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Abstract: Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders
and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in
advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating
autosomal recessive RP (arRP). However, limited options are available for patients with autosomal
dominant RP (adRP). In vivo gene editing may be a therapeutic option to treat adRP. We previously
rescued vision in neonatal adRP rats by the selective ablation of the Rhodopsin S334ter transgene
following electroporation of a CRISPR/Cas9 vector. However, the translational feasibility and long-
term safety and efficacy of ablation therapy is unclear. To this end, we show that AAV delivery of a
CRISPR/Cas9 construct disrupted the Rhodopsin P23H transgene in postnatal rats, which rescued
long-term vision and retinal morphology.

Keywords: autosomal dominant retinitis pigmentosa; Rhodopsin P23H; CRISPR/Cas9; AAV delivery;
allele-specific ablation; photoreceptors; rod cells; ER-stress; autophagy; long-term vision preservation

1. Introduction

Retinitis pigmentosa (RP) is the most common hereditary retinal disease, characterized
by progressive photoreceptor (PR) degeneration, resulting in vision loss and blindness [1,2].
More than 100 genetic loci in over 60 genes have been linked to RP by autosomal dominant,
recessive, or X-linked inheritance patterns [3].

Gene augmentation or replacement therapy represents a rational drug design for
treating autosomal recessive RP (arRP) and has shown clinical benefit; RPE65 gene replace-
ment (LuxturnaTM) received United States FDA approval for Leber congenital amaurosis
(LCA) 2 [3,4]. Notably, this was the first approved gene therapy for a hereditary disease,
the first using adeno-associated virus (AAV) for RP. However, unlike recessive RP, which is
characterized by protein deficiency, adRP requires protein reduction to alleviate toxicity.
As a result, classic gene replacement therapy is ineffective for adRP, as they are caused by
dominant-negative or gain-of-function mutations. Transcriptional suppression of domi-
nant RP alleles has been shown to rescue vision in adRP animals using ribozymes, RNAi,
and zinc-finger nucleases [5–8]. However, transcriptional silencing is typically transient
and allele independent. Genomic disruption as a means to permanently and selectively
silence dominant alleles may be a therapeutic option for adRP [9–12]. Endogenous DNA
repair through non-homologous end joining (NHEJ) after double strand breaks generates
frameshift mutations, which lead to functional ablation. Targeting endonucleases to adRP
mutations using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9
is being investigated in preclinical studies [10,11,13]. Precedence for its clinical use was
shown by FDA approval of CRISPR-based therapies in a handful of clinical studies, includ-
ing a trial for recessive LCA10 [14,15].

Pharmaceutics 2022, 14, 824. https://doi.org/10.3390/pharmaceutics14040824 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14040824
https://doi.org/10.3390/pharmaceutics14040824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-0576-9383
https://doi.org/10.3390/pharmaceutics14040824
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14040824?type=check_update&version=3


Pharmaceutics 2022, 14, 824 2 of 18

Gene therapies aim to prevent or slow photoreceptor loss, the effectiveness of which
depends on early intervention. These therapies will likely impact infants, children, and
adolescents in efforts to preserve the maximum amount of existing vision. To this end,
we previously treated neonatal adRP rats (S334ter) to demonstrate proof of concept for
CRISPR ablation therapy in vivo. Similar to LCA2 patients who frequently show early
onset presentation (age 3–7), S334ter line-3 rats represent severe and early onset adRP
with rapid photoreceptor degeneration culminating by postnatal day (P) P21. The window
of opportunity for treatment is limited from embryonic day (E) E16 to P2. Because the
rate of retinal degeneration in adRP patients is heterogeneous, we sought to determine
whether ablation therapy can preserve vision in animals that represent older patients.
For this, we used a slower degenerating adRP model bearing the most common adRP
mutation (rhodopsin P23H) for clinical relevance. P23H (RHOP23H) is the most frequent
mutation in the rod cell-specific gene rhodopsin (RHO) in adRP patients and is a potent
target for mutation-specific ablation strategies using CRISPR [10,13]. The P23H mutation
results in rhodopsin misfolding (class II mutation) and mistrafficking (class I mutation),
with excessive accumulation in the endoplasmic reticulum (ER) [14–16]. P23H line-3 rats
undergo photoreceptor degeneration from P15. This allowed us to observe the extent
of vision rescue over timeframes commensurate to decades in patients and permitted
treatment at multiple stages of disease. In the current study, we showed that subretinal
delivery of AAV-CRISPR/Cas9 is safe and that it rescued photoreceptors and vision for
15 months in Rhodopsin P23H-3 rats.

