimes No Sometimes

Calcaneum 51% (15%) No No No

Note:
The reclassification percentages have been rounded up from Table 2, and the figures in parentheses show the percentages
obtained by cross validation. For the ability to distinguish between pairs of locomotor types: “Always” = distinguished
by both Mahalanobis and Procrustes distances, and “Sometimes” = distinguished by Mahalanobis distances only.
Arb., arboreal; Scan., scansorial; Terr., terrestrial. A bolded term means that the significance level is p < 0.005.
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slightly smaller lesser tuberosity) have negative values. The majority of the terrestrial taxa
have positive scores on the first component. Arboreal taxa tend to have positive scores on the
second component and terrestrial taxa tend to have negative scores (see Figs. 6A and 6B).

A B

C D

PC 1 +PC 1 -

PC 2 +

PC 2 -

CV 1 +CV 1 -

CV 2 +

CV 2 -

−0.15 0.00 0.15

−0.15

0.00

0.15

PC 1 (24.5% var.)

PC
 2

 (1
7%

 v
ar

.) Ailurus

Ante

Atelx

Caeno

Cheiro

Chin Chirop

Crocid

Dasycer

Dasypro

Dasyum

Didel

Torom

Eupleres

Fossa

Genetta

Glis

Helios

Herpes

Microc

Microg

Microtus

Mungos

Nandi

Petaurn

Potos

Protox

Sarco

Sciur

Soleno

Callo

Suricat

Viverr

Arboreal
Scansorial
Terrestrial

'Insectivores'
Ameridelphia
Australidelphia

Carnivora
Primates
Rodentia

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

CV 1 (71.1% var.)

C
V 

2 
(2

8.
9%

 v
ar

.)

Ante

Atelx

Caeno
Calur

Cheiro

Chin

Chirop

Crocid

Dacty

Dasycer
Dasypro

Dasyum

Torom

Eupleres

Fossa

GalidfGlis
Herpes

Isood

Metach
Microc

Microg

Mungos

Must

Peram

Petaurn

Phalan

Phasco

Potos
Procyon

Saimi

Sarco

Sciur

Soleno

Spilog

Tamias

Tenrec

Thomo

Tupaiag

Genetta

Nandi

Coendu

Figure 6 Analyses of the proximal humerus (superior view). (A) Principal components analysis. (B) Shape changes associated with each PC plus
the consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).

Full-size DOI: 10.7717/peerj.9634/fig-6
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Canonical Variates Analysis
The differences in humeral morphology along the first axis are similar to those along PC1,
although there is less difference in the size of the lesser tuberosity between positive and
negative values. The morphological changes along the second axis differ from those in PC2
(although the differences in the size of the lesser tuberosity are similar): here humeri
with larger greater tuberosities have more positive values although, as with the second
component of the PCA, the cranial portion projects medially. The first axis (explaining
71.1% of the variance) largely separates terrestrial taxa (positive scores) from arboreal ones
(negative scores), with scansorial taxa lying in between these two groupings. The second
axis (explaining 28.9% of the variance) does not appear to contain a strong locomotor
signal. Marsupials group with the similar locomotor group of placentals (see Figs. 6C and
6D).

Using Mahalanobis distances between groups, the CVA distinguishes all three
locomotor categories from each other; using Procrustes distances arboreal taxa are
distinguished from scansorial and terrestrial ones with a high degree of significance, but
scansorial and terrestrial taxa cannot be distinguished from one another. Out of the
original grouped taxa, 70.5% were correctly classified (50% for cross-validated groups)
(see Table 2).

Distal humerus
Principal Components Analysis

The first component (explaining 38.8% of the variance) distinguishes humeri with a distal
articular surface that is long and tubular, with a rounded capitulum and an elongated and
narrow trochlea (positive values), from humeri with a distal articular surface that is
short and square, with an especially short and broad trochlea with a pronounced median
keel (negative values). The second component (explaining 16.7% of the variance)
distinguishes humeri with a short and square capitulum with a pronounced capitular
tail and a fairly short and broad trochlea (positive values), from humeri with a more
rectangular capitulum and a more elongated trochlea (negative values). Almost all of the
arboreal taxa have positive scores on the second component, and most have positive scores
on the first component: terrestrial taxa tend to have the converse pattern of scores
(negative on both components) (see Figs. 7A and 7B).

Canonical Variates Analysis
The differences in humeral morphology along the two axes are similar to those seen in the
PCA. The first axis (explaining 88.3% of the variance) separates arboreal taxa (positive
scores) from terrestrial taxa (mainly negative scores): scansorial taxa lie in between these
two groups on the first axis, but tend to have more negative scores on the second axis
(which explains 11.7% of the variance). Marsupials group with the similar locomotor
group of placentals (see Figs. 7C and 7D).

