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Ribbons are a class of slender structures whose length, width, and thickness are widely
separated from each other. This scale separation gives a ribbon unusual mechanical
properties in athermal macroscopic settings, for example, it can bend without twisting,
but cannot twist without bending. Given the ubiquity of ribbon-like biopolymers in
biology and chemistry, here we study the statistical mechanics of microscopic inexten-
sible, fluctuating ribbons loaded by forces and torques. We show that these ribbons
exhibit a range of topologically and geometrically complex morphologies exemplified
by three phases—a twist-dominated helical phase (HT), a writhe-dominated helical
phase (HW), and an entangled phase—that arise as the applied torque and force are
varied. Furthermore, the transition from HW to HT phases is characterized by the
spontaneous breaking of parity symmetry and the disappearance of perversions (that
correspond to chirality-reversing localized defects). This leads to a universal response
curve of a topological quantity, the link, as a function of the applied torque that is similar
to magnetization curves in second-order phase transitions.

statistical mechanics | polymer physics | topological mechanics

Filamentous structures are ubiquitous in molecular and cellular biology, polymer chem-
istry, and physics (1–3). These structures are characterized by their geometrical scale
separation, whereby one length scale (the length) is very large compared to the other two
(the two principal radii), with consequences for their mechanical properties, for example,
they are easy to bend and twist and hard to stretch and shear. In addition, when the
smallest of these scales is comparable to a characteristic length �≈ (kBT/G)1/3 obtained
by balancing the energy associated with thermal fluctuations kBT (kB is the Boltzmann
constant, and T is the absolute temperature) and enthalpic elasticity G�3 (G is the
shear modulus of the material), thermally driven fluctuations become important enough
to require a statistical treatment of their behavior in the context of physical polymers
(2, 3), biopolymers such as DNA (4–6), etc. For filamentous objects that are relatively stiff,
the worm-like chain (WLC) model (7–10), which assumes that polymer is a homogeneous
elastic rod of circular cross-section with an energy density that scales quadratically in the
local curvature, explains a range of experimental observations of the elasticity of DNA
(4, 5, 11, 12) and similar biopolymers. Variations that have generalized the original WLC
model also account for twisting and stretching deformations (13, 14), as well as the effects
of fluctuations on filaments with spontaneous curvature and torsion (15), locally bistable
behavior (16), etc., and go even further in explaining new observations of slender filaments
in passive and active settings.

However, many biopolymers such as α helices, β sheets, graphene nanoribbons, and
molybdenum ribbons (17–22) are physically ribbon-like, with their cross-sections better
described by elongated rectangles rather than circles, and thus require a more sophisticated
description beyond the WLC model that accounts for the anisotropic nature of the cross-
section, such as the railway track model that couples two WLCs via transverse bonds
(23–25). An alternative is to consider a continuum framework for ribbons, defined as
slender structures whose thickness (h), width (w), and length (�) are all widely separated,
that is, h � w � �. In this setting, deformations of the ribbon will be almost isometric
to the Euclidean plane; in the asymptotic limit of zero thickness, its mechanical energy
density is solely a function of its mean curvature H, following symmetry considerations.
At leading order, the energy of the ribbon can then be written as (1/2)B

∫
(2H )2dA,

where B = Eh3/12(1− ν2) is the bending rigidity of the sheet (made of a material with
Young’s modulus E and Poisson ratio ν). If the ribbon is assumed to be developable, that
is, it can be unrolled onto a flat state without stretching the midsurface anywhere, one
can effectively integrate the energy in the width-wise direction and reduce it to a one-
dimensional theory; this leads to an energy functional, first derived by Sadowsky (26),
that is only a function of the curvature and torsion of the centerline (27).

The Sadowsky ribbon is isometric to a flat strip at all temperatures and encodes
a nontrivial interaction between the local bend and twist degrees of freedom. At an
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experiential level, the reader is invited to cut a long ribbon from a
sheet of paper and convince herself of the asymmetry in the bend–
twist coupling inherent in these objects: A ribbon can be bent
without twisting, but cannot be twisted without bending. This is
very different from the behavior of slender filaments with a circular
cross-section, where the local twist is completely independent
of the geometric torsion of the centerline (28), although there
is a global relation between the two objects via a topological
relation (29). While there has been increasing interest in the
zero-temperature limit of the Sadowsky ribbon, starting about
two decades ago (30–32), the role of finite temperature-driven
fluctuations on the morphology of ribbons remains essentially
unstudied, with one exception (33) that studied the statistical
mechanics of a free ribbon. Here, we build on this observation to
study the statistical mechanics of the Sadowsky ribbon under the
effects of external forces and torques and understand the statistical
morphology of fluctuating ribbons by characterizing its geometry
and topology as a function of an appropriately scaled temperature
and external loads.