2. Materials and Methods
2.1. AAV-SaCas9/gRNA Vector Design

Cas9 from Staphylococcus aureus (SaCas9) was used to accommodate the size limitation
of AAV2/8 particles. gRNA was cloned into pAAV2 vector (Vector Biosciences, Cambridge,
MA, USA) via BsaI restriction enzyme sites upstream of the scaffold gRNA sequence, and
the mCherry reporter (Addgene, Cambridge, MA, USA) was cloned downstream of the
Cas9 transcript regulated by the cytomegalovirus (CMV) promoter. The in vitro assay was
used to determine cleavage efficiency per our previous publication [9].

2.2. Animals and Injection Procedures

P23H rats were obtained from RRRC; Long Evans (LE) rats and Sprague–Dawley
(SD) rats were purchased from Charles River, housed and maintained at the Cedars-Sinai
Medical Center Department of Comparative Medicine vivarium. All animal procedures
were performed following the Cedars–Sinai Medical Center’s Institutional Animal Care and
Use Committee and the ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. P23H/P23H, P23H/LE (Long-Evans rat background), and P23H/SD (Sprague–
Dawley rat background) rats, both sexes received unilateral subretinal injection of AAV-
SaCas9/gRNA (2 uL, 3.9 × 1013 GC/mL) at the age of postnatal day P15 and P28–P29. The
controls include AAV8.CMV-mCherry or AAV-CMV-GFP treated and untreated. The reason
for using P23H/LE rats was to test visual acuity by optokinetic response on pigmented
rats, whereas P23H/SD rates served to model accelerated degeneration.

2.3. Visual Function Assessment

Spatial visual acuity and visual functions were evaluated by the optokinetic response
(OKR) using OptoMotry testing apparatus (Cerebral Mechanics, Lethbridge, AB, Canada)
and electroretinography (ERG) according to our published protocols, respectively [16,17].
Briefly, OKR assessment comprises four computer monitors arranged in a square to project
a 3D virtual space of a rotating cylinder lined with vertical sine-wave grating with an
unrestrained animal on a center platform tracking the projected image of rotating grating
with reflexive head movements. The spatial frequency of the grating (cycles per degree) was
centered on the rats’ viewing position, and maximal acuity was ascertained by increasing
the grating frequency at psychophysics staircase progression until the tracking response
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was lost. OKR offers non-invasive screening to detect visual acuity. Additionally, ERG
provides a gross measure of retinal activity and indicates the relative function of the retina.
Animals were dark-adapted for at least 14–16 h before recordings. The white stimuli were
given at an intensity of 25 cd/m2 by a computer-controlled system using Espion system
(Diagnosys LLC, Lowell, MA, USA). A total of 20–30 sweeps for each stimulus per animal
were recorded, and the average responses were used as the response amplitude.

2.4. Retinal Cell Isolation, FACS-Based Sorting and Targeted Deep Sequencing

Animals were sacrificed at P36 and P162; eyes were surgically removed and enucleated.
Retinas were dissected out and subjected to single-cell dissociation by incubating for 20 min
at 37 ◦C in enzymatic digestion solution consisting of Ca2+/Mg2+-free phosphate-buffered
saline, 20 U/mL papain, and 0.5 mmol/L l-cysteine (Worthington Biochemical Corp., Lake-
wood, NJ, USA). To confirm the allele-specific disruption of m-RhoP23H by SaCas9/gRNA
in vivo, PRs expressing SaCas9 were sorted from retinal cell suspensions of AAV-treated P36
P23H/SD rats by SaCas9-HA fusion protein expression using HA.11-FITC. Genomic DNA
was isolated from these sorted PRs and processed for PCR-amplification using primers
flanking the predicted Cas9 cut site regions and Sanger sequencing. Further, mCherry
positive and negative retinal cells were sorted (FACSAria III, BD Biosciences, Franklin
Lakes, NJ, USA) from retinal cell suspensions from P162 homozygous (P23H/P23H) and
heterozygous (P23H/SD and P23H/LE) P23H rats into 1.7 mL DNase-free tubes (Eppen-
dorf, Hamburg, Germany) containing 4 ◦C phosphate-buffered saline and subjected to
genomic DNA isolation (Purelink Genomic DNA Mini Kit, Life Technologies). The on-
and off-target effects of used sgRNA was evaluated by NGS (GENEWIZ, South Plainfield,
NJ, USA). Briefly, after performing PCR amplification using primers that flanked the on-
and off-target loci (Table S1), PCR products were used for an NGS assay. NGS data were
analyzed using CRISPResso2 software [18]. Gene editing efficiency was determined by
calculating the percentage of paired reads for modified/edited and unmodified/unedited
alleles (Gene editing efficiency = (modified reads/total target reads) × 100). Potential
off-target sites were determined using Cas-OFFinder.