Using both Mahalanobis and Procrustes distances among groups, arboreal taxa can
be distinguished from scansorial and terrestrial ones with a high degree of significance, but
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scansorial and terrestrial taxa cannot be distinguished from one another (even with the
inclusion of the medial epicondyle). Out of the original grouped taxa, 67.5% were correctly
classified (47.4% for cross-validated groups) (see Table 2).
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Full-size DOI: 10.7717/peerj.9634/fig-7
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Proximal ulna (medial view)
Principal Component Analysis
The first component (explaining 38.5% of the variance) distinguishes ulnae with a more
prominent anconeal process, a less prominent and less sloping coronoid process bordering a
more constrained semilunar notch, and a straighter posterior border to the ulna (reflecting
a longer and straighter olecranon process) (positive values), from ulnae with an articular
surface with a less prominent anconeal process and a more projecting, more sloping
coronoid process bordering a more open semilunar notch, and a more curved posterior
border to the ulna (reflecting a short, anteriorly-curved olecranon process) (negative values).
The second component (explaining 19.2% of the variance) further reflects the morphology of
the anconeal process, distinguishing ulnae with a smaller anconeal process and a more
curved posterior ulna border (positive values), from ulnae with the opposite morphology
(negative values). Terrestrial taxa tend to have more positive scores on the first component
and arboreal taxa more negative scores, although there is much overlap (see Figs. 8A and 8B).

Canonical Variates Analysis
Anatomical changes along the first axis (explaining 93.2% of the variance) are essentially
reversed from negative to positive values from those seen in the PCA. The anatomical
differences along the second axis (explaining 6.8% of the variance) are more subtle than in
the PCA, although ulnae with a more prominent anconeal process and a deeper semilunar
notch have positive values. The first axis separates arboreal taxa (positive scores) from
terrestrial ones (negative scores); scansorial taxa lie in between these two groups on the first
axis, but tend to have more negative scores on the second axis. Marsupials group with the
similar locomotor group of placentals (see Figs. 8C and 8D).

Using Mahalanobis distances among groups, the CVA distinguishes all three locomotor
categories from each other high degree of significance, but using Procrustes distances
only arboreal taxa can be distinguished from terrestrial ones, and neither can be
distinguished from scansorial taxa. Out of the original grouped taxa, 78.4% were correctly
classified (58.1% for cross-validated groups) (see Table 2).

Proximal radius
Principal Component Analysis

The first component (explaining 47.6% of the variance) distinguishes radii where the
proximal articular surface is ovoid in shape (positive values), from radii where the shape is
round (negative values). Terrestrial taxa tend to have positive scores and arboreal ones
negative scores, although there is much overlap. The second component does not explain a
significant amount of the variance (see Figs. 9A and 9B).

Canonical Variates Analysis
The differences in proximal radial anatomy along the first axis (explaining 59% of the
variance) are similar to those along the first component in the PCA. Differences
along the second axis (explaining 41% of the variance) appear to relate as to whether
the posterior border is rounded (positive values) or straight (negative values).
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The first axis largely separates terrestrial taxa (positive scores) from arboreal ones
(negative scores). The scansorial taxa lie in between these two groups on the first axis, but
mainly have negative scores on the second axis (see Figs. 9C and 9D).
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Figure 8 Analyses of the proximal ulna (medial view). (A) Principal components analysis. (B) Shape changes associated with each PC plus the
consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).

Full-size DOI: 10.7717/peerj.9634/fig-8
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Using Mahalanobis distances among groups, the CVA distinguishes all three locomotor
categories from each other, but the distinction between scansorial taxa and the other
two groups is only weakly significant: using Procrustes distances arboreal taxa are
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Figure 9 Analyses of the proximal radius (superior view). (A) Principal Components Analysis. (B) Shape changes associated with each PC plus the
consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).

Full-size DOI: 10.7717/peerj.9634/fig-9
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distinguished from terrestrial ones with a high degree of significance, and from scansorial
ones with a weaker degree of significance: scansorial taxa cannot be distinguished from
terrestrial ones. Out of the original grouped taxa, 67.8% were correctly classified (42.4%
for cross-validated groups) (see Table 2).

Proximal femur (posterior view)
Principal Components Analysis
The first component (explaining 42.6% of the variance) distinguishes femora with a
long femoral neck and a posteriorly (and distally) placed lesser trochanter (positive values),
from femora with a short femoral neck and a medially (and proximally) placed
lesser trochanter (negative values). The second component (explaining 16.9% of the
variance) distinguishes femora with a short femoral neck, a somewhat medially (and
proximally) placed lesser trochanter, and a greater trochanter significantly lower than
the femoral head (positive values), from femora with a long femoral neck, a slightly
more medially (and more distally) placed lesser trochanter, and an elevated greater
trochanter that is at the same level as the femoral head. Terrestrial taxa tend to have
positive scores on the first component, and arboreal taxa negative scores (see Figs. 10A
and 10B).

Canonical Variates Analysis
This analysis picks out rather different morphological aspects of the femoral head to
the PCA. The first axis (explaining 56.6% of the variance) distinguishes femora with a
larger femoral head and a more medially and distally placed lesser trochanter (positive
values), from femora with a small femoral head and relatively short neck with a slightly
posteriorly placed lesser trochanter (negative values). The second axis (explaining 43.4%
of the variance) distinguishes femora with a large femoral head, a long femoral neck,
a posteriorly placed lesser trochanter, and a prominent greater trochanter (positive
values), from femora with a smaller femoral head, a short femoral neck, a strongly
medially-placed lesser trochanter, and a small greater trochanter. The first axis separates
arboreal taxa (and many terrestrial taxa) (positive scores) from scansorial taxa (and a
few terrestrial taxa) (negative scores). The second axis mainly separates terrestrial taxa
(positive scores) from arboreal and scansorial ones (negatives scores). With a few
exceptions, marsupials group with the similar locomotor group of placentals (see Figs. 10A
and 10B).