Topology, Geometry, and Elasticity of a Ribbon

Topology. To understand the interplay between the geometry and
topology of the ribbon, we recall the Călugăreanu–White–Fuller
theorem Lk = Tw + Wr (29, 34, 35) which connects the number
of times the two edges of the ribbon whirl around each other,
described by the link (also known as linking number), Lk, a global
quantity, to the sum of the integrated spatial rate of cross-section
rotation, the total twist, Tw, and a global configurational integral
that describes the nonplanarity of the configuration in terms of the
writhe, Wr. For a fixed linking number, the conformations of
the ribbon dictate how Lk is distributed between the degrees of
freedom associated with Tw and Wr. We note that, for the WLC
model, one would need to switch back to a “ribbon viewpoint”
to estimate the linking number, but this ribbon is quite different
from the double-helical ribbon-like structure of DNA.

Geometry. A slender ribbon, with h � w � L, can be para-
metrized in terms of the Frenet frame,

R(s , δ) = r(s) + δ

[
b(s) +

τ(s)

κ(s)
t(s)

]
, [1]

where r(s) represents the centerline of the ribbon, s ∈ [0,L], L
is the contour length, δ ∈ [−(w/2),w/2], κ(s) is the curvature,
τ(s) is its torsion, and t(s) and b(s) are the tangent and
binormal vectors, respectively. The geometry of the ribbon can be
characterized by its principal curvatures κ1(s , δ) and κ2(s , δ).

Elasticity. The assumption of developability, that is, that the
ribbon can be unrolled and made flat without stretching any-
where, leads to the vanishing of the smaller principal curvature κ2

everywhere, and the elastic energy of a thin ribbon reduces to the
simple form (1/2)B

∫
κ2
1dA, which can be integrated effectively

in the width-wise direction, resulting in the one-dimensional
Sadowsky energy functional (26, 27, 31, 33, 36, 37),

ESadowsky =
1

2
Bw

∫ L

0

ds

(
κ2(s) + τ2(s)

)2
κ2(s)

. [2]

We can then define the ribbon’s configuration completely in terms
of the curvature and torsion as a function of the arc length s
along its centerline as shown in Fig. 1B, assuming that the flexural
deformations are small enough to not worry about from self-
intersections.

Fig. 1. (A) Graphene-coated ribbons of vanadium oxide. Image is courtesy of
ref. 17. (B) The Sadowsky ribbon with relative extension z. Typical dimensions
of the ribbon: h ≈ 1nm, w ≈ 10 nm, and L ≈ 10μm; hence L � w � h. The
smooth ribbon is generated using BSplineFunction in Mathematica. (Inset) The
width w is much larger than the thickness h. (C) A discrete ribbon model
consist of N + 1 vertices, x0, x1, . . .xN , and an orthogonal Frenet frame Fi =
(ti , ni , bi) at each vertex. The distance between adjacent vertices is |xi+1 −
xi| = a. Typically w/a ≈ 1. (Inset) The angle between ti−1 and ti is θi; the angle
between bi−1 and bi is φi. (D) Writhe, Wr, is the Gauss double integral of the
solid angle dΩ determined by the crossing of dr1 and dr2 about each other.
(E) Twist, Tw, is the integral of the angle of rotation dφ of the vector b(s) about
the centerline of the ribbon.

We choose a reference state with zero curvature and torsion
not only for simplicity but also because this functional reduces to
that for the planar Elastica, when τ = 0. We note that this energy
functional is quite different from that for a three-dimensional
elastic filament which has an additional term quadratic in the
twisting strain (which is not the geometric torsion of the centerline
in general). Furthermore, in this limit, the ribbon is achiral (i.e.,
invariant under mirror reflection) in the absence of any external
applied torque. However, for isometric deformations of a ribbon,
the geometric torsion is exactly equal to the local twist, since the
Frenet frame associated with the centerline coincides with the
material frame attached to the cross-section (30). The torsional
and flexural deformations are nonlinearly (and asymmetrically)
coupled such that the ribbon can store curvature when untwisted
(i.e., κ �= 0, τ = 0), but it becomes energetically prohibitive to
store torsion in the presence of a vanishing curvature (i.e., κ≈ 0,
τ �= 0).
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Boundary Loading. In the presence of applied end forces and
torques, we assume that one end of the ribbon is anchored (fixed
boundary) and the other end experiences an applied forceF= F ẑ
(F > 0) and a torque Ω, resulting in two additional terms to the
free energy,

Eforce =−F ·
∫ L

0

t(s)ds =−Fz , [3]

Etorque =−2πΩLk, [4]
where z is the end-to-end extension of the ribbon along ẑ (8, 9),
and Lk is the link of the open ribbon (38). The applied torque
acts as a chemical potential for Lk and couples the bend and
twist fluctuations, similar to earlier approaches (13, 14) where
the desired link is achieved by tuning the applied torque on the
ribbon. Then the complete energy functional for the ribbon is
given by

Eribbon = ESadowsky + Eforce + Etorque. [5]
Here we have ignored excluded volume interactions which can
become particularly important when the ribbon is either long rel-
ative to the persistence length, weakly stretched, and/or entangled.