2.5. RNA Extraction and qPCR Analyses

Total RNA from P162 and P450 P23H rat retinas was isolated using QIAGEN RNeasy
Mini kit (Qiagen Hilden, Germany). cDNA was synthesized in a 20 µL reaction using 500 ng
total RNA and ProtoScript® II First Strand cDNA Synthesis Kit (New England Biolabs
Inc., MA, USA). Primers were synthesized by Integrated DNA Technologies (San Diego,
CA, USA) (Table S2). Quantitative real-time PCR was performed with PowerUp™ SYBR™
Green Master Mix (Applied Biosystems). The transcript levels of target genes were assessed
using Bio-Rad CFX384 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA).
Cycling parameters were: 95 ◦C for 2 min, 95 ◦C for 15 s, 60 ◦C for 15 s, 72 ◦C for 30 s, with
40 cycles of amplification. The relative mRNA levels were normalized to the housekeeping
gene, GADPH. Differential expression was determined using the deltaCt method.

2.6. Histologic Assessment, Immunofluorescent Staining, and Confocal Microscopy

Histological assessment and immunofluorescence were performed as described in our
previous publications [9,16,19]. Briefly, the animals were euthanized, eyes were enucleated,
and a small cut was made at the center of the cornea. Eyeballs were then fixed in 4%
paraformaldehyde in PBS for 1 h at room temperature, transferred to 10%, 20%, and 30%
sucrose (1 h for each concentration at room temperature) and kept in 30% sucrose overnight
at 4 ◦C. The next day, eyeballs were embedded in optimal cutting temperature (OCT)
compound (Sakura Finetek, Torrance, CA, USA) and stored at −80 ◦C. Frozen transverse
10 µm thick retinal sections were collected in five series with 4 sections per slide. One set of
slides was stained with cresyl violet (0.4% cresyl violet acetate, Sigma Aldrich, St. Lois, MO,
USA) to evaluate retinal lamination and photoreceptor preservation. The remaining slides
were stained with immunofluorescence. Antibodies used: cone arrestin (rabbit polyclonal,
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1:1000, AB15282, Millipore, Billerica, MA, USA), Cathepsin D (goat polyclonal, 1:100,
sc-6486, Santa Cruz Biotechnology), glutamine synthetase (clone GS-6, 1:1000, MAB302,
Millipore, Billerica, MA, USA), Glial Fibrillary Acidic Protein (G-A-5, mouse monoclonal,
1:1000, G3893, Sigma), LC3B (rabbit polyclonal, 1:200, NB100-2220, Novus Biologicals),
protein kinase C-α (rabbit polyclonal, 1:8000, P4334, Sigma), recoverin (rabbit polyclonal,
1:2000, AB5585, Millipore, Billerica, MA, USA), rhodopsin (C-terminal, clone 1D4, 1:100,
MAB5356, Millipore, Billerica, MA, USA), Synaptophysin (mouse clone SVP-38, 1:2000,
Millipore MAB368), and P62/SQSTM1 (mouse monoclonal, C11, 1:1000, H00008878-M01,
Novus Biologicals). Alexa-Fluor-488 or Cy3 secondary antibodies (1:500; Life Technologies)
were used to visualize sections along with nuclear counterstain (DAPI, 49,69-diamidino-2-
phenylindole; Vector Laboratories, Burlingame, CA, USA). For antibody specificity, controls
included omitting the primary or secondary antibodies, which leads to negative staining.
Images were captured by confocal microscope (Zeiss LSM710, Oberkochen, Germany)
and stored as TIFF files. For quantifying integrated fluorescence intensity (also known
as Integrated Optical Density-IOD) for each antigen, images from both AAV-treated and
untreated retinal sections were acquired at same magnification using same laser power
(exposure), gain and offset.

2.7. Image Analysis

Distribution of mCherry signals, PR nuclei counts, synaptic puncta counts and IOD
measurements was performed using Image J software (Image J 1.53 bundled with 64-bit
Java, NIH, Bethesda, MD). For mCherry distribution in retinal whole mount, the percent
area showing mCherry positive signals was measured after normalizing to the background
signal and subtracting the background area in retinal whole mount. The number of mCherry
positive cells, PRs nuclei and synaptic puncta were counted using ‘threshold’ and ‘analyze
particles’ functions. Differences in immunoreactivity of Cone arrestin, Cathepsin D, GS,
GFAP, LC3B, PKC-α, Recoverin, Rhodopsin, Synaptophysin and P62/SQSTM1 in both
AAV-treated and untreated retina were assessed as integrated optical density (IOD), as
mentioned elsewhere [20,21]. In brief, for IOD measurements, region of interest (ROI) for
each protein was selected by using free hand tool in ImageJ. Fluorescent intensities of
ROIs were measured after normalizing to the background. The fluorescent intensities (IOD
values) were averaged (4 sections per retina and 4 retina per group; each section 40 µm
apart) to determine signal density. The IOD values were presented as arbitrary units (a.u.).
The processing and analysis were kept consistent between images. Statistical analysis was
performed on average IOD values (mean ± SEM). Fold change in signal intensity for each
antigen was calculated by normalizing the average IOD values of AAV-treated retina to
the untreated retina. Based on differences in the level of significance (p value < 0.05), the
IOD values were classified as intense, moderate, or weak. Image analysis was performed
blindly and separately by 2 observers.

