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Objective: The accuracy of CA125 or clinical examination in ovarian cancer

(OVC) screening is still facing challenges. SerummiRNAs have been considered

as promising biomarkers for clinical applications. Here, we propose a single

sample classifier (SSC) method based on within-sample relative expression

orderings (REOs) of serum miRNAs for OVC diagnosis.

Methods: Based on the stable REOs within 4,965 non-cancer serum samples,

we developed the SSC for OVC in the training cohort (GSE106817: OVC = 200,

non-cancer = 2,000) by focusing on highly reversed REOs within OVC. The

best diagnosis is achieved using a combination of reversed miRNA pairs,

considering the largest evaluation index and the lowest number of miRNA

pairs possessed according to the voting rule. The SSC was then validated in

internal data (GSE106817: OVC = 120, non-cancer = 759) and external data

(GSE113486: OVC = 40, non-cancer = 100).

Results: The obtained 13-miRPairs classifier showed high diagnostic accuracy

on distinguishing OVC from non-cancer controls in the training set (sensitivity

= 98.00%, specificity = 99.60%), which was reproducible in internal data

(sensitivity = 98.33%, specificity = 99.21%) and external data (sensitivity =
97.50%, specificity= 100%). Compared with the published models, it stood out

in terms of correct positive predictive value (PPV) and negative predictive value

(NPV) (PPV = 96.08% and NPV=95.16% in training set, and both above 99% in

validation set). In addition, 13-miRPairs demonstrated a classification accuracy

of over 97.5% for stage I OVC samples. By integrating other non-OVC serum

samples as a control, the obtained 17-miRPairs classifier could distinguishOVC

from other cancers (AUC>92% in training and validation set).

Conclusion: The REO-based SSCs performed well in predicting OVC

(including early samples) and distinguishing OVC from other cancer

types, proving that REOs of serum miRNAs represent a robust and

non-invasive biomarker.
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Serum miRNA, ovarian cancer, early diagnosis, relative expression orderings, single
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Introduction

Ovarian cancer (OVC) is the most common cancer in female

genital organs and is the fifth leading cause of cancer death

in females worldwide. The 5-year survival rate for women

with localized OVC is 93%, but the rate decreases to 30% for

distant OVC, leading to an all-stage combined rate of 49%

(1, 2). The strategy for screening OVC commonly relies on

clinical transvaginal ultrasound examination and a blood test

for the CA125 tumor marker, which is usually performed on

women who are at high risk or have symptoms. However, early

OVC usually causes no obvious symptoms, and there is a high

prevalence of false-positive results of this strategy (1). Therefore,

finding sensitive and non-invasive molecular biomarkers that

could help detect early OVC is in urgent need.

The discovery of microRNAs (miRNAs), particularly in

serum, has opened a new avenue for cancer detection (3).

Based on gene expression profiles assayed in high-throughput

experiments such as microarray or RNA-seq, many serum

miRNA biomarkers have been identified in OVC (4–6). The

diagnostic models of these miRNA biomarkers usually rely

on a composite score of expression of characteristic genes

and classify patients at risk by comparison with pre-defined

risk thresholds. However, serum miRNAs can be derived from

apoptotic, necrotic, shed cancer cells and other tissue cells or

from the secretion of cancer cells, immune leukocytes, etc.

(7, 8), and their signals are also affected by changes in the

proportional composition of blood leukocytes (9). In general,

the signal of serum miRNA expression is relatively weak, which

can have an impact on cancer discrimination and the specificity

of serum-based biomarkers. Moreover, miRNA expression levels

are susceptible to batch effects, individual genetics, and technical

fluctuations (10). Therefore, preprocessing like standardization

of data is required when applying such biomarkers, which

makes these biomarkers difficult to apply to individual clinical

practice (11).