Computational Model of a Ribbon

Discrete Model. In order to understand the implications of the
theory for the conformational phase space of the ribbons, we
discretize the ribbon along its centerline into a chain of N
segments with N + 1 vertices {x0,x1, ... ,xN } separated by a
fixed length a as shown in Fig. 1C, where a is the length of
each segment and L= Na . For each pair of nearest-neighbor
vertices xi−1 and xi , we define the unit tangent vector as ti =
(xi − xi−1)/|xi − xi−1|, for i = 1, . . . ,N . Next, we define the
discrete bending angle θi by cos θi = ti · ti−1 and the discrete
bond angle φi by cosφi = bi · bi−1. At each vertex, there is an
orthonormal discrete Frenet frame F i = (ti ,ni ,bi) as shown in
Fig. 1C. The Frenet frames F i are orthogonal 3× 3 matrices,
whose column vectors are ti ,ni and bi . We can write down an
iterative relation between two adjacent discrete Frenet frame (33,
39): F i = F i−1Ri , where

Ri =

( cos θi − sin θi 0
sin θi cosφi cos θi cosφi − sinφi

sin θi sinφi cos θi sinφi cosφi

)
. [6]

The discrete curvature at vertex i can be calculated using κ2
i =

a−2|ti − ti−1|2 = 2a−2(1− cos θi). Similarly, the discrete
torsion is given by τ2i = a−2|bi − bi−1|2 = 2a−2(1− cosφi).
The discretized version of the elastic energy functional described
by Eqs. 2–5 is

Eribbon

kBT
=

Bw

akBT

N−1∑
i=1

[(1− cos θi) + (1− cosφi)]
2

(1− cos θi)

− Fa

kBT

N−1∑
i=0

tzi −
2πΩ

kBT
Lk,

[7]

where tzi is the z component of the ith tangent vector,
kB is the Boltzmann constant, and T is the temperature
(SI Appendix, section S1).

To track the geometry and topology of the ribbon, we also
define discrete analogs of the Tw via a cumulative twist density
function as (40)

T (n) =
1

2π

n−1∑
i=1

(bi−1 × bi) · ti , [8]

where the positive direction of rotation is defined by the right-
hand rule; that is, sign[(bi−1 × bi) · ti−1]. The cumulative twist
density function specifies how each segment of the ribbon con-
tributes to the overall twist as we move from one end of the ribbon
to the other end. When n = N , the cumulative twist density
function is identical to the twist; that is, T (N ) = Tw. Similarly,
we define the cumulative writhe density function as

W (n) =
1

2π

n−1∑
i=2

∑
j<i

Ωij , [9]

where Ωij is the Gauss integral along the segments ati and atj ,
and is calculated according to the protocol in ref. 40. When
n = N , the cumulative writhe density function is identical to the
writhe; that is, W (N ) = Wr. Finally, the cumulative link density
function is

L(n) = T (n) +W (n), [10]

and L(N ) = Lk. The cumulative density functions thus inform
us how each segment of the ribbon contributes to the overall link,
twist, and writhe.

Parameter Values. Under the assumption that biopolymers can
be viewed as a continuum of elastic objects on scales large relative
to their molecular constituents, we use the following parameter
values for ribbons: Young’s modulus E ≈ 100 MPa to 1,000 MPa,
h ≈ 1 nm, and F ∼ 0.01 kBT /nm to 10 kBT /nm (4, 8, 41,
42). For our ribbon-like polymer model, a ≈ 10 nm, w/a ≈ 1,
and Bw/kBT ≈ 10 nm. It is useful to define new dimensionless
parameters, Λ (normalized temperature), f (normalized force),
and Γ (normalized torque) as follows:

Λ =
akBT

Bw
, f =

Fa2

Bw
, Γ =

Ωa

Bw
. [11]

They can be mapped to the original parameters via f /Λ =
Fa/kBT and Γ/Λ = Ω/kBT . For this work, we will use
these dimensionless parameters exclusively. In our study, we set
temperature Λ ∈ [0.1, 1.5], force f ∈ [0, 10], Γ ∈ [−8, 8], and
N = 100. We find that this particular choice of N is sufficient
to capture relevant physics that govern our discretized polymer
chain (SI Appendix, Figs. S1, S9, and S13).

Monte Carlo Simulations. The ribbon is initialized with random
orientations, with one end of the chain fixed, namely, F 0 =
(t0,n0,b0) = (ẑ, x̂, ŷ), and the other chains free to take on ar-
bitrary conformations. During the first step, we randomly picked
two new angles θ1 and φ1, and update the adjacent Frenet frame
F 1 = F 0R1 as well as the position of the next vertex, x2. This
configuration is accepted via a Metropolis algorithm (43). We then
proceed to the next link and repeat the process. This procedure ter-
minates when we reach the end of the chain, and this constitutes
one Monte Carlo sweep. For our simulations, we performed 106

Monte Carlo sweeps per chain, the first half of which is devoted
to equilibration. In our simulations, we have ignored the effects
of knotting, since the discrete chain segments are allowed to cross
one another during trial moves in the Monte Carlo simulation.
We can close the open ribbon using the minimally interfering
closure scheme (44). One would need to evaluate the Alexander
polynomial for knot checking and reject any trial moves that
change the topology of the chain. Such a test is omitted in this
study, as it has been found that such an effect is not too significant,
and topology checking is computationally intensive (11, 13, 45).