2.8. Statistical Significance

Student’s t tests were performed using two-tailed distribution and two-sample unequal
variance (heteroscedastic) to compare optokinetic response cycles/degree values from
treated versus untreated eyes of individual animals, as well as between animals of treatment
groups. Contralateral noninjected eyes served as untreated controls. Analyses were run
using GraphPad Prism. Values are expressed as mean ± SEM. Statistical significance:
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

3. Results
3.1. Guide RNA Vector Design Strategy

The AAV2-SaCas9/gRNA vector design is shown in Figure 1A. The mCherry was
driven by the cytomegalovirus (CMV) promoter, SaCas9 was driven by a mouse rhodopsin
proximal promoter (mOP500) [22], and the gRNA was driven by a human U6 promoter.
The construct size between ITRs was 4.75 kb, and 6.4 kb including mCherry. The P23H
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point mutation was located in exon 1 (Figure 1B; red font). We designed three 23-nucleotide
targeting-guide RNA (gRNA) constructs complementary to region in exon 1 immediately
upstream of PAMs unique to the mouse Rho locus to discriminate mouse and rat alleles
during SaCas9 cleavage (Figure 1B). SaCas9/gRNA cleavage efficiency was assessed for
each gRNA by T7E1 endonuclease assay and confirmed by Sanger sequencing. Cleavage
efficiency of the gRNAs was tested in vitro, in bone marrow-derived mesenchymal stem
cells isolated from P23H rats using methods previously reported [9]. The homology
between mouse transgene and rat Rho alleles at the selected gRNA binding locus differed
by one nucleotide in the PAM sequence. Further, to evaluate AAV toxicity and decide the
optimal dose, P23H/SD rats received a single unilateral trans-scleral subretinal injection
of 2 µL AAV at different concentrations (Figure S1) at P15. To check the retinal response,
we performed ERG on these rats at P90. ERG data at P90 showed significantly reduced
visual function in perturbed retina from AAV controls, whereas retina treated with AAV-
SaCas9/gRNA not only demonstrated improved visual function but also had no deleterious
effect compared to sham-operated eyes (Figure S1).
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Figure 1. CRISPR/Cas9-mediated m-RhoP23H ablation in vivo. (A) Illustration of CRISPR vector;
pAAV2-mOp-SaCas9-U6-gRNA-CMV-mCherry. (B) Rat and mouse wild-type (WT) Rho with exon 1
showing the P23H point mutation (C→A) in m-Rho (bold and red font). The gRNA targeting and
PAM sequences are underlined. Mismatches in the PAM sequences are shown in green font. Red
arrowhead indicates the predicted cleavage site in m-RhoP23H.

