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Despite widely reported gender differences in both brain structure and brain function,
very few studies have examined the relationship between the structural differences and
the functional differences between genders. Here, different imaging measures including
both structural [i.e., gray matter volume (GMV)] and functional [i.e., regional homogeneity
(ReHo) and functional connectivity (FC)] measures were employed to detect the gender
differences in the human brain based on univariate and multivariate approaches with
a sample of 290 healthy adults (155 females). The univariate analyses revealed that
gender differences were detected in both structural (i.e., GMV) and functional (ReHo
or FC) imaging measures, mainly manifested as greater values in females than in males
in regions of the frontal, parietal, occipital lobes and cerebellum. Importantly, there was
little overlap between the differences detected in GMV and those detected in ReHo and
FC, and their differences between genders were not correlated with each other. The
multivariate pattern analyses revealed that each of these measures had discriminative
power to successfully distinguish between genders (classification accuracy: 94.3%,
90.73%, and 83.89% for GMV, ReHo, and FC, respectively) and their combination
further improved the classification performance (96.6%). Our results suggest that
gender differences are encoded in both brain structure and brain function, but in
different manners. The finding of different and complementary information contained in
structural and functional differences between genders highlights the complex relationship
between brain structure and function, which may underlie the complex nature of gender
differences in behavior.

Keywords: gender difference, gray matter volume, regional homogeneity, functional connectivity, multivariate
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INTRODUCTION

There is a wide range of evidence for gender differences in
behavioral profiles as well as in brain structure and function
(Sacher et al., 2013; Ruigrok et al., 2014; Gur and Gur, 2017).
Behaviorally, males are shown to perform superiorly in some
domains including motor and visuospatial processing, whereas
females have an advantage in terms of verbal skills and emotional
memory. There is an increasing interest in studying the brain
mechanisms underlying these behavioral differences between
genders. For example, there is evidence showing that larger gray
matter volume (GMV) in occipital lobe was correlated with
better visual function in males and larger hippocampal gyrus was
correlated with better memory performance in females (Giedd
et al., 2012). Given that gender differences in patients’ prevalence
and symptoms are commonly seen in many neuropsychiatric
disorders, a better understanding of the gender differences in
brain structure and function could also provide insights into the
neurophysiological mechanisms of clinical symptoms and help
improve the outcome of clinical interventions.

Previous studies have utilized a variety of brain imaging
measures derived from different magnetic resonance imaging
(MRI) modalities and different analytical techniques including
conventional univariate methods and recently developed
multivariate methods to examine gender differences in brain
structure and function. Univariate methods examine the
differences between genders in a voxel-wise or region-wise
manner, i.e., performing statistical comparisons between
genders for every voxel or region in the brain. For instance,
some studies on gender differences in GMV using voxel-based
morphometry (VBM) reported that females had a larger amount
of gray matter (GM) in the frontal and parietal cortices than
males (Sacher et al., 2013; Ruigrok et al., 2014). In contrast,
multivariate methods, most typically, the multivariate pattern
analysis (MVPA), examines the difference in spatial patterns
across multiple voxels or regions. As MVPA considers multiple
voxels/regions at once, it can extract more information from
the data and thus is more sensitive in detecting differences
between experimental conditions or groups than univariate
methods (Norman et al., 2006; Pereira et al., 2009; Liu et al.,
2015). MVPA is a machine learning technique and can be
used for classification between different groups (e.g., males vs.
females) or prediction of behavioral performance. Indeed, both
structural and functional brain imaging measures have been
used to distinguish participants between genders in previous
studies. For example, a classification between genders based on
brain structural connectome resulted in an overall classification
accuracy (CA) of 79% (Tunc et al., 2016). Moreover, patterns
of functional connectivity (FC) have also been shown to be
distinguishable between genders, yielding a 71% CA which is
higher than that obtained from participants’ cognitive profiles
(63%; Satterthwaite et al., 2015). All these findings show that
males and females differ in both brain structure and function.

However, it remains unclear whether gender differences in
brain structure and brain function show similar patterns, that is,
whether females and males differ structurally and functionally
in similar brain regions. Different measures obtained from

multimodal brain imaging data likely contain not only shared
but also complementary information about gender differences.
Addressing this question requires a comparison of gender
differences detected by different imaging measures obtained
from multimodal MR data in the same group of participants.
However, most previous studies only focused on a single
measure of the brain, either structural or functional, in any
particular study. The complex relationship between structural
and functional imaging metrics has been identified in normal
population (Yang et al., 2016) and was found to be altered in
certain clinical populations such as patients with generalized
tonic-clonic seizures (Liao, 2016). Regarding gender differences,
a recent study with a large sample size (n = 5,216) examined
gender differences in a variety of MR metrics including
structural, diffusion and functional measures in the adult brain
and confirmed that females and males differ in both brain
structure and function using the same group of subjects (Ritchie
et al., 2018). However, the similarities and differences between
the gender differences in brain structure and those in brain
function have not been formally investigated. Furthermore, the
samples used in this recent study were mainly middle-aged
or old people (ranging from 44 to 77 years), and thus their
results might not apply to young adults given that gender
differences in brain structure and function may be age-related
(Kawachi et al., 2002; Sowell et al., 2007; Zuo et al., 2010;
Gennatas et al., 2017).