PNAS 2022 Vol. 119 No. 32 e2122907119 https://doi.org/10.1073/pnas.2122907119 3 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122907119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122907119


A

D

B

C

Fig. 2. (A) The average relative extension 〈λ〉 as a function of different forces f and temperatures Λ collapses onto a single curve (dashed line) fitted by Eq. 14.
(Inset) The force-extension curves for different temperatures, λ. (B) Tangent–tangent 〈tn · t0〉 and binormal-binormal 〈bn · b0〉 correlation functions from Monte
Carlo simulations of a ribbon-like polymer chain of N = 100 segments at fixed temperature Λ = 1 and different applied forces. (C) The 〈tn · t0〉 and 〈bn · b0〉
for f = 7 (f > fc) are plotted at different temperatures. (D) The cumulative density functions, L(n), T(n), and W(n), along the ribbon for (Left) f = 1 (HW phase),
(Middle) f = 3 (HW phase), and (Right) f = 7 (HT phase) at Λ = 1. The ribbon conformation is depicted beside each set of curves. The ribbon undergoes phase
transition from HW to HT as we increase the force f. The critical force fc ≈ 5.

Ribbon under Tension

Force–Extension Relations. We first consider a ribbon-like poly-
mer that is subject to an applied force without any external torque.
A microscopic polymer chain behaves very differently from its
macroscopic counterpart in that it is under constant thermal
fluctuations, which prevents the chain from being straight. Every
Fourier mode of its shape is excited according to the equipartition
theorem. Because the ribbon is never straight, its average shape
will respond as soon as any stress is applied. There is no threshold,
and it can bend and twist freely to relieve stresses.

In the limit of low force (f /Λ< 1), the ribbon is in a random
coil configuration and behaves like a linear spring with an elasticity
that arises from entropy. Fitting our simulations to the low force
regime shows that the effective spring constant connecting the
applied force F to the relative extension λ= z/L is given by
k ≈ 7.15kBT/a as shown in Fig. 2A. In terms of dimensionless
parameters, this expression reads as

f

Λ
=

Fa

kBT
≈ 7.15

z

L
= 7.15λ. [12]

Evidently, the Sadowsky ribbon is stiffer than the WLC, which
obeys f /Λ = (3/2)λ in the limit of small force, thus requiring
a much greater force to realize a given extension. The ribbon

becomes harder to stretch as the temperature Λ increase. As we
increase the force, the force–extension curves become nonlinear.
At higher forces (f /λ > 10), the relative extension begins to level
off as it approaches unity. At this point, the ribbon has been
stretched nearly straight. The relative extension λ asymptotes
toward one with a distinctive 1/

√
F behavior. In these regards,

the Sadowsky ribbon is qualitatively similar to the WLC. The
force–extension curves at different temperatures collapse into one
universal curve, as shown in Fig. 2A (SI Appendix, section S2).
The best-fit interpolation formulas for the WLC (8) and Sadowsky
ribbon as a function of z/L are given by

Fa

kBT
=

1

4(1− λ)2
+ λ− 1

4
(WLC), [13]

Fa

kBT
=

0.27

(1− λ)2
+ 6.60λ− 0.27 (Ribbon). [14]

Geometrical Correlations. The tangent–tangent correlation
function, 〈tn · tm〉, measures the correlations between the unit
tangent at vertex n and the unit tangent at vertex m; values close to
one indicate high correlations, while zero indicates no correlation.
Since all the tangent vectors are equivalent, we compute 〈tn · t0〉
for convenience. If the correlation length, �, which is the distance
over which fluctuations in one region of space are correlated
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or affected by those in another region, is over multiple chain
segments, the ribbon is said to exhibit long-range order; otherwise,
the ribbon is said to be disordered. A previous study (33) has
shown that the tangent–tangent correlation function, 〈tn · t0〉,
is oscillatory when f = Γ = 0; in fact, this is true for any finite
f and Λ, as shown in Fig. 2 B and C. This means that the polymer
model has an underlying long-range ordered helical structure as
long as there is no applied torque. For segments sufficiently far
from the end segment, 〈tn · t0〉 can be effectively described by

〈tn · t0〉= e−s/�p cos(ks) +M , [15]

where s = na , k is the wavenumber, �p is the persistence
length characterizing the length scale over which orientational
correlations persist, and M is a parameter that indicates residual
tangential long-ranged order. In the absence of external forces,
the persistence length �p ≈ aΛ−1 and the wavenumber k ≈
a−1Λ1/2 (33). In addition, the orientational correlation along the
ribbon decays to zero; that is, 〈tn · t0〉 → 0 for n →∞, implying
a lack of long-ranged order (M = 0). In contrast, at finite forces
f �= 0, the tangent–tangent correlation function approaches a
finite value; that is, 〈tn · t0〉 →M �= 0 for n →∞, indicating
long-range orientational order. The asymptotic value M, in turn,
decreases as we increase the temperature, indicating a loss of long-
range order, as shown in Fig. 2C. The tangent vector of the end
segment tN and its neighboring segments tend to align with the
applied force F = F ẑ. Since t0 = ẑ, this explains the peaks in
tangent–tangent correlation function near the end segment. On
the other hand, the wavenumber k at fixed Λ gets smaller for a
higher f, and eventually becomes smaller than the unit separation
between the segments (SI Appendix, section S4).