Using Mahalanobis distances among groups, the CVA distinguishes all three locomotor
categories from each other, but using Procrustes distances only arboreal taxa vs terrestrial
are distinguished a high degree of significance. Out of the original grouped taxa, 81.1%
were correctly classified (58.1% for cross-validated groups) (see Table 2).

Distal femur
Principal Components Anaysis
The first component (explaining 58.4% of the variance) distinguishes distal femora that are
short and broad, lacking an obvious patella groove, and a having broad distal end to the

Janis and Martín-Serra (2020), PeerJ, DOI 10.7717/peerj.9634 29/50

http://dx.doi.org/10.7717/peerj.9634
https://peerj.com/


lateral condyle (positive values), from femora with articular surfaces that are long and
narrow, with a prominent patella groove and a narrow distal end to the lateral condyle
(negative values). This component primarily separates taxa on phylogenetic grounds
(as previously noted, there is a marked difference between marsupials and placentals in the
degree of femoral condyle asymmetry): in general, marsupials have positive scores and
placentals have negatives scores. The second component (explaining 13.4% of the
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Figure 10 Analyses of the proximal femur (posterior view). (A) Principal components analysis. (B) Shape changes associated with each PC plus
the consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).
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variance) does not distinguish the overall height of the articular surface, but femora with a
moderately deep patella groove (and a relatively narrow distal portion of the articular
surface), plus a relatively narrow lateral condyle and a deep incursion between the two
condyles have positive values. In contrast, femora with a shallow patella groove (and a
relatively broad distal portion of the articular surface), plus a relatively broad lateral
condyle and a shallow incursion between the two condyles have negative values
(see Figs. 11A and 11B).

Canonical Variates Analysis
The first axis (explaining 69.1% of the variance) distinguishes femora on similar
morphological features to the first principal component, but there is less of a distinction of
the symmetry of the widths of the distal condyles. The second axis (explaining 30.9% of the
variance) again reflects somewhat similar morphological differences to the second
principal component, but with less emphasis on distal femoral asymmetry or the depth of
the incursion between the two condyles. Taxa are separated by locomotor category rather
than by phylogeny: almost all arboreal taxa have positive scores on the first axis, and
almost all terrestrial taxa have negative scores. The scansorial taxa lie in between these two
groups, but tend to have more negative scores on the second axis. With a few exceptions,
marsupials group with the similar locomotor grouping of placentals (see Figs. 11C and
11D).

Using Mahalanobis distances among groups, the CVA distinguishes all three locomotor
categories from each other, but using Procrustes distances only arboreal taxa vs terrestrial
are distinguished a high degree of significance. Out of the original grouped taxa, 77.1%
were correctly classified (60.2 % for cross-validated groups) (see Table 2).

Proximal tibia
Principal Components Analysis
Neither component explains a high percentage of the variance, and the differences in
shape are subtle, at best. The first component (explaining 26.6% of the variance)
distinguishes the tibial articular surfaces primarily on the basis of the relative size and
orientation of the tibial condyles, especially the lateral condyle which varies from being
constricted posteriorly (positive values) to being broadened posteriorly (negative values).
The second component (explaining 17.8% of the variance) distinguishes tibial articular
surfaces primarily on form of the tibial tuberosity and the intercondylar notch: tibiae with
a more prominent, medially-directed tuberosity and a constricted intercondylar notch
(positive values), and tibiae with a less prominent, laterally-directed tuberosity and a
less constricted intercondylar notch (negative values). The distribution of taxa appears
to have little locomotor pattern, and instead more reflects phylogeny (see Figs. 12A
and 12B).

Canonical Variates Analysis
The first axis (explaining 75.8% of the variance) distinguishes tibiae on the basis of slight
differences in shapes of the condyles: additionally, between tibia with a shallow
intercondylar notch (positive values) and tibiae with a deep intercondylar notch and a
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more prominent, laterally-directed tuberosity (negative values). The second axis
(explaining 24.2% of the variance) distinguishes tibiae where both condyles are
somewhat contracted posteriorly, and the tibial tuberosity is slightly directed laterally
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Figure 11 Analyses of the distal femur (inferior view). (A) Principal components analysis. (B) Shape changes associated with each PC plus the
consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).
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(positive values), from tibiae where both condyles (especially the lateral one) are expanded
posteriorly (the lateral more than the medial), and the intercondylar groove is very
shallow. The first axis separates the arboreal and scansorial taxa (positive scores) from

A B

C D

PC 1 +PC 1 -

PC 2 +

PC 2 -

CV 1 +CV 1 -

CV 2 +

CV 2 -

−0.15 0.00 0.15

−0.15

0.00

0.15

PC 1 (26.6% var.)

PC
 2

 (1
8.

8%
 v

ar
.)