In the present study, we performed multimodal MR imaging
of 135 males and 155 females and extracted voxel-based GMV
from structural MRI and regional homogeneity (ReHo) and FC
from resting-state functional MRI (fMRI) of each participant.
We then identified gender differences in these different imaging
measures using both univariate and multivariate methods. We
aimed to characterize the shared and different features of gender
differences reflected by these different imaging measures and
to test whether combining information provided by different
measures could improve the accuracy of gender classification.

MATERIALS AND METHODS

Participants
Three hundred and twenty-four healthy right-handed volunteers,
confirmed for the absence of any neurological or psychiatric
disorders, participated in this study. The handedness of
each participant was assessed using the Chinese handedness
questionnaire published by Li (1983). No brain lesions were
observed during brain MRI data acquisition. Eight subjects were
further excluded due to poor image quality, seven subjects
were excluded due to excessive head motion (the maximal
displacement ≥2 mm in x, y, or z direction, or maximal
rotation ≥2.0◦ around any of the three axes) and nineteen
subjects were excluded due to missing personality scale data.
The remaining 290 subjects include 135 men (age range:
18–29 years; mean ± SD = 22.17 ± 2.49) and 155 women (age
range: 18–29 years; mean ± SD = 23.26 ± 2.25). This study
was approved by the Medical Research Ethics Committee of
Tianjin Medical University General Hospital and all participants
provided informed consent before the experiment.
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MRI Data Acquisition
Each subject underwent a resting-state fMRI scan followed
by a T1-weighted anatomical scan (3.0 T, General Electric,
Milwaukee, WI, USA). Resting-state fMRI data covering the
entire brain were acquired using a single-shot, echo-planar
imaging (EPI) sequence with the following parameters: repetition
time/echo time (TR/ TE) = 2,000/30 ms, flip angle (FA) = 90◦,
matrix = 64 × 64, the field of view (FOV) = 240 × 240 mm2,
40 axial slices, slice thickness = 4 mm, no gap. Each
functional run contained 180 volumes. During the fMRI
scanning, all subjects were informed to keep their eyes closed,
stay awake, and not to think of anything in particular. To
mitigate motion and noise, participants’ heads were made
stable in the head coil through a foam pad and earplug
in each ear. Finally, a high-resolution T1-weighted brain
volume (BRAVO) 3D MRI sequence with 176 contiguous
sagittal slices was performed with the following parameters:
TR/TE = 8.1/3.1 ms, inversion time = 450 ms, FA = 13◦,
matrix = 256 × 256, FOV = 256 × 256 mm2, slice
thickness = 1 mm without a gap. This structural brain image was
used to extract GMV.

The GMV maps were constructed for each subject using
VBM analysis. All data pre-processing was performed using the
VBM8 toolbox1 combined with the SPM12 software2. During
the segmentation, an adaptive Maximum A Posterior technique
(Rajapakse et al., 1997) and a Partial Volume Estimation (Tohka
et al., 2004) were applied to estimate the fraction of each pure
tissue type present in every voxel. Following the segmentation
of GM, white matter (WM) and cerebrospinal fluid (CSF), the
individual GM concentration maps were normalized into GM
template in the Montreal Neurological Institute (MNI) space
using the diffeomorphic anatomical registration through the
exponentiated Lie algebra (DARTEL) algorithm (Ashburner,
2007) and re-sliced to a voxel size of 1.5 × 1.5 × 1.5 mm3.
In the modulation process, the GMV maps of each subject
were obtained by multiplying the individual’s GM concentration
map by the nonlinear Jacobian determinants derived from the
spatial normalization while removing the confounding effect of
variance in individual brain sizes. Finally, the GMV maps were
smoothed with a 4-mm full width at half maximum (FWHM)
Gaussian kernel for increasing the signal-to-noise ratio. Finally,
the normalized and smoothed GMV maps were resampled to
3 × 3 × 3 mm3 voxel size to match with the voxel size of
functional data.

Regional Homogeneity and Functional
Connectivity Obtained From Functional
MRI Data
Preprocessing
fMRI data were preprocessed by the software package Data
Processing Assistant for Resting-State fMRI (DPARSFA3). The
first 10 volumes were discarded to ensure signal stabilization and
the remaining 170 volumes were corrected for the acquisition

1http://dbm.neuro.uni-jena.de/vbm8/
2http://www.fil.ion.ucl.ac.uk/spm
3http://rfmri.org/DPARSFA

time delay between different slices. Then all volumes were
aligned with each other in each subject to correct head motion.
All aligned volumes were spatially normalized to the standard
EPI template and resampled at 3 × 3 × 3 mm3 voxels. The
normalized data were smoothed with a 4-mm FWHM Gaussian
kernel. Next, the band-pass filtering (between 0.01 and 0.08 Hz)
was applied to remove the effect of low-frequency drift and
high-frequency noises. Finally, several factors including linear
drift, the six parameters of head motion, the average blood
oxygen level-dependent (BOLD) signals of the whole brain and
the average signals of the ventricular and WM regions were
regressed out as covariates of no interest from the BOLD time
series of each voxel (Fox et al., 2009; Liu et al., 2015). Only
the voxels within a GM mask (available in the software package
DPARSFA, including 67,541 voxels) were entered into the
subsequent univariate comparisons and classification analyses
between genders.