While 〈tn · t0〉 is always oscillatory, we observe striking differ-
ences in behavior for the binormal–binormal correlation function
〈bn · b0〉. When f = Γ = 0, 〈bn · b0〉 exhibits exponential de-
cay at any nonzero temperature Λ; however, this is no longer true
when f is nonzero, as plotted in Fig. 2 B and C. As we increase f at
fixedΛ, we observe that 〈bn · b0〉 experiences a transition at some
critical force fc = fc(Λ), going from (pure) exponential decay
to oscillatory decay. The binormal–binormal correlation function
can be described as

〈bn · b0〉=
{
e−s/�τ , f < fc(Λ)

e−s/�τ cos(kτ s) +Mτ , f > fc(Λ)
, [16]

where �τ , kτ , and Mτ are the torsional persistence length, tor-
sional wavenumber, and torsional LRO parameter, respectively
(SI Appendix, sections S2 and S5).

Ribbon Morphologies and Chirality. Even though the Sadowsky
ribbon is achiral, individual torsional fluctuations will not be
inversion symmetric, and different segments of the ribbon will
exhibit different handedness. Two adjacent helical structures with
opposite handedness are connected by a perversion, a chirality-
reversing localized defect, which is a classical motif commonly
observed in such instances as tangled telephone cords and plant
tendrils (46–48). The ribbon will have segments of alternating
chirality connected by perversions; along portions of the rib-
bon with right-handed (left-handed) helicity, W (n) will increase
(decrease) monotonically. Without perversions, the cumulative
writhe density function can only change monotonically; at each
perversion, the change in the cumulative writhe density func-
tion changes sign. Under a small applied force (f = 1; Fig. 2D,
Left), the ribbon is extremely coiled up, yet the twist and writhe
are small, around O(1) in magnitude. The fluctuations in the
cumulative twist density function are significantly smaller than

that in the cumulative writhe density function. Through the
proliferation of perversions, a ribbon that is bent and twisted at
low applied force can achieve a small link. Because the link is
not constrained by an external torque, it can be expelled from
the free boundary (38). We identify these kinds of conformations
as the writhe-dominated helical phase (HW), noting that it is
the large change in cumulative writhe density function and the
large numbers of perversions that capture the character of the
ribbon conformations. In the HW morphological phase at zero
applied torque, the link, twist, and writhe are typically close to
zero (SI Appendix, section S11).

As we increase the applied force, the ribbon becomes increas-
ingly stretched, with a smaller number of perversions, and the
fluctuations in the cumulative twist density function become more
significant. At the critical force (f = 5; Fig. 2 D, Middle), the vari-
ations in cumulative twist density function become comparable
to the cumulative writhe density function, and we categorize the
ribbon as simply in the helical state. Under forces greater than fc
(f = 7; Fig. 2 D, Right), the ribbon is nearly straight and has very
few perversions. Simultaneously, the fluctuations in the cumula-
tive link, twist, and writhe functions are increasingly suppressed
and increase (decrease) monotonically if the helicity of the ribbon
is right handed (left handed). At zero torque, the ribbon can
have either handedness, as a result of the symmetry of the ribbon
under parity. Here, we have used a right-handed conformation
for illustration; in fact, the mirror image of this conformation
is equally likely. In this case, we observe that Tw ≈ 6, Wr ≈ 3,
and Lk ≈ 9. This phenomenon is similar to the observation that
the writhe in a helical telephone cord is converted into twist
when stretched. We term such morphologies the helical phase
that is twist-dominated (HT). Thus, the Sadowsky ribbon at zero
torque may exist either in the long-range ordered HT where Tw >
Wr ≈O(1) or HW where Wr ≈ Tw ≈ 0, depending on f and Λ.
Generally, we observe that high/low force leads to HT/HW, and
the transition point fc(Λ) occurs when the binormal–binormal
correlation function changes from (pure) exponential decay to
oscillatory decay. The cumulative density functions allow us to
investigate the formation of perversions as we move along the arc
length of the ribbon. In our model, the morphological cross-over
is also accompanied by a spontaneous breaking of the symmetry of
the ribbon under parity, which will be discussed later in the next
section.