3.2. SaCas9/gRNA Distribution in Retinas of P23H Rats following Subretinal Injection

We examined the distribution of mCherry expression on retinal whole-mount prepa-
ration at the early (P42) and late (P162) time points after injection. We observed robust
mCherry expression at both time points (Figure 2A). The reason for continued mCherry ex-
pression is incorporated in the Discussion section. mCherry expression served as a marker
for expression of SaCas9 and sgRNA, and high-power microscopic images showed strong
mCherry expression in photoreceptors. In the retinal whole mount, mCherry distribution
was 52% at P42 and 49% at P162 with uneven fluorescence intensity in transfected regions
(Figure 2A, upper panel). By cross-section analysis, the density of PRs in mCherry-positive
retinal regions at P42 was 3387 nuclei/50 mm and 2090 nuclei/50 mm at P162 (Figure 2A,
lower panel). The presence and distribution of mCherry expression were documented
from 3 to 20 weeks after subretinal delivery. Next, to confirm allele-specific disruption of
m-RhoP23H by SaCas9/gRNA in vivo, neural retinas were collected 3 weeks after treatment
at P15 in P23H/SD rats, processed for enzymatic single-cell dissociation. SaCas9 expressing
photoreceptors (PRs) were sorted by FACS based on the expression of SaCas9-HA fusion
protein using HA.11-FITC (Figure 2B(i,ii)) and processed for Sanger sequencing, which
confirmed m-RhoP23H disruption downstream of the gRNA binding site in treated eyes
(Figure 2C(i), shaded region), but not in untreated (control) eyes (Figure 2C(ii), shaded
region). The presence of overlapping base calls with decreased nucleotide read fidelity
(Phred quality scores) (Figure 2C(i)) indicated the generation of genomic variants by indels
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during DNA repairs following NHEJ. Further, we also performed qPCR of m-Rho, r-Rho
and r-Gnat1 (a-transducin) genes in retinal samples following m-RhoP23H ablation to check
the alterations in transcript levels of these genes in the overall retina, as only a part of the
retina was affected by AAV treatment. mRNA expression of r-Rho increased by 3.54-fold
(p ≤ 0.01) while 1.61-fold reduction in m-Rho (p ≤ 0.01) mRNA expression was detected in
AAV-treated retina (Figure 2D). The mRNA expression of r-Gnat1, a specific marker gene
for rod cells that encodes the α subunit of rod transducin, a key signaling molecule in the
rod phototransduction cascade [23], was increased by 5.04-fold (p ≤ 0.001) in treated retina
compared to untreated (Figure 2D), suggesting the restoration of a rod phototransduction
signaling pathway following m-RhoP23H ablation.
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Figure 2. Assessment of CRISPR/Cas9-edited photoreceptors in vivo. (A) (i). Representative retinal
whole mount images (top panel) show broad distribution of mCherry expression at P42 and P162.
The retina samples were taken from P23H rats that received a single unilateral trans-scleral subretinal
injection of 2 µL AAV-SaCas9/gRNA at P24. (ii) Bottom panel shows representative images of
mCherry expression in photoreceptors. Scale bar, 2 mm for the top panel whole mount images, and
50 µm for the bottom panel images. (B) High side-scatter of heterochromatin-identified photoreceptor
perikarya (blue) in AAV-injected (i) and untreated eyes (ii) from each animal. PRs that expressed
SaCas9 were sorted from AAV-injected eyes by SaCas9-HA fusion protein expression using HA.11-
FITC (i): population shown in pink: 13.9%, which was absent in contralateral uninjected (control) eyes
(ii): population shown in pink: 0.0%. (C) Following genomic DNA extraction and PCR amplification
of the predicted cleavage site, Sanger sequencing confirmed RhoP23H disruption downstream of the
gRNA binding site in treated eyes (i), shaded region, but not in uninjected (control) eyes (ii). The
presence of overlapping base calls with decreased Phred quality scores (grey bars) indicates genomic
variants generated by indels during DNA repair following NHEJ. (D) (i–iii) qPCR of mouse-Rho
(m-Rho), rat-Rho (r-Rho) and rat-Gnat1 (r-Gnat1) in AAV-treated and untreated retina. Data represent
the mean ± SEM. ** p ≤ 0.01.
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3.3. On- and Off-Target Genome Editing Analysis following In Vivo m-RhoP23H Disruption

For in vivo testing, both homozygous (P23H/P23H, carrying transgene insertions
at both alleles) and heterozygous (P23H/SD or P23H/LE, carrying transgene insertion
at single allele) P23H rats received a single unilateral trans-scleral subretinal injection
of AAV-SaCas9/gRNA. After 20 weeks of AAV treatment, m-Cherry positive and neg-
ative cells were isolated from retinal cell suspensions through FACS and processed for
Next-Generation Sequencing (NGS) to evaluate the on- and off-target effects. Targeted
deep sequencing analysis revealed genome editing efficiency of 5.97% for P23H/P23H
(Figure 3A(i)), 12.08% for P23H/SD (Figure 3A(ii)) and 14.8% for P23H/LE (Figure 3A(iii))
mCherry positive cells, while no gene editing was detected in mCherry-negative cells
(Table S1, Figure S2). In AAV-treated eyes, m-RhoP23H editing showed insertions and/or
deletions (indels) at the predicted cleavage site (Figure 3B,C). Further, we also observed
that SaCas9/gRNA-mediated indels lead to frameshift in the targeted coding region
of m-RhoP23H (Table S3). Mismatch motif candidate targets were selected using an off-
target prediction tool [24] to analyze off-target effects of SaCas9/gRNA, and each poten-
tial off-target amplicon was subjected to NGS, and no gene modification was detected
(Table S3). Furthermore, no on- and off-target gene editing was detected in untreated
retinas (Tables S3 and S4).
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Figure 3. On-target analysis of CRISPR/Cas9-editing in AAV-treated P23H rats. (A) Representative
Pie charts show the editing efficiency of 5.97% in P23H/P23H (i), 12.08% in P23H/SD (ii) and
14.8% in P23H/LE (iii) rats. (B) (i–iii) Deep sequencing reads (presented as percent score) show
insertions/deletions (indels) at the predicted cleavage site (red arrowhead). The sequence with high
reads score is the unmodified sequence, and underlined are the PAMs. The insertions are indicated in
the red box and deletions with a dash (-). (C) Representative graphs show indel size distribution in
P23H/P23H (i), P23H/SD (ii) and P23H/LE (iii) rats.