Regional Homogeneity
The regional homogeneity (ReHo) is a measure of local
synchronization of intrinsic fMRI signals by calculating Kendall’s
coefficient of concordance (KCC) between the time series of a
given voxel and those of its 26 neighboring voxels (Zang et al.,
2004). This measure has been widely used to reveal information
about spontaneous neural activity within a local region during
rest. A ReHo map was obtained for each participant and then
standardized (dividing the ReHo value of each voxel by the mean
ReHo value of all voxels within the brain) and smoothed (with
a Gaussian kernel of 4-mm FWHM) using the software package
DPARSFA. Only the voxels within the GM mask were entered
into the subsequent univariate comparisons and classification
analyses between genders.

Functional Connectivity
The automated anatomical labeling (AAL) atlas was first
used to partition the whole brain into 116 regions, including
90 regions in the cerebrum and 26 regions in the cerebellum.
The mean time series were then obtained for each region in
each subject by averaging the time series of all GM voxels
within the given region. GM voxels were defined by the
GM mask provided in the software package DPARSFA. The
FC between any two regions was calculated as the Pearson’s
correlation coefficient between their time series of fMRI signals,
resulting in (116 × 115)/2 = 6670 functional connections of
the whole brain. Then a Fisher’s r-to-z transformation was
performed to transform the correlation coefficient to Z values to
improve normality.

Univariate Comparisons of Different
Imaging Measures Between Genders
To explore the gender differences in brain structure and function,
voxel-wise comparisons between genders were performed using
two-sample t-tests for the GMV maps and ReHo maps
separately within the GM mask. The final statistical results were
corrected using the voxel-level family-wise error (FWE) method
(P< 0.05, corrected). Similarly, for each of the FCs, the FC values
of the male group and the female group were compared using
a two-sample t-test. This comparison was repeated for every
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FC. The FCs with P < 7.50 × 10−6 (i.e., 0.05/6,670, Bonferroni
corrected) were considered to be significantly different between
genders. In all comparisons, confounding factors such as age
and education years were included as covariates. For FC, we
also evaluated the gender differences in the weighted degree of
each brain region associated with the FCs showing significant
gender differences. Here, the weight of each FC was its T-
value obtained from the two-sample t-test. As T-values can be
positive or negative, a positive weighted degree and a negative
weighted degree were calculated separately for each brain region
using the following procedure: for a given brain region, the
positive weighted degree was calculated as the sum of the positive
T-values of all FCs showing significant gender differences
associated with this region; similarly, the negative weighted
degree was calculated as the sum of the negative T-values of
all FCs showing significant gender differences associated with
this region. Note that, only the FCs identified to be significantly
different between genders were used in the calculation of the
weighted degree. Here, positive weights indicate greater strength
in females, while negative weight indicates greater strength
in males.

To formally analyze the similarities and differences between
the gender differences in the structural measure (i.e., GMV) and
the gender differences in the functional measure (i.e., ReHo), we
examined the overlap between the thresholded GMV difference
map and the thresholded ReHo difference map. To provide
a more quantitative measure of the overlap, we calculated
the percentage of the overlapping area in two ways: (1) the
percentage of the overlapping voxels (i.e., the voxels showing
significant differences in both GMV and ReHo between genders)
over all voxels showing significant differences in GMV; and
(2) the percentage of the overlapping voxels over all voxels
showing significant differences in ReHo. As the thresholded
map used in the above overlapping analyses were corrected
for multiple comparisons to control the type I (i.e., false-
positive) error, the false-negative rate might be high (i.e., there
might be voxels which showed a trend of gender differences
but did not survive the corrected threshold). For example, for
the voxels showing significant differences in GMV but not
in ReHo, there might be a high probability that there were
also differences in ReHo in these voxels but the differences
were not strong enough to survive the corrected threshold.
Therefore, to provide a more thorough quantification of the
overlapping area between the GMV difference and the ReHo
difference, we further identified: (1) the voxels showing a trend
of differences in ReHo (P < 0.001, uncorrected) in the properly
thresholded GMV difference map (i.e., P < 0.05, corrected);
and (2) the voxels showing a trend of differences in GMV
(P < 0.001, uncorrected) in the properly thresholded ReHo
difference map (i.e., P < 0.05, corrected). Besides, we also
quantified the similarity between the GMV difference map and
the ReHo difference map using Pearson’s correlation coefficient
by performing a spatial correlation analysis between the two
maps within the GM mask. As it was difficult to quantify
the similarities and differences between gender differences in
GMV/ReHo (measured for each voxel) and gender differences
in FC (measured between regions), the above overlapping and

spatial correlation analyses were only performed between GMV
and ReHo.

Gender Classification Using Brain Imaging
Measures
The MVPA for gender classification was performed using an
SVM classifier implemented in the LIBSVM toolbox (Chang and
Lin, 2011) running in MATLAB platform (The Math Works,
Inc., Natick, MA, USA). SVM with the linear kernel is widely
used in MVPA of brain imaging data as it works well when
the dimensionality of the feature space is much larger than the
sample size (Pereira et al., 2009).

Gender classifications were performed using brain
imaging metrics including GMV (67,541 features), ReHo
(67,541 features), and FC (6,670 features) separately and also
using the combination of the three features (141,752 features),
thus leading to a total of four classification analyses.
Before these classification analyses, the effects of age and
education years were removed from each feature for each
brain imaging metrics using multiple linear regression. For
the classification using combined brain imaging metrics,
each of the three metrics (i.e., GMV, ReHo, and FC) was
first normalized to zero mean and unit variance using the
mean and the standard deviation across all features of the
same metric (i.e., Z transformation) for each subject. After
normalization, the three feature vectors of each participant were
concatenated into a single vector and then entered into the
classification analysis.