Considering the different preprocessing requirements of

biomarkers, a new type of biomarkers has emerged, namely

the single sample classifier (SSC) (12). The decision rule of

SSC is based on the within-sample relative expression orderings

(REOs) between two genes, which can be interpreted as if

the expression of gene A is smaller than the expression of

gene B, the sample is assigned to class C; otherwise, it is

non-C class. The underlying assumption of REO-based SSC is

that, under normal conditions, although external environmental

stimuli can affect gene expression in the organism and its

cells, the affected genes should normally exhibit coordinated

biological activity, behaving as the REOs of most genes should

be in a stable relative equilibrium. Studies have demonstrated

this biological coordination phenomenon, whereby REOs of

genes are broadly stable in normal samples and altered when

a disease such as cancer occurs (10, 13). More importantly,

REOs have the unique advantage of being insensitive to batch

effects, data normalization methods, partial RNA degradation,

RNA amplification bias, and the proportion of different cancer

epithelial cells (14, 15). REO-based SSCs can therefore be used

as diagnostic biomarkers for cancer and are particularly suitable

for individual clinical diagnosis.

In this study, we aimed to construct an REO-based single

sample serum miRNA classifier and compare it with traditional

risk scoring models constructed based on the expression

combination of single miRNAs. An SSC consisting of 13 miRNA

pairs was developed, using OVC as the context, involving a

total of 8,184 samples comprised of 360 high-grade plasma OVC

and 7,824 non-cancer control samples. This classifier showed

comparable sensitivity and specificity and stood out in terms of

correct positive predictive value (PPV) and negative predictive

value (NPV) compared to the publishedmodels (4, 6).Moreover,

it achieved high classification accuracy for stage I OVC samples,

demonstrating its potential as a diagnostic biomarker for early-

stage OVC. Finally, we analyzed the expression and biological

function of the selected serum miRNAs. An alternative classifier

consisting of 17 miRNA pairs was also developed to distinguish

OVC from 1,339 other types of cancer samples by integrating

other non-OVC serum samples together as controls.

Materials and methods

Data sources

A total of 9,523 serum samples from three datasets were

analyzed (Table 1), with pre-processed miRNA expression

values and their clinical data downloaded from Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.

gov/geo/). GSE122497 dataset included 566 esophageal cancer

and 4,965 non-cancer samples, and only the non-cancer control

samples were analyzed in the study. In GSE106817, the 320

high-grade serous OVC samples and 2,759 non-cancer control

samples were randomly split into two sets: a training and a test

set. The training set contained 200 OVCs as cases and 2,000

non-cancer samples as controls, while the test set contained 120

OVCs as cases and 759 non-cancer samples as controls. The

GSE113486 dataset served as the validation set, containing 40

OVCs as cases and 100 healthy control samples. The GSE106817

dataset and GSE113486 also had 859 and 832 non-OVCs of

various cancer types, respectively. In particular, we randomly

took 40 samples from the 392 bladder cancer samples to

maintain a sample size of 40 in line with the other 11 cancer

types in GSE113486. The non-OVC cancer samples in these two

datasets were used as controls for developing and validating the

ovarian-specific SSC, respectively.
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TABLE 1 The datasets and samples analyzed in the study.

Dataseta GEO accession Non-cancer (N) Cancer(N) Ref

Training GSE122497 4,965 - (16)

GSE106817 2,000 Ovarian: 200; Breast: 115; Colorectal: 115; Esophageal: 88; Gastric: 115;

Hepatocellular Carcinoma: 81; Lung: 115; Pancreatic: 115; Sarcoma: 115

(6)

Test GSE106817 759 Ovarian: 120 (6)

Validation GSE113486 100 Ovarian:40; Breast: 40; Colorectal: 40; Esophageal: 40; Gastric: 40;

Hepatocellular Carcinoma: 40; Lung: 40; Pancreatic: 40; Sarcoma: 40; Biliary

Tract: 40; Bladder: 40; Glioma: 40; Prostate: 40

(17)

aSerum samples were profiled by 3D-Gene Human miRNA V21_1.0.0.