Ailurus

Antes

Caeno

Calli

Calur

Cavia
Chin

Callo

Cunic

Dacty

Dasyum

Echimys

Atelx

Galidf
Glis

Macrot

Martes

Metach

Microc

Microg

Mungod

Must

Nandi

Paradox

Phalan

Phasco

Potos

Procyon
Sarco

Soleno

Tamias

Tenrec

Thomo

Trich

Tupaiat

Viverr
Arboreal
Scansorial
Terrestrial

'Insectivores'
Ameridelphia
Australidelphia

Carnivora
Primates
Rodentia

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

CV 1 (75.8% var.)

C
V 

2 
(2

4.
2%

 v
ar

.)

Ailurus

Antes

Bassas

Cavia

Chin

Callo

Dacty

Dasyum

Echimys

Atelx

Eupleres

Fossa

Galide

Glis

Helios

Kerod

Martes

Metach

Microm

MungodMust

Nandi

Nasua Phalan

Phasco

Procyon

Sarco
Sciur

Tamias

Tenrec

Thomo

Trich

Tupaiat

Viverr

Figure 12 Analyses of the proximal tibia (superior view). (A) Principal components analysis. (B) Shape changes associated with each PC plus the
consensus shape (center). (C) Canonical variates analysis. (D) Shape changes associated with each CV plus the consensus shape (center).
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most of the terrestrial taxa (with mostly negative scores). The second axis separates the
arboreal taxa (positive scores) from almost all of the scansorial taxa (negative scores), and
the scansorial taxa have the most negative scores on this axis. Marsupials group with
the similar locomotor grouping of placentals (see Figs. 12A and 12B).

Using Mahalanobis distances among groups, arboreal forms can be distinguished
from terrestrial forms with a high degree of significance, as can terrestrial forms from
scansorial forms, but using Procrustes distances none of the locomotor groups can be
distinguished from each other. Out of the original grouped taxa, 77.1% were correctly
classified (33.3 % for cross-validated groups) (see Table 2).

DISCUSSION
Principal Component Analyses often showed considerable distinction among locomotor
categories, although phylogeny appeared to play an important role: this was particularly
true for the proximal radius and the distal femur, which largely distinguished marsupials
from placentals. In contrast, the Canonical Variates Analyses were invariably able to
distinguish the different locomotor groups. It is perhaps not surprising that the CVAs
provided better discrimination as they are geared towards extracting the full component of
features that distinguish the predefined groupings, whereas the PCAs simply show the
overall variation along the axes. Thus, despite the obvious phylogenetic influence, there is a
clear functional signal in long bone epiphyseal anatomy.

We did not attempt any type of phylogenetic correction of the data. This is because
our future intention is to use these correlations to determine the likely locomotor behavior
of “unknowns”: that is, Mesozoic mammals that are outside of the phylogenetic clusterings
of crown mammals (metatherians or eutherians). Phylogenetic correction would not
be appropriate for such a reference matrix; in other papers where morphometric analyses
of a large sample of phylogenetically diverse extant mammals have been performed to
infer the locomotor behavior of extinct ones (Chen & Wilson, 2015; Figueirido,
Martín-Serra & Janis, 2016; Gould, 2014; Muñoz et al., 2017), the authors considered the
phylogenetic structure of their data and results, but did not specifically apply phylogenetic
correction.

With respect to the structure of the Principal Components Analyses: other papers
that have analyzed joint or single bone morphology in a sample of larger-sized mammals
have shown somewhat better discrimination among locomotor groups in PCAs. However,
we note that the performance of such analyses appears to be related to the taxonomic
level of the sample. For example, within a family, PCA usually shows good discrimination,
with more or less discrete locomotor groups being discernable (e.g., Fabre et al. (2015a)
for Mustelidae). However, if the taxonomic level is increased to that of the order, then
there may be a “morphofunctional continuum” (sensu Chen & Wilson, 2015), but there is
more overlap between groups (e.g., Panciroli et al. (2017) for Carnivora). For studies that
include many orders, especially if they include both marsupials and placentals, then
the groups may be almost entirely overlapping except for the highly specialized ones
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(Gould, 2014; Janis et al., 2020). Thus, part of the lack of discrimination in our PCAs may
simply be due to the fact that we include a large taxonomic diversity in the sample.

Our poor results for the astragalus and calcaneum were both disappointing and
unexpected: we did not discover a good functional locomotor signal for either bone across
even different orders of placentals, let alone across all therians. It is known that the
morphology of these tarsal bones is rather different between marsupials and placentals
(Szalay & Sargis, 2001), but they have been shown to be good indicators of locomotor
behavior within orders or families of marsupials (Bassavora, Janis & Archer, 2009;
Den Boer, Campione & Kear, 2019) and placentals (Youlatos, 2003; Polly &MacLeod, 2008;
Panciroli et al., 2017). While it might be possible to visually identify tarsal bones as
belonging to arboreal or terrestrial mammals, based on whether the bones appear to
allow for rotational movement at the ankle or restrict motion to the parasagittal plane,
nevertheless quantitative analyses tend to cluster these bones according to phylogeny
rather than function (Chester et al., 2015). In addition, a primary difference in the tarsal
bones between locomotor types is in the relative orientation and curvatures of the their
main facets (Dunn, 2018), anatomical features that would not be picked up in a
two-dimensional shape analysis.