Ribbon under Tension and Torque

Force–Extension Relations under Torque. A macroscopic elastic
rod under torque and tension remains straight as long as the
twisting couple is below a critical value Ωcritical ∝

√
F (13, 14,

28). On the other hand, a microscopic ribbon under tension
and torque behaves very differently, as there is no threshold to
bending or twisting. In this case, the twisting couple term breaks
the parity symmetry of the Sadowsky functional: Ω> 0 will
lead to a right-handed ribbon, while Ω< 0 will result in a left-
handed ribbon. The twisting couple will push fluctuations with
the same handedness closer to instability, while suppressing those
of the opposite handedness, and ribbon conformations with the
same helicity as the applied torque will be favored. These twist
fluctuations will, in turn, affect the bend fluctuations, due to
the coupling between the curvature and torsional modes of the
Sadowsky ribbon. The end result will be a coupling between the
applied torque and the mean end-to-end extension of the polymer.

The force–extension curve of our polymer chain is shown in
Fig. 3A together with characteristic conformations of the ribbon
for Λ = 1, and different Γ. Under small applied torques, the
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Fig. 3. (A) The force-extension curves for a ribbon at temperature Λ = 1 and different applied torques Γ. (B) Average relative extension 〈λ〉 vs applied torque Γ
of a ribbon at fixed temperature Λ = 1 for different applied forces f . The helical phase is stable for Γ ∈ [−Γc(f , Λ), Γc(f , Λ)]; otherwise the ribbon is entangled.
(C) The cumulative density functions, L(n), T(n), and W(n), along the ribbon for (Left) f = 1 and Γ = 0.03 (HW phase), (Middle) f = 3 and Γ = 0.1 (HW phase), and
(Right) f = 7 and Γ = 0.3 (HT phase) at Λ = 1 for different torques Γ. (D) Tangent–tangent and binormal–binormal correlation functions corresponding to f = 7
and Λ = 1 for different torque Γ. The phase transition occurs at Γc ≈ 0.62. (E) The 〈tn · t0〉 and 〈bn · b0〉 for f = 7 (f > fc) and Γ = 0.75 are plotted at different
temperatures. (F) Plot of average link vs. torque at Λ = 1. For f < fc , the average link varies continuously with applied torque. At critical force fc = 5, the slope
approaches infinity. For f > fc , the average link is discontinuous, and the jump in 〈Lk〉 at zero applied torque is indicative of a first-order phase transition. At zero
torque, parity symmetry is spontaneously broken at large f, and the ribbon adopts a particular handedness. At low forces (f = 1, 2), the ribbon is predominantly
in the HW phase, while, at large forces (f = 5, 7), the ribbon is predominantly in the HT phase. In contrast with the case shown here, for Λ = 1, the case Λ � 1
leads to a mostly entangled phase at finite torque, while the case Λ � 1 leads to an ordered helical phase (typically HT) at finite torque (Fig. 4).

ribbon is in the HT phase at high force. As we reduce the force,
there is a cross-over from twist to writhe, and the ribbon typically
becomes shorter and more coiled and transits from HT phase
to HW phase. Under zero torque, the ribbon will shift from

HT to HW phase under decreasing applied force; for nonzero
torque, the ribbon rapidly goes into an entangled phase (E) below
a minimum force fc(Γ, Λ). This transition into entangled phase
may occur from either the HT or HW phase, depending on
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the force, torque, and temperature. The entangled morphological
phase is characterized by its small relative extension (λ� 1). As
we do not include steric effects, the ribbon in the entangled phase
collapses into a small globule. Due to self-crossing, the topology
of the ribbon will be heavily knotted. The helix to entangled
transition is abrupt, reminiscent of a first-order phase transition,
and critical force becomes smaller with either decreasing torque or
decreasing temperature (SI Appendix, sections S6 and S7).

The average relative extension of the ribbon 〈λ〉 under varying
torqueΓ for different values of f andΛ is shown in Fig. 3B. Due to
the assumption of developability, the relative extension is an even
function of the applied torque. A ribbon under high applied force
(yellow squares, Fig. 3B) is stable in the HT phase as long as Γ<
|Γc(f , Λ)|; otherwise, it becomes entangled. In the HT phase,
increasing the torque does not result in significant changes to the
ribbon conformations. The change in relative extension while in
the helical phase is relatively small, Δλ= λmax − λmin ≈ 0.02. As
we reduce the applied force, the helical phase remains stable for
a smaller range of applied torque; that is, Γc(f , Λ) reduces with
decreasing applied force (SI Appendix, section S6).