Definition of within-sample relative
expression orderings of miRNAs

For a miRNA dataset, the expression profiles can be

represented as a matrix E with dimension M × N, where M

represents the number of assayed miRNAs and N represents

the number of profiles (samples). A profile either belongs to

class C (cancer samples) or non-C class (control samples) and

could be denoted as [E1, . . . , Ei, . . . , EM], where Ei represents

the expression level for miRNA i. Let Ea denote the expression

value of miRNA a, and Eb denote the expression value of miRNA

b. Then, the within-sample REO of two miRNAs, a and b, is

defined as the relatively bigger or smaller expression relationship

between them, denoted as Ea > Eb or Ea < Eb, depending on the

expression values of Ea and Eb.

Definition of stable miRNA pairs and
reversed miRNA pairs

In a miRNA expression profile, any two miRNAs can form a

miRNA pair. If n miRNAs are assayed, there could be n (n-1)/2

miRNA pairs.

Stable miRNA pairs were identified from a large cohort of

N non-cancer samples. Assuming that Ea > Eb is observed in

m of the N non-cancer samples for a miRNA pair (a, b), the

probability can be expressed as P (Ea > Eb) = m/N. If P (Ea

> Eb) is greater than a threshold, for example, 95%, then the

miRNA pair (a, b) is defined as a stable miRNA pair.

For the training set, only stable miRNA pairs that maintain

their REOs in more than a high proportion (e.g., 95%) of non-

cancer training samples are retained for detection of reversed

miRNA pairs. Then, for each retained stable miRNA pair, the

numbers of non-cancer controls with Ea > Eb and Ea < Eb were

calculated and denoted by n1 and n2, and the numbers of cancer

samples with Ea > Eb and Ea < Eb were calculated and denoted

by m1 and m2, respectively. According to n1, n2, m1, and m2,

we used Fisher’s exact test to assess whether the REO of a stable

miRNA pair in non-cancer controls was significantly reversed in

cancer samples.

The design of the diagnostic model

The diagnostic model is constructed as described below.

(1) Select the candidate diagnostic miRNA pairs. For a

significantly reversed miRNA pair, the higher the reversal

proportion in a cancer sample, the more predictive

potential the pair possesses. For a set of significantly

reversed miRNA pairs (denoted as S), the reversal

proportion of covering cancer samples was calculated by

k% as follows: ∀(a, b) ∈ S (a 6= b), Ea < Eb holds in at

least k% instances among cancer samples.

(2) Search a combination (denoted as C) for each candidate

diagnostic miRNA pair with the biggest percent of joint

covering samples with the smallest number of pairs. Here

the percent of joint covering cancer (or non-cancer)

samples for C was calculated by p = k/N1 (or k/N2), where

k denotes the number of samples whose REO present as Ea

< Eb (or Ea > Eb), ∀(a, b)∈C (a 6= b), and N1 (or N2)

denotes the number of cancer (or non-cancer) samples. For

example, for a pair (a, b) in the list of candidate diagnostic

miRNA pairs (denoted as D), at first, C (a,b) = {(a, b)}.

Then, a miRNA pair (c, d) ∈D (c 6= d) is added to C(a,b)
such that C(a,b)={(a, b), (c, d)}, as that the percent of joint

covering samples of C(a,b)={(a, b), (c, d)} was greater than

that of C(a,b)={(a, b)} and that of C(a,b)={(a, b), (g, h)},

∀(g, h)∈D. The procedure of adding miRNA pairs from the

remaining was stopped until there was no further increase

in the percent of joint covering cancer samples of C (a, b).

(3) Count the frequency of occurrence of each candidate

miRNA pair in all combinations and rank in descending

order of frequency of occurrence.

(4) The top n (n is odd) miRNA pairs in (3) are selected to

classify the samples in the training set. The criterion for

classification is the voting rule: for a sample to be classified
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FIGURE 1

Overall flowchart.

when more than half of the top n miRNA pairs consisting

of one to nmiRNA pairs hold Ea < Eb, the sample is judged

to be a cancer sample; otherwise, the sample is judged to be

a non-cancer control.

(5) Calculate the classification evaluation index, namely the

square root of the product of PPV and NPV. The top n

miRNA pairs corresponding to the highest evaluation index

were selected as the final diagnostic classifier.