For each classification analysis, the CA was determined
using 10-fold cross-validation (CV) procedure as follows. The
data were divided into 10 folds: each of the first nine folds
contained 13 males and 15 females and the last fold contained
all remaining subjects (i.e., 18 males and 20 females). During the
CV process, nine folds were used to train the classifier, leaving
the remaining one fold out for testing the trained classifier.
This procedure was repeated 10 times so that each of the
10 folds was used as a test dataset once. One CA was obtained
for each CV step, and the CAs obtained from all folds were
averaged to obtain an overall CA of the entire dataset. Similarly,
the overall sensitivity and specificity of all folds were also
obtained. Here, sensitivity was defined as the percentage of male
participants that were correctly classified as male, and specificity
was defined as the percentage of female participants that were
correctly classified as female. Furthermore, the receiver operating
characteristic (ROC) curve and the corresponding area under the
curve (AUC) were evaluated for each classifier to delineate the
discriminative power.

Note that a feature selection procedure was embedded in
the above CV procedure to identify the most discriminative
feature sets that produce the highest CA. Specifically, for each
CV step, all features were ranked in descending order according
to their absolute weights obtained from the training step. For the
classification using GMV (or ReHo), the number of the selected
features with the highest rankings increased from 2,000 to the
whole set of features (i.e., 67,541) in steps of 2,000, resulting
in 34 selected feature sets. For the classification using FCs,
the number of the selected features with the highest rankings

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 244

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhang et al. Gender Differences Encoded in Brain

increased from 100 to the whole set of features (i.e., 6,670)
in steps of 100, resulting in 67 selected feature sets. For the
classification using combined features, the number of the selected
features with the highest rankings increased from 2,000 to the
whole set of features (i.e., 141,752) in steps of 2,000, resulting
in 71 selected feature sets. For each feature selection step, a CA
was calculated for each CV step (i.e., fold) and then an average
CA across all folds was calculated. The statistical significance
of the CAs was determined by nonparametric permutation tests
(n = 2,000). In brief, the same MVPA procedure was performed
except that: (1) the labels of the training samples in each CV step
were shuffled at random, and then the SVM model was trained
using the randomly labeled training data and tested using the test
set, with the same feature selection procedure; (2) this procedure
was performed for every CV step, resulting in an average
accuracy obtained at chance level; and (3) the whole permutation
procedure was repeated 2,000 times, resulting in 2,000 average
accuracies which were used to build a null distribution of chance-
level accuracies. Therefore, the P-value of the actual CA obtained
from the true labels was calculated by comparing it with the
corresponding null distribution of chance level accuracies, that
is, the P-value was the percentage of the chance-level accuracies
that were greater than or equal to the actual accuracy. If none out
of 2,000 permutations reached the actual accuracy, the p-value
was labeled as p < 0.0005 (i.e., 1/2,000). Given that a different
percentage in each feature selection was used, the procedure
should be considered as multiple independent MVPA analyses
and thus the above P values acquired from the permutation
tests were further corrected for multiple comparisons with
Bonferroni correction method (e.g., P < 0.05/71 = 0.0007 was
considered to be statistically significant for the classification
using combined features).

RESULTS

Demographics
Significant differences in age (male: Mean ± SD = 22.17 ± 2.49;
female: 23.26 ± 2.25; T = 2.5, P = 0.01; two-sample t-test) and
education years (male: Mean ± SD = 15.13 ± 2.33; female:
15.86 ± 2.61; T = 1.9, P = 0.02; two-sample t-test) between
the two groups were observed, and thus the effects of age and
education years were removed as covariates in both univariate
and multivariate comparisons between genders.

Gender Differences in GMV, ReHo, and FC
Identified by Univariate Analyses
Figure 1A and Table 1 show the gender differences in GMV.
Females had greater GMV in several areas including the
thalamus, postcentral gyrus, triangular part of inferior frontal
gyrus, orbital part of middle frontal gyrus and medial superior
frontal gyrus in both hemispheres, middle occipital gyrus and
middle cingulate gyrus in the left hemisphere, and the inferior
parietal lobule and caudate in the right hemisphere, and bilateral
cerebellum. Males had greater GMV than females only in the
right inferior occipital gyrus.

Figure 1B and Table 2 show the gender differences in ReHo.
Females had greater ReHo in the medial superior frontal gyrus

in both hemispheres, the triangular part of inferior frontal gyrus,
rectus, and calcarine in the left hemisphere and the orbital part
of inferior frontal gyrus in the right hemispheres. Males showed
greater ReHo than females only in the right lingual gyrus.