Statistical Topology of Ribbons. Under a small applied force and
torque (f = 1, Γ = 0.03; Fig. 3 C, Left), the ribbon is coiled
in a random manner. We observe that the cumulative writhe
density function is significantly larger than the cumulative twist
density function, and the ribbon is evidently in the HW phase.
Due to the symmetry-breaking torsional constraint term, right-
handed fluctuations will be favored: Ribbon segments with right-
handed chirality tend to be extended over many discrete segments
while those with left-handed chirality are generally short ranged.
The overall chirality of the ribbon is right handed, resulting in
a nonzero, positive link in this case. The twist of the ribbon is
close to zero, and the writhe provides the leading contribution to
the link of the ribbon. A similar behavior is observed at f = 3
and Γ = 0.1 (HW phase), as observed in Fig. 3 C, Middle. Unlike
the zero-torque case considered in the previous section, the HW
phase under torque has a finite writhe; that is, Wr ≈O(1) and
Tw ≈ 0. As we increase the applied force and torque (f = 7,
Γ = 0.3), the ribbon becomes elongated and transitions into the
HT phase, as seen in Fig. 3 C, Right, and Tw > Wr ≈O(1).
We observe the disappearance of perversions, and the cumulative
density functions are generally monotonic. The ribbon has a right-
handed helicity, with the twist as the predominant contributor to
the link in this case (SI Appendix, sections S11 and S12).

Geometrical Correlations. In the helical phase (HW/HT), the
correlation functions 〈tn · t0〉 and 〈bn · b0〉 obey Eqs. 15 and
16, respectively. In the entangled phase, 〈tn · t0〉 and 〈bn · b0〉
exhibit disordered behaviors, as shown in Fig. 3D. The transition
occurs at a torque Γc(f , Λ) that defines the “Lifshitz point” (24,
33) that divides the disordered entangled phase and the ordered
helical phase. The transition may be achieved either by varying
the force at fixed temperature and torque fc(Γ, Λ), changing
the torque at fixed temperature and force Γc(f , Λ) (Fig. 3D),
or changing the temperature at fixed force and torque Λc(f , Γ)
(Fig. 3E).

In the presence of force, we observe that both �p and �τ are
approximately constant in the HW phase and scale as f −1/2 in the
HT phase. Interestingly, the high f limit is similar to that of the
Moroz–Nelson model (13). We find that k scales as (f 2 + C )−1

over all f, where C is a temperature-dependent constant that keeps
k finite in the low-force limit; kτ vanishes in HW phase and
scales as f −2 in the HT phase. The temperature dependence at
finite f appears to be identical to the f = 0 case: Both �p and

Fig. 4. Morphological phase diagram of the ribbonlike polymer subject to
different torques Γ, forces f , and temperatures Λ. Three morphological
phases exist: writhe-dominated helical (HW), twist-dominated helical (HT), and
entangled (E). The transition between HW and HT is continuous with a phase
boundary at f ≈ 5Λ0.7. The transition between HW/HT and E is abrupt and the
phase boundary collapses onto a universal curve Γc(f , Λ) = g(f/Λ0.7) where
g(x) ∼ x3.

�τ scale as Λ−1, k scales as aΛ1/2 in either helical phase, and
kτ scales as a−1Λ1/2 in HT phase. Finally, we observe that �p ,
�τ , k, and kτ do not seem to vary appreciably with Γ in the
range investigated in this work. More details can be found in
SI Appendix, sections S4 and S5.

Phase Transition with Lk as the Order Parameter. The variation
of 〈Lk〉 of the ribbon in the helical phase at fixed temperature
with the applied torque Γ is shown in Fig. 3F. At forces below
the critical force fc , the ribbon has a zero average link at zero
torque. The link exhibits a linear dependence on the applied
torque. At forces above fc , there is a jump in 〈Lk〉 at zero
applied torque, indicative of a first-order phase transition; that
is, 〈Lk〉=±Lk0 at Γ = 0. The link changes slightly with the
applied torque and asymptotes to a constant that represents the
maximum link admissible to the chain with N finite segments in
helical phase (SI Appendix, Fig. S9). At fc , 〈Lk〉 is continuous at
Γ = 0 but has an infinite slope. This is analogous to what hap-
pens in ferromagnets: The magnetization varies discontinuously
with the applied field when the temperature is below the Curie
temperature TC (ferromagnetic phase), while the magnetization
varies smoothly when T > TC (paramagnetic phase). Thus, we
can interpret the average link 〈Lk〉 as the order parameter of the
ribbon-like polymer and interpret the torque Γ as the conjugate
field. In the HW morphological phase at zero torque, the ground
state of the ribbon has zero link; that is, 〈Lk〉= 0, and the system
exhibits chirality. However, in the HT phase at zero torque, the
ground state becomes doubly degenerate, and the ribbon commits
to one of the two minima (± Lk0) randomly, resulting in the spon-
taneous breaking of chirality. Unlike in the simple ferromagnet
where the transition is controlled by the strength of external field,
the morphological transition of the ribbon-like polymer can be
achieved by either tuning temperature, force, or torque.

Morphological Phase Diagram. Our study shows that the
Sadowsky ribbon exhibits a rich morphological phase diagram
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that spans the torque–force–temperature phase space as shown in
Fig. 4. There are three phases in the ribbon-like polymer: HW
at low force and low torque, HT at high force and low torque,
and the entangled phase at high torque. Both helical phases are
ordered, while the entangled phase is disordered. At zero torque,
the ribbon conforms to either HW or HT phase at all finite f
and Λ. In the HW phase at zero torque, the ground state of the
ribbon is chiral with zero average link with multiple perversions,
while, in the HT phase, the ribbon relaxes into either one of two
minima (± Lk0), and parity symmetry is spontaneously broken.
The transition occurs at fc(Λ) whereby the binormal–binormal
correlation function changes from (pure) exponential decay to
oscillatory decay.