Target analysis of diagnostic miRNAs

The miRNA target prediction tool microRNA Data

Integration Portal (miRDIP) (http://ophid.utoronto.ca/mirDIP)

integrates 30 different resources of human miRNA-target

prediction tools to integrate all data related to miRNA-target

interactions (18). We used it (Version 5.0.2.3, June 2021) to

assess the targets of miRNAs involved in our diagnostic model.

Statistical analyses

Statistical analyses were performed using R version 3.5.2

(https://cran.rproject.org/). Differential miRNA expression

analysis was performed between case and control samples

using an unpaired t-test. Wilcoxon rank-sum test was used to

compare the mean and variance of expression. Fisher’s exact test

was used to evaluate whether the REOs of the stable miRNA

pairs are significantly reversal in cancer samples. The functional

enrichment analysis was performed using KEGG pathways

by the R package “clusterProfiler” with default parameters.

Multiple testing adjusted p-values (i.e., false discovery rate

q values) were computed using Benjamini-Hochberg (BH)

method (19). A q-value smaller than 0.05 was considered

significant. Diagnostic accuracy, sensitivity, specificity, PPV and

NPV, and area under the receiver operating characteristic curve

(AUC) were calculated for the diagnostic model.

Results

The 13-miRPairs serum single sample
classifier

An outline of the study design is presented in Figure 1. First,

the serum diagnostic single sample classifier for detecting OVC

was constructed, and the detailed results are described below and

illustrated in Figure 2.

The first step is to identify miRNA pairs that have stable

REOs in the large cohort of 4,965 non-cancer serum samples.

A miRNA pair is defined as a stable pair if it maintains its REO

pattern in a certain percentage of control samples (seeMethods).

Let the percentage be 95%.We obtained 1,191,652 stable miRNA

pairs. Among these stable miRNA pairs, 1,171,734 (98.33%) kept
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FIGURE 2

Steps of constructing 13-miRPairs and their detailed results.

their stable REOs in 2,000 non-cancer control samples in the

training set, which were used as reference miRNA pairs for

subsequent analysis.

Then, miRNA pairs whose REOs were significantly reversed

under the OVC condition were identified from 200 OVC

samples in the training set based on the reference miRNA pairs.

With FDR < 0.05, 514,592 significantly reversed miRNA pairs

were determined. Then, candidate diagnostic miRNA pairs were

determined from the significantly reversed miRNA pairs. If

a reversed miRNA pair showed Ea < Eb in more than 70%

of OVC samples, it was selected as a candidate diagnostic

miRNA pair. Totally, we obtained 168 candidates. In terms

of expression abundance, those miRNAs involved in these

candidate diagnostic miRNA pairs had significantly higher

expression levels than the background miRNAs (rank-sum test,

P = 7.77 × 10−66, Figure 3A). At the same time, the variance

was much smaller than that of the background miRNAs (P =
3.67 × 10−56, Figure 3A). The results indicate the potential of

these miRNA pairs as candidate diagnostic biomarkers.

The next step was to find the most predictive pairs from

the candidate diagnostic miRNA pairs. Briefly, the procedure

includes three steps (see Methods and Figure 2). First, each of

the 168 candidate miRNA pairs was used as a pivot, and the

other miRNA pairs beside the pivot were used to compensate

for their coverage of samples to form a combination that

covered the largest number of samples. Second, among the

168 combinations formed, the frequencies of occurrence of the

reversed miRNA pairs were counted. By sorting the frequency

of occurrence from highest to lowest, the 31 miRNA pairs with

the highest frequencies were selected. Third, comprehensive

combinations consisting of one to 31 top miRNA pairs were

selected, and the square root of (PPV × NPV) was calculated

as the evaluation index from the training set according to

the voting rule. It should be noted that each combination

of the top miRNA pairs had good diagnostic potential, all

with an evaluation index above 90%. For example, when

the top three miRNA pairs were selected as the diagnostic

classifier, the evaluation index was 94.7%. Finally, by choosing

the combination with the largest evaluation index and the

lowest number of miRNA pairs, we obtained a combination

comprised of the top 13 miRNA pairs as the best classifier in

the training set (
√
PPV × NPV = 0.979, Figure 3B), referred
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FIGURE 3