The functional connections with significant gender
differences are shown in Figure 2. In total, 33 FCs showed
significant differences between genders (Figure 2A), including
24 FCs showing greater strength in females than in males
(Figure 2B) and 9 FCs showing greater strength in males than
in females (Figure 2C). These 24 ‘‘female-stronger’’ FCs mainly
involved frontal (13 FCs), parietal (eight FCs), limbic (nine FCs)
and cerebellar (seven FCs) areas (24 areas in total). Interestingly,
among the 13 ‘‘female-stronger’’ FCs involving frontal areas,
10 were within the left hemisphere and the other 3 were between
the left and right frontal areas. The nine ‘‘male-stronger’’ FCs
mainly involved frontal (seven FCs), limbic (three FCs), and
cerebellar (four FCs) areas (15 areas in total). Among all these
brain areas, the majority were frontal areas—half of the 24 areas
involved in the ‘‘female-stronger’’ FCs and nearly two-thirds of
the 15 areas involved in the ‘‘male-stronger’’ FCs were frontal
areas. We also assessed the contribution of each brain area to the
gender differences in FCs using the weighted degree. The ranked
weighted degrees of these brain areas are shown in Figures 3A,C
and their spatial locations are shown in Figures 3B,D. Among
the 24 areas involved in the ‘‘female-stronger’’ FCs, seven areas,
including the left medial orbital part of superior frontal gyrus,
right Cerebelum_Crus 1, left Supplementary Motor Area (SMA),
right precuneus, left opercular part of inferior frontal gyrus,
left precuneus, right angular gyrus, had higher contributions
than average (Figure 3A). Among the 15 areas involved in the
‘‘male-stronger’’ FCs, 4 areas, including left SMA, right orbital
part of inferior frontal gyrus, right Cerebelum_Crus 2, left
medial superior frontal gyrus, had higher contributions than
average (Figure 3C). It should be noted that some of these areas
were involved in both ‘‘female-stronger’’ and ‘‘male-stronger’’
FCs, including the left SMA, left olfactory cortex, right anterior
cingulate and paracingulate gyri, right Cerebelum_Crus 1, and
right Cerebelum_Crus 2.

The Overlap of Gender Differences
Between Structural and Functional
Measures
As shown in Figure 4, only 20 voxels were showing significant
gender differences (females > males) that survived the multiple
comparisons correction (p < 0.05, FWE corrected) in both
GMV and ReHo, accounting for 0.68% of all voxels showing
gender difference in GMV (light yellow in Figure 4A) and 2.75%
of all voxels showing gender difference in ReHo (light yellow
in Figure 4B). These 20 voxels formed three small clusters
located in the right orbital part of the middle frontal gyrus, left
triangular part of inferior frontal gyrus, and left medial superior
frontal gyrus, respectively.When we further relaxed the statistical
threshold, 16.62% of the voxels with significant GMV differences
(p < 0.05, FWE corrected) showed a trend of gender difference
in ReHo (p < 0.001, uncorrected; all showing increased ReHo
in females than in males), which were mainly located in the
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FIGURE 1 | The brain maps showing gender differences (Female-Male) in gray matter volume (GMV; panel A) and regional homogeneity (ReHo; panel B) detected
using two-sample t-tests. The T-values of the voxels showing significant differences are indicated in color. Warm colors (red-yellow) indicate higher GMV (panel A) or
higher regional homogeneity (ReHo; panel B) in females than in males and cold colors (blue-green) indicate higher GMV (panel A) or higher ReHo (panel B) in males
than in females.

thalamus and the left orbital part of middle frontal gyrus (orange
in Figure 4A). When looking at the voxels showing significant
ReHo differences between genders (p< 0.05, FWE corrected), no
voxels showed a trend of gender difference in GMV after relaxing
the threshold (p < 0.001, uncorrected). Regarding the spatial
correlation analysis between gender differences in GMV and
gender differences in ReHo, we observed a very weak correlation
(r = 0.1033), shown in Figure 5.

Gender Classification Based on GMV,
ReHo, and FC
The classification results obtained based on single, as well as
combined, brain imaging metrics are shown in Figure 6. The
classification using the GMV, ReHo, and FC separately yielded
CAs of 94.3%, 90.73%, and 83.89%, respectively (indicated
by red vertical lines in Figures 6A–C). These CAs were
obtained when 13,200 voxels (GMV), 11,400 voxels (ReHo), and

720 FCs were selected, respectively. The corresponding AUCs
for the three classifications were 0.9413 (GMV), 0.9146 (ReHo)
and 0.8832 (FC), respectively (Figure 6F). The classification
using the combination of the three imaging measures yielded
a higher CA of 96.6% (indicated by the red vertical line
in Figure 6D; when 8,000 features were selected) and a
higher AUC of 0.9923 (Figure 6F). All these CAs were
significantly higher than chance level (P < 1/2,000 = 0.0005,
2,000 permutation tests; the null distributions are indicated
by the blue bell-shape in Figures 6A–D and corrected using
Bonferroni correction).

Combining different imaging metrics also improves both
sensitivity and specificity (Figure 6E)—the sensitivities obtained
fromGMV, ReHo, FC and their combination were 93.5%, 89.1%,
83.38% and 94.27%, respectively, and the specificities obtained
from GMV, ReHo, FC and their combination were 95%, 92.17%,
84.17% and 98.83%, respectively.
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TABLE 1 | Brain areas showing gender differences in gray matter volume detected by univariate two-sample t-tests (P < 0.05, FWE corrected).