3.4. Long-Term Vision Rescue following m-RhoP23H Ablation

To assess the long-term efficacy of allele-specific ablation therapy, we performed
ERG at multiple time points over 12 months after single subretinal injection of AAV-
SaCas9/gRNA. AAV-treated eyes had higher ERG a- and b-wave amplitudes for up to
12 months (Figure 4A). Statistical analysis showed that both a-wave and b-wave amplitudes
in the AAV-treated eyes were higher than the contralateral control eyes at P60 (a- and b-
wave: p ≤ 0.01), P90 (a- and b-wave: p ≤ 0.001), P120 (a- and b-wave: p ≤ 0.001), P150 (a-
and b-wave: p ≤ 0.001) and P200 (a-wave: p ≤ 0.01; b-wave: p ≤ 0.05) for P23H/P23H rats
(Figure 4A, upper panel, n = 12); P180 (a-wave: p ≤ 0.05), P209, P249, P279 (a- and b-wave:
p ≤ 0.05) and P361 (b-wave: p ≤ 0.05) for P23H/SD rats (Figure 4A, middle panel, n = 8);
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and P93, P240 (b-wave: p ≤ 0.05) and P361 (a- and b-wave: p ≤ 0.05) for P23H/LE rats
(Figure 4A, lower panel, n = 12). It is noted that the amplitudes of both a-and b-waves
have never reached wild-type level (Figure S3). Our previous study has shown that rod
photoreceptor function was compromised at the early stage of disease [25]. Gene editing
targeted to rods did not rescue rod function to normal levels in the current study. However,
progressive retinal degeneration was slowed down significantly. Further, we determined
the visual acuity in P23H/LE rats by measuring the optokinetic response (OKR). Visual
acuity of P23H/LE rats assessed at 15 months was two-fold higher in AAV-treated eyes
compared with untreated contralateral eyes (0.276 versus 0.137 cycles/degree, p ≤ 0.01,
n = 5; Figure 4B). It is noted that preserved visual acuity is about half of the wild-type rat
value (0.500–0.600 c/d).
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to evaluate the retinal function of P23H/P23H (n = 12) from P60-P260, P23H/SD (n = 8) from P60-
P360 and P23H/LE (n = 12) from P90-P350. Progressive decrease in a- and b-waves was observed
in AAV-treated and untreated eyes. However, AAV-treated eyes exhibited significantly higher ERG
responses over a longer period, suggesting that the rescued photoreceptors contributed to visual
function. (B) Optokinetic response (OKR) was tested in P23H/LE rats (n = 5) at 15 months of age.
AAV-treated eyes scored significantly higher than untreated fellow eyes. At P450, visual acuity was
maintained at over 50% of the value of wild-type rats. (C) Retinal montage images of cresyl violet-
stained retina showing histological structure at the AAV-injection site and contralateral untreated site.
The retina samples were collected from P23H/P23H, P23H/SD and P23H/LE rats, respectively at
P450. Significant long-term preservation of photoreceptors is evident in AAV-treated areas compared
to contralateral regions distal to the injection site that were devoid of mCherry expression. Few or
no photoreceptors remained in these regions due to advanced retinal degeneration. High power
images show preserved photoreceptors vs. degenerative retina distal to the injection site. At P450,
significant survival of photoreceptors was observed in the ONL of P23H/P23H (1–3 layers), P23H/SD
(1–4 layers) and P23H/LE (4–5 layers) rats that received AAV injection (wild-type rat has 10 layers
of ONL). Scale bar, 800 µm for the retina montage image and 100 µm for the amplified image. INL,
inner nuclear layer; ONL, outer nuclear layer; PR, photoreceptor; RGC, retinal ganglionic cell. Data
represent the mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

3.5. Histologic Evaluation of Retina following m-RhoP23H Ablation

Cresyl violet-stained retinal sections were used to assess retinal lamination and PR
preservation. The outer nuclear layer (ONL) is composed of PR nuclei, approximately 97%
of which are rods and 3% are cones in rodents [26]. In untreated retina and retinal regions
distal to the AAV injection site, the ONL was reduced to one cell layer at 15 months of age
(Figure 4C). Areas of the retina close to AAV injection had a significantly higher number
of PR nuclei (P23H/P23H: 1–4 layers, PR nuclei = 217 ± 19/100 µm, p ≤ 0.001, n = 11;
P23H/SD: 1–4 layers, PR nuclei = 414± 24/100 µm, p≤ 0.0001, n = 11; P23H/LE: 4–5 layers,
PR nuclei = 524 ± 50/100 µm, p ≤ 0.001, n = 11) in the ONL (Figures 4C and S4). The ONL
preservation was evident over 2600 µm along the rostral–caudal axis (Figure S4). Taken
together, these data suggest that CRISPR-Cas9 mediated allele-specific disruption of m-
RhoP23H significantly improved light sensitivity and visual acuity through PR preservation
compared with untreated retina.