Identification of serum diagnostic miRNA pairs for OVC. (A) Boxplots of mean and variance of expression of miRNAs in background and

candidate diagnostic miRNA pairs. (B) The square root of PPV and NPV of candidate top miRNA pairs for diagnosing OVC in the training set. (C)

The corresponding REOs of 13-miRPairs. (D) The 13-miRPairs associated KEGG pathways.

to as 13-miRPairs, which involves a total of 20 miRNAs

(Table 2).

Diagnostic performance of 13-miRPairs

In the training set, the sensitivity and specificity of the

13-miRPairs classifier were 98.00% and 99.60%, respectively.

When applied to the 759 non-cancer and 120 OVC samples

in the test set, the sensitivity and specificity were 98.33%

and 99.21%, respectively. In the validation set comprised of

100 healthy and 40 OVC samples, the sensitivity dropped

slightly to 97.50%, but the specificity reached 100%. In addition

to sensitivity and specificity, it may be more important for

clinicians and patients to consider the PPV and NPV of a

diagnostic signature. Therefore, we also evaluated the PPV and

NPV of the 13-miRPairs classifier. As shown in Table 3, the

PPV and NPV remained high at 96.08% and 99.80% in the

training set, respectively, and 95.16% and 99.74% in the test set,

respectively. In the validation set, 13-miRPairs had more than

99% diagnostic performance in both evaluation indexes (PPV

= 100%, NPV = 99.01%). The above results indicate a good

diagnostic performance of the 13-miRPairs classifier.

Comparing the performance of
13-miRPairs with published OVC
diagnostic models

Yokoi et al. constructed a diagnostic model containing

10 miRNAs (referred to as the 10-miRNA model) with high

sensitivity (100% and 99%) and specificity (100% and 100%)

in their training and validation set for discriminating OVC

and non-cancer samples, respectively (6). The diagnostic model

relies on the expression of these 10 miRNAs: diagnostic index=
(0.581) × miR-320a + (0.691) × miR-665 + (−0.704) × miR-

3184-5p+ (−0.313)×miR-6717-5p+ (−1.302)×miR-4459+
(0.729) × miR-6076 + (0.676) × miR-3195 + (0.716) × miR-

1275 + (0.672) × miR-3185 + (-0.384) × miR-4640-5p - 9.375

(<0, non-cancer; ≥0, OVC). We reproduced the 10-miRNA

model and applied it to our partition of the 3,079 sample. The

results showed that the 10-miRNA model maintained ∼99%

diagnostic performance in both our training and test set in

terms of sensitivity and specificity (99% and 100% for sensitivity

and 98.95% and 98.16% for specificity), respectively (Table 3).

However, the PPV of 10-miRNA was only 90.41% and 89.55%

on both the training and test set, significantly lower than the

PPV (96.08% and 95.16%) of the 13-miRPairs classifier. For the
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TABLE 2 The 13-miRPairs classifier developed for distinguishing OVC

from non-cancer samples.

miRNA a miRNA b Non-cancer (%)

Ea > Eb

OVC (%)

Ea > Eb

P-valuea

miR-6893-5p miR-1290 0.981 0.095 <2.2× 10−16

miR-6800-5p miR-1275 0.977 0.190 <2.2× 10−16

miR-6800-5p miR-1290 0.987 0.120 <2.2× 10−16

miR-7845-5p miR-4787-3p 0.954 0.160 <2.2× 10−16

miR-6763-5p miR-1238-5p 0.951 0.070 <2.2× 10−16

miR-6784-5p miR-5100 0.977 0.110 <2.2× 10−16

miR-3620-5p miR-1275 0.965 0.260 <2.2× 10−16

miR-7845-5p miR-320a 0.965 0.095 <2.2× 10−16

miR-6800-5p miR-296-5p 0.974 0.165 <2.2× 10−16

miR-760 miR-665 0.980 0.285 <2.2× 10−16

miR-6089 miR-4532 0.959 0.225 <2.2× 10−16

miR-6786-5p miR-3663-3p 0.956 0.115 <2.2× 10−16

miR-6794-5p miR-1290 0.951 0.130 <2.2× 10−16

aFisher’s exact test; OVC, ovarian cancer.

validation set, the classification ability of the two models was the

same, both above 99%.