At finite torque, the HW phase is characterized by its small
relative extension, small average link, tangent–tangent correlation
function that is oscillatory, and binormal–binormal correlation
function that is purely exponential decay. The link is shown
to increase with the applied stresses, and the ribbon has finite
writhe and small twist. There are multiple perversions that flip the
chirality of the ribbon, and its overall handedness conforms to that
of the applied torque, since fluctuations with the same handedness
are favored. In the HT phase, the ribbon-like polymer has a
large relative extension (〈λ〉 → 1−), finite 〈Lk〉 (Tw > Wr), and
oscillating correlation functions. The ribbon tends to be straight as
a consequence of the nonlinear coupling term τ4/κ2 which forces
τ to approach zero faster than κ. The ribbon has few, if any, perver-
sions, and the link changes marginally from ± Lk0 under applied
stresses. The ribbon-like polymer in HW/HT phase experiences
very small variations in its relative extension under variation in
torque. The transition between HW and HT phase is continu-
ous, and the phase boundary occurs at f ≈ 5Λ0.7, independent
of the applied torque. It is stable until a critical torque Γc(f , Λ),
beyond which the ribbon starts to get entangled, reminiscent of a
first-order phase transition. In the entangled phase, the polymer
has extremely small 〈λ〉, diverging 〈Lk〉, and correlation func-
tions with random oscillations. The transition between HW/HT
and E phase is abrupt, and the phase boundary collapses onto
a universal curve Γc(f , Λ) = g(f /Λ0.7) for 0≤ f /Λ0.7 ≤ 16,
where g(x )≈ x 3 is a function of one variable. The data were
fitted to AxB , with A= 0.0011± 0.0002, B = 3.14± 0.08,
and adjusted R-squared ≈ 0.98 (SI Appendix, section S10).

Conclusions

Ribbon-like polymers whose thickness, width, and length are all
well separated are mechanically well characterized by the Sad-
owsky functional, and are known to have unusual static responses
due to the constraints of effectively inextensional deformations.
Here, we build on this and describe the statistical geometry
and topology of thermal ribbons subjected to an applied load
and torque, and leading to qualitatively different conformations
relative to the well-studied classical worm-like chain.

We find that the ribbon can exist in three morphological
phases as a function of the scaled tension, torque, and tem-
perature (as shown in Fig. 4), which we characterize using the

cumulative link, twist, and writhe densities. These phases, which
correspond to HW, HT, and strongly disordered tangles, each have
distinctive orientational correlation functions and thus should
have clear experimental signatures. Interestingly, the transition
between the HW and HT phases is continuous and similar to
the spontaneous symmetry-breaking phase transition in magnetic
systems (Fig. 3F ), except that, here, the order parameter is a
topological quantity, the link 〈Lk〉, that changes as a function of
the applied torque. Furthermore, we note that, in the HW phase
(seen in the limit of small applied torques), the local chirality keeps
flipping due to the existence of multiple perversions, which are
chirality-reversing localized defects, resulting in small 〈Lk〉. On
the other hand, in the HT phase, the handedness of the ribbon
persists over a long length scale, with few perversions, resulting
in large 〈Lk〉. These observations lead to a rich morphological
phase diagram for the loaded ribbon that should be amenable
to experimental tests. This is in sharp contrast with the loaded
worm-like chain, which exhibits either a randomly coiled or an
elongated state in the absence of self-interaction terms in the free
energy; complex morphologies such as plectonemes and solenoids
are a consequence of excluded-volume interactions. Our study
has uncovered the subtle interplay between topology, geometry,
and statistical mechanics in a minimal setting for a naturally
flat ribbon, with experimentally testable predictions. Extensions
of the model to account for nonflat natural states (15) and
excluded-volume interactions (49) as well as local order–disorder
transitions induced by forces or torques (16) might be relevant for
understanding morphological transitions in ribbon-like complex
biological macromolecular assemblies.

Materials and Methods

Monte Carlo Simulations of Thermal Ribbons. We use Monte Carlo–based
computational methods to study the equilibrium statistics and topology of a
microscopic ribbon loaded by forces and torques, as detailed in SI Appendix. The
simulations provide additional analysis of the fluctuating ribbon, including the
role of finite-size effects and boundaries on the nature of the correlation functions
between the different geometrical and topological quantities such as curvature,
torsion, link, twist, writhe, etc.; a scaling analysis of the persistence length and
wavenumber derived from the geometrical correlation functions; detection of
perversions along ribbon; details of the topological analysis; and fitting the force–
extension curve to analytic expressions.

Data Availability. All study data are included in the article and/or SI Appendix.
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und die Zurückführung des geometrischen Problems auf ein Variationsproblem [in German].
Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 22, 412–415 (1930).
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