3.6. Long-Term Preservation of Photoreceptors, Rod/Cone-Bipolar Dendritic Arborization, and
Retinal Synaptic Connections following m-RhoP23H-Specific Ablation

To evaluate the long-term effects of ablation therapy in preserving PRs and inner retinal
synaptic connections, we processed retinal sections from P450 rats for immunofluorescence
using various retinal cell markers. AAV-treated regions of the retina were identified by
mCherry expression and showed rhodopsin immunoreactivity in the outer segments (OS)
(fold change: 2.4, p ≤ 0.0001, n = 4; Figure 5A inset: shown by arrow, green: rhodopsin,
red: mCherry), suggesting that m-RhoP23H ablation corrected RhoWT trafficking to OS.
By contrast, rhodopsin immunoreactivity was restricted to PR cell bodies in untreated
retina, suggesting ER retention of rhodopsin due to trafficking failure (Figure 5A, inset:
arrow, green: rhodopsin). Immunolabeling with cone arrestin revealed the whole profile
of cones with organized segments and pedicles that were well preserved for 15 months
in AAV-treated eyes. Untreated retina contained predominantly fragmented, irregular-
shaped and degenerative cones, indicative of apoptotic bodies (fold change: 1.4, p ≤ 0.05,
n = 4, Figure 5B). Recoverin expression in PRs and ON cone bipolar cells was significantly
increased (fold change: 4.1, p ≤ 0.01, n = 4, Figure 5C). PKCa labeled rod bipolar cells
and synaptic connections between PRs and retinal ganglion cells and were preserved
significantly in AAV-treated retina, compared with control (fold change: 1.8, p≤ 0.001, n = 4,
Figure 5D). Furthermore, PKCa immunostaining revealed pseudo-stratified cell bodies of
bipolar cells with dense dendritic arborization and axon terminals in AAV-treated retina.
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Figure 5. Preservation of rod and cone photoreceptors, rod-bipolar dendritic arborization, and retinal
synapses following m-RhoP23H ablation. Retinal sections from P450 P23H rats were processed for
immunofluorescence (IF) using antibodies against rhodopsin (A), cone arrestin (B), recoverin (C),
PKCα (D) and synaptophysin (E). (A) Rhodopsin IF image shows significantly increased expression
of (green) PR outer segments (OS) (yellow: green; colocalized with mCherry (red): yellow) in retinal
regions proximal to AAV injection compared to the contralateral retina distal to the injection site.
In these regions, rhodopsin was restricted to cell bodies, which suggests ER retention of rhodopsin.
(B) Arrestin IF image of AAV-treated retina shows significantly increased immunofluorescence
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intensity (green) and number of immunolabeled cones with non-pathological morphological fea-
tures. Cones were infrequently observed in untreated retinas and were fragmented and irregular
shaped, consistent with apoptotic bodies, suggesting that CRISPR ablation therapy rescued cone PRs.
(C) Recoverin IF image shows significantly increased immunoreactivity (green) in PRs and bipolar
cells in AAV-treated retina, suggesting significant PR preservation in the ONL along with rescue
and non-pathological morphology of bipolar cells. (D) PKCα IF image shows rescue of rod bipolar
cells and significantly elaborated rod-bipolar dendritic arborization in the INL and OPL layers at
AAV-treated sites. Further, synaptic connections between bipolar cells and mCherry expressing rod
cells was observed in AAV-treated retina, in contrast with fewer synaptic connections in untreated
retinas. (E) Synaptophysin IF image shows significantly increased staining (green) and number of
synaptic puncta in OPL and IPL in AAV-treated areas compared to the untreated areas, suggesting
that gene editing preserved retinal synapses. Scale bar, 100 µm. Nuclei were stained with DAPI. INL,
inner nuclear layer; IS, inner segment; ONL, outer nuclear layer; OS, outer segment; PR, photorecep-
tor; RGC, retinal ganglionic cell. Data represent the mean ± SEM (n = 4–5). * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.