Proximal humerus
Principal Component Analysis
There is an overall locomotor signal, especially within the different phylogenetic
groupings, relating primarily to the degree to which the humerus is stabilized on the
scapula by the rotator cuff muscles. In general, taxa with positive scores on PC1 and
negative scores on PC2 are terrestrial forms with the humeroscapular motion more
confined to the parasagittal plane, as indicated by the larger greater tuberosity. The larger
lesser tuberosity seen in taxa with negative scores on PC1 and positive scores on PC2 may
relate to the medial rotation of the humerus during use of the forelimb during active
climbing (see discussion in Janis et al. (2020)); this may be the reason why it is the arboreal
taxa, but not the scansorial ones, that have this combination of scores along the
components.

Carnivorans in general have positive scores on PC1, but they sort out by locomotor
grouping along PC2 (arboreal forms with positive scores, scansorial and terrestrial forms
with mostly negative ones). Almost all of the marsupials have negative sores on PC2,
but sort out by locomotor mode along PC1 (the arboreal forms having the most negative
scores). Most of the terrestrial caviomorph rodents have negative scores on PC2
(Chinchilla (= Chin) and Dasyprocta (= Dasypro) being exceptions), while the arboreal
and scansorial rodents mostly have positive ones. Among the “insectivores”, the
scansorial scandentians have negative scores on PC2, but the terrestrial afrosoricidans and
lipotyphlans have positive scores on this component (with the exception of the giant shrew
Crocidura (= Crocid)). Primates have negative scores on PC1 and positive scores on
PC2 (with the exception of the saki, Chiropotes (= Chirop), with a positive score on PC1)
(see Figs. 6A and 6B).
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Canonical Variates Analysis
The first axis has a strong locomotor signal, but arboreal and terrestrial taxa are both
widely scattered on the second axis, with no apparent correlation with phylogeny.
The preponderance of arboreal taxa with negative scores on the first axis resembles
their distribution in the PCA, reflecting the possession of a larger lesser tuberosity and a
smaller greater tuberosity. The majority of the scansorial taxa have negative scores on the
second axis, but this does not distinguish them from the other two locomotor groups.
The arboreal carnivorans have the among the least negative scores out of the arboreal
forms, clustering with a few of the terrestrial carnivorans along this axis. Arboreal forms
with positives scores on the first axis include the possum Phalanger (= Phalan) and the
caviomorph rodent Coendu. A couple of scansorial taxa have highly positive scores on the
first axis, clustering among the terrestrial taxa: the carnivoran Genetta and the quoll
Dasyurus maculatus (= Dasyum) (see Figs. 6C and 6D).

Distal humerus
Principal Components Analysis

There is distinct locomotor signal along PC1, similar to that found along the first
component in the PCA of Figueirido, Martín-Serra & Janis (2016), distinguishing between
humeral anatomy allowing for a high degree of rotation at the elbow joint in arboreal taxa
(positive scores), from that restricting the amount of rotation and providing a greater
degree of forelimb stability with the forelimb locked into a prone position in terrestrial
ones (negative scores). An extremely elongated and narrow trochlea is especially
prominent in arboreal marsupials. Our results here reflect this combination of
functional and phylogenetic distinction: taxa with high positive scores on PC1 are almost
exclusively arboreal and scansorial marsupials (plus a couple of terrestrial marsupials),
such as the dasyurid Antechinus (=Antes) and the didelphid Metachirus (= Metach),
and also lemuriform primates). Other primates and, with a few exceptions, arboreal
carnivores and rodents have lower positive scores, as do the peramelid marsupials (all
terrestrial). Taxa with negative scores on PC1 are primarily terrestrial and scansorial
carnivorans and rodents. Some anomalies exist: some terrestrial carnivorans (Spilogale
(= Spilo)) and rodents (Microtus and Thomomys (= Thomo) have positive scores on
PC1, clustering with the arboreal taxa. Conversely, some arboreal forms have negative
scores, clustering with the terrestrial taxa (e.g., the carnivoran Ailurus, the caviomorph
rodent Erithizion (= Erith), and the dasyurid marsupial Phascogale (= Phasco)).
The terrestrial “insectivores” are scattered along PC1 (but all with negative scores on PC2)
(see Figs. 7A and 7B).

Canonical Variates Analysis
The taxa that fall in the exclusively arboreal portion of the first axis (positive scores) are,
as with the proximal humerus, primarily primates and arboreal marsupials, and some of
the arboreal rodents. With the exception of Potos, the arboreal carnivorans have less
positive scores, falling close to the overlap with the terrestrial taxa. Terrestrial taxa falling
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within the confines of the arboreal area along PC1 are mostly carnivorans (the highest
positive scores belonging to Spilogale and Galidictis (= Galidf)), plus the rodent Microtus
and the dasyurid marsupial Antechinus (= Antes). Both Microtus and the terrestrial
caviomorph rodent Dasyprocta are notable outliers on the positive side of the second axis
(see Figs. 7C and 7D).