Anatomical area Brodmann area Side MNI coordinates T (at peak voxel)

Males > Females
Inferior Occipital Gyrus 18 R (30, −90, −21) −7.02
Females > Males
Thalamus - L, R (−6, −12, 6) 9.45
Postcentral gyrus 3 L (−54, −6, 36) 5.76
Postcentral gyrus 3 R (54, −9, 45) 8.35
Middle frontal gyrus, orbital part 11 R (42, 51, −15) 7.87
Superior frontal gyrus, medial 10 L, R (0, 63, 18) 6.78
Middle occipital gyrus 18 L (−27, −84, 30) 7.58
Middle cingulate 31 L (0, −36, 48) 6.73
Cerebelum_2 - L (−27, −78, −42) 6.99
Cerebelum_2 - R (48, −69, −42) 7.0
Middle frontal gyrus, orbital part 11 L (−33, 54, −15) 6.73
Inferior frontal gyrus, triangular part 46 L (−51, 39, 9) 5.84
Inferior frontal gyrus, triangular part 46 R (45, 45, 6) 4.89
Inferior Parietal Lobule 40 R (51, −57, 42) 5.15
Caudate - R (6, 6, 9) 5.52

TABLE 2 | Brain areas showing sex differences in ReHo detected by univariate two-sample t-tests (P < 0.05, FWE corrected).

Anatomical area Brodmann area Side MNI coordinates T

Males > Females
Lingual gyrus 18 R (12, −51, −6) −5.41
Females > Males
Calcarine 18 L (0, −93, 12) 8.69
Rectus 10 L (0, 18, −15) 6.13
Superior frontal gyrus, medial 11 L, R (−9, 69, 6) 10.57
Inferior frontal gyrus, triangular part 47 L (−48, 48, 0) 5.94
Inferior frontal gyrus, orbital part 47 R (57, 36, −6) 7.88

DISCUSSION

In the present study, we examined the gender differences
in both brain structural and functional measures with a
focus on the similarities and differences between them.
We obtained three main findings. First, using the same
group of participants, gender differences were detected in
both structural (i.e., GMV) and functional (ReHo or FC)
imaging measures, mainly manifested as greater values in
females than in males in regions of the frontal, parietal,
occipital lobes and cerebellum. Second, there was essentially
very little overlap of gender differences between structural
and functional measures, indicating that gender differences
were manifested differently in brain structure and function.
Finally, successful gender classification was obtained using each
of the brain structural and functional measures; moreover,
their combination could further improve the classification
performance to some extent, suggesting that different brain
imaging measures might contain complementary information
about gender differences.

Structural and Functional Differences
Between Genders
We observed gender differences in both structural and
functional imaging measures. We found that gender-differences
in structural and functional measures were mainly manifested
as greater values in females than in males (i.e., greater GMV or

ReHo values, or stronger FCs in females). This observation is
consistent with many previous studies using subjects including
young adults as in the present study (Good et al., 2001; Sowell
et al., 2007; Lv et al., 2010; Im et al., 2006; Luders et al., 2006;
Feis et al., 2013). It is worth noting that this gender difference
(i.e., predominantlymanifested as stronger values in females than
in males) was not observed in a recent study with a very large
sample (n = 5216). However, the subjects used in this previous
study were much older (44–77 years) than the present study
(18–29 years), suggesting that the effect of greater structural and
functional measures in females than in males may be age-related
(Kawachi et al., 2002; Sowell et al., 2007; Zuo et al., 2010;
Gennatas et al., 2017).

Here, the gender differences in brain structure and function
detected in the present study were mostly located in the frontal
regions—stronger in females than in males. Greater values of
structural and/or functional measures in frontal areas in females
have been reported by many previous studies. For example, a
meta-analysis of sex differences in brain structure reported that
females on average had larger GMV in the right inferior frontal
pole, middle frontal gyrus and orbitofrontal cortex (Ruigrok
et al., 2014). Moreover, two studies found increased cortical
thickness in prefrontal gyrus in females compared with males
(Luders et al., 2006; Lv et al., 2010). Regarding functional
measures, our result was also in concert with a PET study
showing stronger glucose metabolism of the frontal lobe in
women than in men (Andreason et al., 1994). There was also
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FIGURE 2 | The gender differences in functional connectivity (FC) detected
using two-sample t-tests. Panel (A) shows all FCs significant gender
differences. Panel (B) shows the FCs significantly higher in females than in
males. Panel (C) shows the FCs significantly higher in males than in females.
Brain regions are represented by squares on a circle and the FCs between
them are represented by the lines connecting two regions. The red lines
represent higher FC in females than in males and the blue lines represent
higher FC in males than in females. The thickness of the lines represents the
corresponding T-values.

a study that examined gender difference in ReHo and found
some prefrontal areas showing greater ReHo in females as
in the present study; however, they also reported some other
prefrontal areas showing greater ReHo in males than in females,
which was not observed in the present study (Wang et al.,
2012). The frontal regions were pertinent to many higher
cognitive functions. Especially, the orbitofrontal area has been
demonstrated to play a critical role in emotion processing and
decision making (Bechara et al., 2000). In the present study,
we found that females had greater GMV and ReHo in the
orbitofrontal area than males, which may be responsible for
higher emotion perception ability in females than in males
(Stevens and Hamann, 2012).