The OCaMIR model constructed by Kandimalla et al.

consists of 8 miRNAs, with a sensitivity and specificity of 88.44%

and 73.75%, and a PPV and NPV of 77.11% and 86.45%, for

differentiating OVC and healthy samples in their training set

(4). In their validation set of GSE113486, the sensitivity and

specificity are 84.62% and 75.27%, and the PPV and NPV are

58.93% and 92.11%, respectively. Compared with the OCaMIR

model, our 13-miRPairs classifier has much higher diagnostic

performance: as shown in Table 3, the sensitivity, specificity,

PPV, and NPV were 97.50%, 100%, 100%, and 99.01% on the

same data set, respectively. Notably, for the 81 stage I OVC

samples in GSE106817, only 54% were predicted as positive by

the OCaMIR model designed for early-stage OVC detection (4).

At the same time, our 13-miRPairs classifier classified 97.5% of

stage I patients as OVC, indicating that 13-miRPairs is more

suitable for early detection.

The above results indicate that the combination of the

13-miRPairs classifier represents a promising signature for

OVC screening.

Expression and functional
characterizations of the diagnostic
miRNAs

All 20 miRNAs in the 13-miRPairs classifier were

differentially expressed in OVC samples compared to non-

cancer controls, with ten up-regulated and ten down-regulated

(t-test, q-value < 0.05). Their REOs in the training set were also

displayed by a heat map (Figure 3C). It is easy to visualize how

these miRNA pairs can classify the samples. For a sample to be

classified, if all 13 miRNA pairs exhibit Ea > Eb (or Ea < Eb),

that is, all blue (or yellow) in the heat map, it is judged to be

a non-cancer (or OVC) sample. If some miRNA pairs exhibit

Ea > Eb, then the label is determined with the majority voting

technique. That is, if more miRNA pairs show Ea > Eb, then it

is judged as a non-cancer sample, otherwise as an OVC sample.

Many of the deregulated miRNAs have been reported to

be associated with the growth and progression of OVC. For

example, downregulation of the miR-760 has been reported

to inhibit the proliferation of OVC cells (20). Liu et al.

reported that miR-6089 serves as a tumor suppressor with

its overexpression suppressing the proliferation, migration,

invasion, and metastasis of OVC, while in fresh ovarian tissue, it

is downregulated compared to paracancerous tissue (21), which

is consistent with our results.

KEGG analysis showed that the mRNA targets of the 13-

miRPairs classifier were significantly enriched in many cancer-

associated pathways (Figure 3D). Among the most significant

10 pathways, five were signal transduction pathways, including

the MAPK signaling pathway, AMPK signaling pathway, PI3K-

Akt signaling pathway, Estrogen signaling pathway, and Hippo

signaling pathway. In particular, the PI3K/AKT/mTOR cascade

has been identified as frequently altered in OVC (22). The

three signaling pathways were all significantly disturbed by the

diagnostic miRNAs, implying their important role in OVC.

Distinguishing OVC from other cancer
types

Next, we applied 13-miRPairs to other cancers. As shown

in Table 4, more than 60% of different cancer samples were

predicted as positive, except for breast cancer. These results

implied that it might be challenging to determine ovarian

cancer from other cancer types for 13-miRPairs, although it can

distinguish ovarian cancer from non-cancer samples.