Proximal ulna (medial view)
Principal Components Analysis
There is a considerable scatter of locomotor modes along PC1, but in general arboreal
taxa have negative scores, with an ulna morphology reflecting considerable rotational
movement of the forearm around the humeroulnar joint. The exceptions here are the
arboreal caviomorph rodents and the dasyurid marsupial Phascogale, with positive scores.
With a few exceptions (e.g., the scansorial procyonid carnivoranNasua (although note that
this taxon is not an outlier on the CVA)), the taxa with the highest negative scores are
arboreal and scansorial marsupials, and terrestrial marsupials also tend to have negative
scores (e.g., the bandicoot Isoodon (= Isood)), demonstrating an effect of phylogeny as
well as locomotion. In contrast, most scansorial and terrestrial placentals have positive
scores on PC1 (a notable exception being the caviomorph rodent Cavia) (see Figs. 8A
and 8B).

Canonical Variates Analysis
Although the overlap between scansorial forms and the other locomotor groups is
considerable, there is little overlap between terrestrial and arboreal forms. The arboreal
forms with the highest positive scores along the first axis are mainly the marsupials
(especially Petaurus breviceps (= Petaurb)), although the striped possum Dactylopsila
(= Dacty) has low positive scores, as do a couple of primates (e.g., Microcebus (= Microc)
and Callithrix (= Calli)). Terrestrial taxa with very high negative scores include the
afrosoricidan Tenrec (with a high positive score on the second axis), and the didelphid
marsupial Metachirus and the caviomorph rodent Dasyprocta (both with high negative
scores on the second axis) (Figs. 8C and 8D).

Proximal radius
Principal Components Analysis
A round radial head, permitting rotation of the forelimb around the elbow joint is well
known to distinguish arboreal taxa from terrestrial ones (which have an ovoid radial head,
restricting forelimb rotation) (MacLeod & Rose, 1993). Here, perhaps because we have
added marsupials to the mix of taxa, this PCA reveals a strong phylogenetic component,
and there is little functional signal. All of the marsupials have negative scores on the
first axis, perhaps reflecting the need for rotation of the forelimb in early ontogeny
(or alternatively simply reflecting the retention of a more conservative type of forelimb
anatomy). Within the array of marsupials in the morphospace there appears to be no
correlation with locomotor mode: the highest negative scores along PC1 belong to
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terrestrial australidelphids, the bandicoot Isoodon and the dasyurid Sarcophilus (= Sarco).
The placentals with high negative scores on this component are primarily primates (and,
strangely, the terrestrial sciuromorph rodent Marmota (= Marmot)). Taxa with positive
scores on PC1 are primarily terrestrial and scansorial rodents and carnivorans, and the
arboreal members of these groups tend to have more negative scores (with the notable
exception of the caviomorph rodent Echimys) (see Figs. 9A and 9B).

Canonical Variates Analysis
Although there is a large overlap between the arboreal and terrestrial taxa, a locomotor
signal is apparent. Those arboreal taxa that have highly negative scores on the first axis
are primates and the arboreal phalangeriform marsupials, and the terrestrial taxa with
highly positive scores on this axis are primarily lipotyphlan and afrosoricid “insectivores.”
The peramelid marsupials, which usually cluster near to one other in our analyses,
show widely divergent anatomies of the radial head. Macrotis (the bilby, = Macrot) has
one of the most positive scores on the first axis, clustering with the terrestrial placentals:
but one of the bandicoots (Isoodon) has high negative scores, while the other
(Perameles (= Peram)) falls within the overlap of the three locomotor groups. The second
axis potentially distinguishes scansorial taxa from the other locomotor groups. Taxa
with highly negative scores are primarily squirrels (sciuromorph rodents), but also the
carnivoran Genetta, and the scansorial carnivorans Nasua and Bassariscus (= Bassas)
(see Figs. 9C and 9D).

Proximal femur (posterior view)
Principal Components Analysis
The first component distinguishes between taxa where the hindlimb motion is more
restricted to the parasagittal plane (positive scores) from those where there is a greater
degree of rotation of the hip joint (negative scores). Although PC1 does largely reflect
locomotor type, almost all of the marsupials have negative scores on this component, the
bandicoot Perameles being the exception. However, within the marsupials, the arboreal
and scansorial taxa have the most negative scores on PC1 (with the exception of the
diminutive terrestrial dasyurid Antechinus (= Antef)), sharing this area of the first
component with (largely) scansorial sciuromorph rodents and scandentians, but also with
the terrestrial “insectivores” (the latter also having positive scores on PC2). Interestingly,
the primates do not have highly negative scores on PC1, with some of the anthropoids
(e.g., Saimiri (= Saimi)) even having weakly positive scores. In the positive portion PC1 the
carnivorans and caviomorph rodents largely sort out along an arboreal plus scansorial
(lower scores) to a terrestrial (higher scores) axis. PC2 does not appear to distinguish taxa
on either locomotor mode or phylogeny (although the leaping primates do have low
scores) (see Figs. 10A and 10B).

Canonical Variates Analysis
There is quite a large overlap between terrestrial and arboreal taxa along the first axis,
although the arboreal rodents have the highest positive sores. The highest negatives
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scores belong to either terrestrial forms (rodents (Cavia and Tamias), the carnivoran
Viverricula (= Viverr), and the bandicoot Perameles), which also have positive scores on
the second axis, and scansorial sciuromorph rodents, which also have negatives scores on
the second axis. Arboreal primates and carnivorans (plus some arboreal marsupials)
tend to fall in the overlap between the terrestrial and arboreal taxa on the first axis.
The second axis shows a somewhat clearer separation between terrestrial taxa (mostly
positive scores) and scansorial plus arboreal taxa (mostly negative scores). The main
terrestrial outliers on the second axis (with high negative scores) are the rodent Chinchilla,
the dasyurid Antechinus and the “insectivore” Setifer and the arboreal outlier (with a high
positive score) is the rodent Toromys (= Torom) (see Figs. 10C and 10D).