Besides, consistent with several previous findings, we also
found that sensorimotor-related regions showed larger GMV
in females, including the thalamus (Feis et al., 2013; Ruigrok
et al., 2014), postcentral gyrus (Lv et al., 2010), inferior parietal
lobule (Good et al., 2001; Chen et al., 2007), mid-cingulate gyrus
(Feis et al., 2013), caudate (Good et al., 2001; Luders et al.,
2009; Wang et al., 2012; Feis et al., 2013) and cerebellum (Wang
et al., 2012). It should be noted that inconsistent results also
exist, especially for the cerebellum which was reported to have
smaller GMV in females (Giedd et al., 2012). Among these
areas, the postcentral gyrus, inferior parietal lobule, and the
mid-cingulate gyrus were also reported to have greater ReHo
in females in a previous study (Xu et al., 2015); however,
these regions did not show gender difference in ReHo in the
present study. In terms of FC, interestingly, the SMA and
cerebellum were found to be associated with both ‘‘female-
stronger’’ FCs and ‘‘male-stronger’’ FCs. These FCs showing
gender differences were mainly between SMA/cerebellum and
different prefrontal areas, that is, some prefrontal areas showed
stronger connectivity with SMA/cerebellum in females and
some other prefrontal areas showed stronger connectivity with
SMA/cerebellum in males. In general, the prefrontal cortex
serves a critical role in the coordination and execution of motor
actions via its involvement in goal setting, decision-making,
motivation, and cognitive control, and its connectivity with
SMA/cerebellum may be related to the integration between
higher cognitive action control and motor performance (Grafton
and Volz, 2019). However, it has been suggested that different
part of the prefrontal cortex may be involved differently in
females and males during certain cognitive-motor control tasks
(Rubia et al., 2013; Koch et al., 2007), which may explain the
present finding that, for the FCs between prefrontal areas and
SMA/cerebellum, some were stronger in females and some were
stronger in males.

Regarding the gender differences in FCs detected in the
present study, it is worth noting that females exhibited stronger
FCs related to the DMN (seven FCs were related to precuneus
and posterior cingulate cortex; Figure 2B), which was also
reported in several previous studies (Xu et al., 2015; Ritchie et al.,
2018). The DMN has been widely recognized to be correlated
with some cognitive functions, such as social cognition and
episodic memory (Kennedy and Adolphs, 2012; Sestieri et al.,
2011). It has been suggested that females had advantages in these
cognitive domains relative to males (Gur et al., 2012), which
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FIGURE 3 | The weighted degree of the brain regions involved in the FCs with significant gender differences. Panels (A,B) show the bar plot and the rendering plot
of the weighted degree of the regions with significantly higher values in females than in males (in red). Panels (C,D) show the bar plot and the rendering plot of the
weighted degree of the regions with significantly higher values in males than in females (in blue). In Panels (A,C), the black lines indicate the mean value. In panels
(B,D), the size of the spheres indicates the value of the weighted degree.

might be explained by the stronger DMN-related FCs found
in females.

Furthermore, we also observed some lateralization of gender
differences in brain structural and functional measures. More
specifically, we observed lateralization of gender differences
in the occipital lobe for both GMV and ReHo—females
showed larger GMV and ReHo only in the left occipital
areas and males showed larger GMV and ReHo only in
the right occipital areas. Also, the frontal areas associated
with the ‘‘female-stronger’’ FCs were mostly within the left
hemisphere (Figure 3B). This observed lateralization was
compatible with a previous study on gender differences

in functional connectivity density (FCD) showing that
females had greater leftward lateralization of FCD in the
inferior frontal cortex, whereas males had greater rightward
lateralization in inferior frontal, superior temporal and
inferior occipital cortices (Tomasi and Volkow, 2012). It
has been demonstrated that visual-spatial function was featured
by right-hemisphere lateralization and greater rightward
lateralization was associated with better performance in
visual-spatial tasks (Gur et al., 1994; Wendt and Risberg,
1994), and the language-related function was featured by
the left inferior frontal cortex (Hjelmervik et al., 2012).
Interestingly, males generally perform better than females on
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FIGURE 4 | Comparisons between brain areas showing gender differences in GMV and those showing gender differences in ReHo. In Panel (A), all voxels marked
in color show significant gender differences in gray matter volume (GMV; P < 0.05 corrected; warm colors: females > males; cold color: males > females), within
which the voxels in light yellow also show significant gender differences in ReHo (P < 0.05 correct; females > males), the voxels in orange show only a trend of
gender differences in ReHo (P < 0.001 uncorrected; females > males) and the voxels in red (females > males for GMV) and blue (males > females for GMV) show
no difference in ReHo (P > 0.001 uncorrected). In Panel (B), all voxels marked in color show significant gender differences in ReHo (P < 0.05 corrected; warm
colors: females > males; cold color: males > females), within which the voxels in light yellow also show significant gender differences in GMV (P < 0.05 correct;
females > males), the voxels in orange show only a trend of gender differences in GMV (P < 0.001 uncorrected; females > males) and the voxels in red
(females > males for ReHo) and blue (males > females for ReHo) show no difference in GMV (P > 0.001 uncorrected). F, female; M, males.

visual-spatial tasks (Linn and Petersen, 1985; Voyer et al.,
1995), whereas females generally outperform males in verbal
tasks (Hyde and Linn, 1988; Hjelmervik et al., 2012). This
gender superiority in spatial and language functions may
be accounted for by the lateralization of brain structure

and function between genders observed in the present and
previous studies.