To obtain an OVC-specific serum SSC, we developed

another classifier, training with 320 OVCs as the cases and 859

samples from eight other cancers in the GSE106817 dataset as

controls. The OVC-specific classifier consisted of 17 top miRNA

pairs (Table 5), with an AUC of 0.9581 (sensitivity = 85%,

specificity = 91.15%) for classifying ovarian and other cancers

in the training set. The 17-miRPairs classifier also achieved an

AUC of 0.9205 (sensitivity = 82.50%, specificity = 85.62%) for

classification when applied to the 40 OVC samples and 480

samples of 12 other types of cancers in the validation dataset

GSE113486. This confirms the high specificity of the REO-based

SSC of serum miRNAs for detecting OVC.
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TABLE 3 Diagnostic performance of 13-miRPairs, 10-miRNAs, and OCaMIR.

Dataset: model SEN% SPE% ACC% PPV% NPV%

Training: 13-miRPairs 98.00 99.60 99.45 96.08 99.80

Training: 10-miRNA 99.00 98.95 98.95 90.41 99.90

Test: 13-miRPairs 98.33 99.21 99.09 95.16 99.74

Test: 10-miNRA 1.00 98.16 98.41 89.55 1.00

Validation: 13-miRPairs 97.50 1.00 99.29 1.00 99.01

Validation: 10-miRNA 97.50 1.00 99.29 1.00 99.01

aOriginal training: OCaMIR 88.44 73.75 81.09 77.11 86.45

aOriginal validation: OCaMIR 84.62 75.27 78.03 58.93 92.11

aResults were extracted originally from Usuba et al. by applying to their training data set (GSE106817 without sample partition) and test data set (GSE113486). ACC, accuracy; SEN,

sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 Diagnosis of multiple cancer types by the 13-miRPairs classifier.

Data GSE106817 GSE113486

Sample No. (N) Proportiona Sample No. (N) Proportion

Breast cancer 115 0.87% 40 7.50%

Colorectal cancer 115 88.70% 40 75.00%

Esophageal cancer 88 98.86% 40 100%

Gastric cancer 115 96.52% 40 0.8750

Hepatocellular carcinoma 81 91.36% 40 92.50%

Lung cancer 115 98.26% 40 97.50%

Pancreatic cancer 115 96.52% 40 87.50%

Sarcoma 115 75.65% 40 60.00%

Biliary tract cancer - - 40 97.50%

Bladder cancer - - 40 97.50%

Glioma - - 40 90.00%

Prostate cancer - - 40 82.50%

aThe proportion of cancer samples predicted to be ovarian cancer by 13-miRPairs.

Discussion

Currently, the exploration and discovery of diagnostic

biomarkers with clinical translational value are one of the

important tasks in OVC-related research (23). Although

many diagnostic models based on serum miRNA expression

have been developed for OVC, these models often rely on

pre-determined risk thresholds. However, weak signals and

inter-individual variation in serum miRNA expression can

exacerbate the problem of setting risk thresholds and impede

the clinical application of such biomarkers (24, 25). In this

study, we developed an accurate and non-invasive new method

for detecting OVC, a single sample classifier based on the

REOs of serum miRNAs. Our classifier has many advantages

compared to diagnostic models constructed based on single

serum miRNAs. Firstly, the REOs of serum miRNAs are

not as susceptible to technical fluctuations, batch effects,

and data normalization methods as expression levels. Thus,

the REO-based SSCs are highly reproducible in independent

data. Secondly, the expression levels of some miRNAs are

subject to individual differences and show large fluctuations

between individual cancer patients. Traditional OVC diagnostic

biomarkers constructed using combinations of expression levels

of single miRNAs have difficulty coping with such fluctuations.

In contrast, REO-based SSCs are only associated with relative

changes within individual samples and not with other samples,

and do not suffer from the effects of individual fluctuations.

Finally, the goals pursued in clinical practice are ease of use

and better diagnostic performance of biomarkers. Our classifier

outperforms published diagnostic models of single serum

miRNAs, demonstrating its high accuracy, non-invasiveness,

and clinical translational value.