Distal femur
Principal Component Analysis
Taxa are separated primarily by phylogeny. With the exception of the peramelids
(the only cursorial quadrupedal marsupials included here), and the dasyurid Myoictis
(= Myoic), all of the marsupials have positive scores on PC1, and all of the taxa with scores
of ~0.14 or greater are marsupials (Sarcophilus being the only terrestrial taxon among
them). Phascogale, the sole arboreal dasyurid, is the only arboreal marsupial not in this
grouping. In the more negative portion of PC1, occupied mainly by placentals, the arboreal
taxa have positive (or only slightly negative) scores (reflecting a femoral morphology
less restricted to parasagittal motion): the terrestrial taxa in general have the most
negative scores, and the scansorial taxa fall in the middle. The exceptions are as follows:
the terrestrial “insectivorans” Solenodon (= Soleno), Setifer, Atelerix (= Atelx) and
Crocidura have positive scores and cluster with the arboreal placentals, and the
lemuriform primates (Microcebus and Cheirogaleus (= Cheiro)) have highly negative
scores, clustering with the terrestrial placentals. The case of the lemuriforms is more easily
explained: these little primates move from tree to tree by leaping, and their femoral
morphology reflects a relatively restricted parasagittal motion of the lower limb on the
femur.

Along PC2, the arboreal marsupials have almost entirely negative scores, but among
the placentals the negative scores belong mainly to the terrestrial and scansorial taxa.
However, this component does separate, to a large extent, carnivorans (with positive
scores) from terrestrial and scansorial rodents (especially caviomorphs) (with negative
scores) (see Figs. 11A and 11B).

Canonical Variates Analysis
There is a moderate degree of overlap between the arboreal taxa (positive scores) and
the terrestrial ones (negative scores) along the first axis: the main taxa with anomalous
placements being the arboreal carnivoran Ailurus (with a negative score) and terrestrial
rodent Thomomys (with a positive score). The highest scores on the first axis belong to
arboreal and scansorial marsupials, and to primates, with the arboreal caviomorph
rodents having the lowest positive scores. The bandicoot Isoodon and the carnivoran
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Viverricula are outliers on the first axis with highly negative scores. On the second axis,
all of the scansorial taxa have negative scores, with the exception of the didelphid
marsupial Marmosops (= Marmn) and the carnivoran Prionodon (= Priono). However,
both arboreal and terrestrial taxa span positive to negative scores on the second axis,
and there does not appear to be any influence of phylogeny to the pattern of their
distribution.

Proximal tibia
Principal Components Analysis
The separation of taxa here largely reflects phylogeny. Almost all of the carnivorans
all have negative scores on PC1, while the marsupials have mostly positive scores.
The caviomorph rodents all have positive scores, while the other rodents mostly have
negative ones. The “insectivorans” and the primates all have scores that are around zero or
weakly positive. There appears to be little in the way of functional or phylogenetic pattern
to the placement of taxa on the second component.

Canonical Variates Analysis
Despite the relatively poor resolution of this analysis in terms of distinguishing locomotor
mode, it is nonetheless interesting as this is the only analysis where the scansorial taxa are
not positioned in between the arboreal and terrestrial ones on the first axis. Here, the
scansorial taxa occupy the same part of the positive side of the first axis as the arboreal
ones, and indeed are the ones with the most positive scores, and the arboreal taxa are
restricted to the positive side of the second axis. Two arboreal carnivorans (Ailurus and
Nandinia (= Nand)) have negative scores on the first axis, falling into the area of overlap
between terrestrial and scansorial taxa, while the terrestrial carnivoran Eupleres has a
positive score. Ailurus (the red panda) also clustered with terrestrial taxa in the CVAs for
the femora and the distal humerus. Unlike the condition in many of the other analyses the
terrestrial “insectivorans” all cluster with the other terrestrial taxa and, the carnivoran
Viverricula is an outlier with highly negative scores. The scansorial taxa mostly have
negative scores on the second axis, and include the taxa with the most negative scores.

CONCLUSIONS
Our results show that long bone epiphyseal anatomy (i.e., the joint articular surfaces) of
small therian mammals, the type of postcranial remains that are the most likely to be
preserved as fragmentary fossils, can indeed be used as indicators of locomotor mode.
While the Principal Components Analyses often reflected phylogeny, a functional signal
was apparent in most cases, and the Canonical Variates Analyses usually showed
discrimination as to locomotor mode. All of the long bone elements were able to
distinguish arboreal from terrestrial taxa, but they varied in their abilities to distinguish
scansorial taxa from either arboreal or terrestrial ones.