All these observed gender differences in brain structure
and function may be related to behavioral differences between
genders. Using the same dataset, our previous studies have
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FIGURE 5 | The spatial correlation between gender differences in GMV and
gender differences in ReHo across voxels within the GM mask.

found significant differences between genders in five domains
of personality traits: Sensation Seeking Scale (SSS), Eysenck
Personality Questionnaire (EPQ), Emotional Intelligence Scale
(EIS), Beck Depression Inventory (BDI) and Tridimensional
Personality Questionnaire (TPQ). Specifically, males showed
higher scores in three subscales of the SSS including the
adventure-seeking subscale (Zhou et al., 2014), experience
seeking subscale (Zhou et al., 2014) and disinhibition subscale
(Zhou et al., 2014), one subscale of the EPQ that is the
extraversion-introversion subscale (Zhou et al., 2014), the EIS
(Wu et al., 2016) and BDI (Wu et al., 2016); females showed
higher scores in the neuroticism subscale of the EPQ (Zhou
et al., 2014) and the harm avoidance subscale of the TPQ (Li
et al., 2012). Furthermore, the relationships between brain image
measures and behavioral data related to gender effects have also
been identified. For example, an interaction between gender and
risk propensity was found for short- and long-range FC densities
in the left inferior orbitofrontal cortex and right supramarginal
gyrus/postcentral gyrus, implying that the resting-state neural
correlates of risk propensity may differ between men and women
(Zhou et al., 2014). Also, gender differences were found in the
correlations between the harm avoidance score and the resting-
state FCs of the amygdala (Li et al., 2012) and in the correlations

FIGURE 6 | The accuracies of the classification between genders along with their corresponding null distributions for each measure (Panels A–C) and the
combination of all measures (Panel D), the bar plot of all classification accuracies, sensitivity and specificity (Panel E) and the receiver operating characteristic (ROC)
curves and corresponding area under the curves (AUCs; Panel F). In Panels (A–D), the classification accuracies are indicated by red vertical lines and corresponding
null distributions (obtained from 2,000 permutations) are indicated by blue bell-shaped distributions centered around chance level accuracy of 50%. All accuracies
were statistically significant (p < 0.001).
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between the emotion regulation and the FCs associated with the
amygdala (Wu et al., 2016).

Little Overlap of Gender Differences
Between Structural and Functional
Measures
Although females and males showed differences in the above
brain areas for structural (i.e., GMV) and/or functional
(i.e., ReHo and FC) measures, surprisingly, there was very little
overlap between the brain areas showing structural (i.e., GMV)
differences and those showing functional (i.e., ReHo and FC)
differences between genders (Figures 3, 4). Indeed, only 20 voxels
showed significant gender differences in both GMV and ReHo
when they were properly thresholded (i.e., corrected for multiple
comparisons), accounting for a very small percentage of all voxels
showing gender differences in GMV (0.68%) or ReHo (2.75%).
Even when the statistical threshold was relaxed, still only a small
percentage (16.62% or 0%) of the voxels showing significant
differences in GMV or ReHo showed a trend of differences in the
other measure. This was further corroborated by the observation
of a very weak spatial correlation (r = 0.1033) between gender
differences in GMV and gender differences in ReHo.

These results suggest that, although some brain areas were
structurally different between females and males, they did not
exhibit a significant difference in functional measures, and vice
versa. This is somewhat unexpected as it is usually considered
that brain structure and function are closely related (Castagna,
2019). However, dissociations between structural measures and
functional measures are also often reported (Owens et al.,
2018). One possible explanation is that the development of the
structure and function of the human brain may be affected
by environment and personal experience to different degrees
(Mitchell et al., 2011; Koziol et al., 2014; Sale et al., 2014).
Consequently, gender differences in ReHo cannot be fully
accounted for by gender differences in GM (Wang et al.,
2012). This further raises the possibility that brain structural
and functional measures contain complementary information
about gender that may be utilized for a better prediction of a
person’s gender.

Combining Different Brain Imaging
Measures Better Predicts the Gender
Recently, the application of MVPA strategy based on machine
learning techniques in analyzing neuroimaging data has attracted
a lot of attention. Relying on the spatial patterns of multiple
variables of interest, the MVPA strategy has been proven to
have higher sensitivity in information detection than univariate
approaches which only evaluate a single variable at a time,
mainly for two reasons. First, the spatial pattern composed
of multiple variables contains information from multiple
dimensions (i.e., variables) and thus contains more information
than every single variable. Second, MVPA analyses multiple
variables at once and thus is not exposed tomultiple comparisons
problem. This multivariate nature of MVPA makes it a natural
way to combine information from different sources. The results
of the univariate comparisons of brain structural and functional
measures between genders in the present study suggest that

gender differences in brain structure and brain function may
provide different and complementary information.

In the present study, we observed that the gender classification
accuracies based on each type of brain imaging measures
were 94.3% for GMV, 90.73% for ReHo and 83.89% for FC,
and all these accuracies were significantly higher than chance
level. This indicates that each of these brain structural and
functional measures contains gender-distinct information. More
importantly, the CA was further improved to 96.6% when
combining all three measures which were higher than the highest
CA obtained from a single measure (i.e., 94.3% for GMV).
This improvement suggests a higher predictive power might
be achieved by merging structural and functional information
provided by different imaging measures, which needs to be
confirmed by future studies.

CONCLUSION

Our results revealed that, although females and males showed
differences in both brain structure and function in widely
distributed brain areas, such gender differences in brain structure
and those in brain function were very different. The observation
of a better classification performance obtained by combining
these different brain imaging measures further confirmed that
structural and functional measures contained complementary
information about gender differences. These results highlight
the complex relationship between brain structure and function,
which may underlie the complex nature of gender differences
in behavior.
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