The first SSC developed in this study, the 13-miRPairs

classifier, corresponds to a common clinical diagnosis

requirement: distinguishing between OVC and non-cancer

samples. For this diagnostic scenario, our control sample
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TABLE 5 The 17-miRPairs classifier developed for distinguishing OVC from other cancers.

miRNA a miRNA b Non-OVC (%)Ea > Eb OVC (%) Ea > Eb P-valuea

miR-6746-5p miR-6887-5p 0.7858 0.3938 <2.2× 10−16

miR-6794-5p miR-6741-5p 0.9162 0.5469 <2.2× 10−16

miR-1343-3p miR-6741-5p 0.7695 0.3000 <2.2× 10−16

miR-211-3p miR-1249-5p 0.8161 0.2688 <2.2× 10−16

miR-6717-5p miR-6887-5p 0.7520 0.2344 <2.2× 10−16

miR-211-3p miR-665 0.7066 0.1906 <2.2× 10−16

miR-650 miR-6736-5p 0.7206 0.2938 <2.2× 10−16

miR-6800-5p miR-642a-3p 0.7066 0.3063 <2.2× 10−16

miR-6748-5p miR-6736-5p 0.7567 0.3969 <2.2× 10−16

miR-6746-5p miR-7114-5p 0.7101 0.2750 <2.2× 10−16

miR-711 miR-1249-5p 0.8801 0.5156 <2.2× 10−16

miR-939-5p miR-8071 0.7392 0.3813 <2.2× 10−16

miR-6877-5p miR-6741-5p 0.7101 0.3219 <2.2× 10−16

miR-1224-5p miR-6736-5p 0.7299 0.3563 <2.2× 10−16

miR-760 miR-6779-5p 0.7509 0.4406 <2.2× 10−16

miR-6769a-5p miR-7114-5p 0.7590 0.3188 <2.2× 10−16

miR-3162-5p miR-6124 0.7078 0.2531 <2.2× 10−16

aFisher’s exact test.

settings in the training set are different from the settings of the

OCaMIR model developed by Kandimalla et al. (4). The control

samples we used were non-cancer samples, including healthy

individuals and benign patients without cancer. In contrast, the

training control samples for OCaMIR were only healthy, which

may not be clinically practical. A common clinical scenario

is that patients come one after the other and are relatively

rarely completely healthy, for example, often suffering from

inflammatory or other benign conditions. Intuitively, when

the OCaMIR model is applied in clinical practice, it may judge

non-cancer samples as cancerous. By further analysis, our

results showed that the OCaMIR model did have low diagnostic

efficacy in our training and validation samples, with sensitivity

and PPV both below 40%, respectively. On the other hand, we

extracted 320 healthy samples from the non-cancer samples

in GSE106817 and applied the 13-miRPairs classifier to make

predictions. The results showed that the prediction accuracy of

these healthy samples was 98.125%. Therefore, our setting of

the control population is more suitable for clinical application

scenarios of cancer detection.

Notably, a pre-printed article trains serum samples of 13

cancers (including OVC) and non-cancer serum samples and

identifies a set of serum pan-cancer biomarkers consisting of

five miRNAs (26). We found that one of the selected miRNAs,

miR-6784-5p, is also included in our 13-miRPairs classifier,

indicating the pan-cancer predictive ability of this miRNA.

Because CA125 is not a specific marker for OVC, its elevated

level may also indicate the risk of pancreatic, lung, and breast

cancer. Therefore, besides the distinction mentioned above

in clinical practice between OVC and non-cancer, another

common requirement is to distinguish OVC from other cancers.

In response to this need, we have developed another diagnostic

model, the 17-miRPairs classifier model. For the 12 cancer types

in the independent validation set, this model performs well at

distinguishing OVC from other cancers, proving the clinical

diagnostic value of the REO-based SSCs.

There are also some limitations in this study. First, the

miRNA serum expression profiles used in the study were all

from the Japanese population and were detected by the same

miRNA detection platform (the 3D-Gene R© human miRNA

platform V21). Secondly, there was also an imbalance between

the number of cancer and non-cancer samples in constructing

the classifier, which may lead to the under-representation of

cancer samples. In addition, further validation in a clinical

setting is needed for translational applications.
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