Table 4 summarizes the results of the Canonical Variates Analyses, and Table 5
provides a summary of how the epiphyseal anatomy differs between the different
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locomotor types. Interestingly, the more proximal elements performed better than the
more distal ones. In particular, the proximal femur had the best ability to correctly
reclassify taxa (80%) and was able to distinguish among the three locomotor modes in both
Mahalanobis and Procrustes distances analyses, being the only element that could always
distinguish between scansorial and terrestrial taxa. Although the proximal humerus was
inferior at correctly reclassifying taxa (71%), and also inferior in comparison with some of
the more distal forelimb elements, it was more reliable in its ability to distinguish
scansorial taxa than those elements.

In contrast, the more distal limb elements, especially the tarsal bones but also the
proximal radius and the proximal tibia, had relatively poorer performances than the
more proximal ones. We note that we were not able to obtain as many images for these
elements, which may have resulted in less statistical significance, but it was also
apparent to us from looking at the bones themselves that these elements were not as

Table 5 Summary of the differences in morphology of the limb epiphyses considered here in taxa of different locomotor mode.

Element Arboreal taxa Scansorial Terrestrial taxa

Proximal humerus Small greater tuberosity Intermediate morphology, but
have small lesser tuberosity

Small greater tuberosity

May have large lesser tuberosity Small lesser tuberosity

Round humeral head Ovoid humeral head

Distal humerus Round capitulum, without capitular
tail

Intermediate morphology,
but more like terrestrial taxa

Large, square capitulum with capitular tail

Long, tubular trochlea Shorter trochlea with strong medial wall and distal
projection

Proximal ulna Anconceal process not prominent Intermediate morphology,
but more like terrestrial taxa

Anconceal process prominent

Sloping and projecting coronoid
process

Less prominent and sloping coronoid process

More open semilunar notch More constrained semilunar notch

Curved posterior border Straight posterior border

Proximal radius Circular in shape Intermediate morphology,
but more like arboreal taxa

Oval or even rectangular in medio-lateral direction

Proximal femur Short femoral neck Intermediate morphology,
but more like terrestrial taxa

Long femoral neck

Small greater trochanter Large greater trochanter

Large lesser trochanter placed
medially and proximally

Smaller lesser trochanter placed posteriorly and
distally

Distal femur Short and broad Intermediate morphology,
but more like terrestrial taxa

Long and narrow

Shallow intercondylar groove Deep intercondylar groove

Shallow patella groove Deep patella groove

Proximal tibia Less prominent tibial tuberosity Intermediate morphology,
but more like arboreal taxa

More prominent tibial tuberosity

More shallow intercondylar groove Deeper intercondylar groove
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informative as the more proximal ones, at least in these small mammals. In contrast,
for example, the shape of the proximal tibia may be highly informative about locomotor
mode in larger mammals (Ercoli, Prevosti & Álvarez, 2012), but we did not see a
similar extent of morphological variation in the small mammals; perhaps this is because
none of them are cursorial, with a knee joint more restricted to motion in the parasagittal
plane.

It may be the case that the more proximal elements are the more reliable indicators
across a broad taxonomic diversity because they reflect both the weight-bearing capacity of
the limb, and the manouverablity of the limb across a range of postures. In contrast, the
joint morphology of the more distal elements may reflect more precise aspects of limb
positioning, and so may be more subjected to phylogenetic differences. This would be
especially the case for the tarsal bones, as intertarsal mobility is known to have evolved
convergently in different groups of mammals, in both therians and nontherians (Jenkins &
Krause, 1983).

The hindlimb elements appear to be superior at distinguishing scansorial forms
(especially between scansorial and terrestrial taxa) to the forelimb ones. These differences
between forelimbs and hindlimbs may reflect different adaptive pressures: the role of the
hindlimb is mainly propulsive, while that of the forelimb is more reflective of support,
absorption of impact, and other behaviors such as reaching in arboreal forms.

It is not our intention here to make recommendations for which bone in particular to
use to determine the locomotor behavior of an extinct small mammal. We note that if a
choice of elements were available for any particular individual, then there would also
likely be more complete skeletal elements (e.g., complete long bones) that would be more
informative in their relative proportions (Chen & Wilson, 2015). The strength of results of
these analyses is that they provide the opportunity to make a determination for a single
preserved element, or a cluster of different elements, from fossils that might not be
classifiable even to the level of metatherian or eutherian. However, we can make some
cautionary comments, noting in particular that tarsal elements unfortunately do not
provide a good signal at this level, despite the fact that they may be excellent elements for
determining locomotor behavior if the taxon can be identified to order (see Chester et al.
(2015), with respect to primates). We must also emphasize that these results are only
applicable to therian mammals: the posture of non-therians, and their joint articulatory
surfaces (especially the elbow joint, see Jenkins (1973)) are sufficiently different to preclude
confident assessment of locomotor mode from a therian reference.

Our results hold promise for the determination of past habitat types from
assemblages of small mammal fragmentary postcrania: while taxonomic assignation of
these remains may be difficult (although they can usually be identified as therian
versus non-therian), the taxon-free diversity of locomotor modes in a fossil assemblage
may provide information on ancient habitats. Future work will address such issues,
but meanwhile Figure 13 provides a glimpse of how bone fragments from small mammal
assemblages might provide reliable information on the environments that they
inhabited.
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(Madagascan scene): greater mouse lemur (Cheirogaleus major), arboreal; Eastern falanouc (Eupleres
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