By contrast, disorganized bipolar cells with reduced density of axon terminals were
observed in untreated retina. In addition to the long-term preservation of PRs and bipolar
cells, we observed a denser synaptic connection between PRs and inner retinal neurons
in the outer plexiform layer (OPL) of AAV-treated retina as revealed by synaptophysin
expression (Figure 5E, inset: arrow, green: synaptophysin; red: mCherry). Significantly
higher expression of synaptophysin was also observed in the inner plexiform layer (IPL)
region of AAV-treated retina (fold change: 1.8, p ≤ 0.01, n = 4, Figure 5E). Moreover,
preserved synaptic connections and synaptic density, indicated by significantly higher
synaptic density as indicated puncta, were also observed in the OPL of AAV-treated retina
(fold change: 3.4, p ≤ 0.01, n = 4, Figure 5E). Collectively, these data demonstrated that PRs
and their retinal connection were well preserved for up to 15 months after gene editing.

3.7. Suppression of Gliosis and Phagocytic Activity in Müller Glia following m-RhoP23H Ablation

Gliosis in Müller glia is a hallmark of retinal degeneration [27]. The phagocytic activ-
ity of Müller glia eliminates degenerative PRs and cell debris after retinal injury [28,29].
Increased phagocytic activity of activated Müller glia was also reported in the retina
of animals homozygous for the P23H mutation [29]. Accordingly, we assessed Müller
cells activation (gliosis) and phagocytic activity in m-RhoP23H-bearing rat retinas. Gliosis
and phagocytic activity in Müller cells was decreased significantly in AAV-treated retina.
Glutamine synthetase (GS) immunostaining in retinal sections of P450 AAV-treated rat
eyes revealed well-preserved organotypic morphology of Müller glia with singular thin
processes that spanned the ONL and encircled mCherry-positive PRs to support retinal
homeostasis (fold change: 1.1, p ≤ 0.05, n = 4, Figure 6A). By contrast, we observed Müller
glia with thick and elongated processes that surrounded degenerative PRs (condensed nu-
clei visualized as intense DAPI) (Figure 6A inset: arrows) in control. Further, significantly
decreased GFAP expression in Müller glia end-feet strongly suggested the predominantly
quiescent Müller glia in AAV-treated retina. Conversely, we observed strong GFAP expres-
sion in the contralateral retina, devoid of mCherry, suggesting robust activation of Müller
glia (fold change: 5.2, p ≤ 0.01, n = 4, Figure 6B).
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from AAV treatment, indicated by decreased GFAP expression that was restricted to end feet. Scale 
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the mean ± SEM (n = 4). * p ≤ 0.05, ** p ≤ 0.01. 

3.8. m-RhoP23H -Specific Ablation Rescues PRs and Preserves Long-Term Vision by Suppressing 
UPR/ERS-Mediated Autophagy 

Corrected rhodopsin trafficking preserved PRs and long-term vision by suppressing 
ERS/UPR and inhibiting autophagy-mediated apoptosis of PRs. We analyzed the tran-
script levels of marker genes for UPR and ERS (Perk, Atf6, BiP, Chop) along with markers 
of autophagy (Becn1, Atg5 and Atg7). We observed a significant decrease in the mRNA 
levels of Perk (p ≤ 0.05), Atf6 (p ≤ 0.01) and Chop (p ≤ 0.05), whereas only the mRNA levels 
of BiP (p ≤ 0.05) increased significantly in AAV-treated compared to untreated retina (Fig-
ure 7A, n = 4). Reduced BiP and elevated Chop are typically associated with persistent 
stimulation of the UPR and PERK pathways in degenerative retina due to P23H rhodopsin 
expression [30,31]. As a key suppressor of UPR/ERS-induced apoptosis, BiP overexpres-
sion promotes survival pathways in PRs and reduces the rate of PR degeneration in P23H 
rat [31,32]. Selective activation of autophagy and increased autophagosome formation is 
well documented in P23H animals [33,34]. Hence, to check the status of selective autoph-
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Figure 6. m-RhoP23H ablation preserved retinal morphology and prevented Müller glia activation.
(A) The areas within the retinas distal to the injection site had thick and elongated processes of Müller
glia (green: GS+) that spanned the ONL and surrounded condensed nuclei (DAPI), consistent with
degenerating photoreceptors (arrows). AAV-treated retina shows normal morphology of Müller glia
with single and thin processes that only span the ONL. (B) Retinal regions distal to AAV injection
show significantly increased GFAP immunoreactivity (green) indicative of activated Müller glia, a
hallmark of Müller cell gliosis. The number of active Müller glia was reduced significantly from AAV
treatment, indicated by decreased GFAP expression that was restricted to end feet. Scale bar, 100 µm.
Nuclei were stained with DAPI. INL, inner nuclear layer; IS, inner segment; ONL, outer nuclear layer;
OS, outer segment; PR, photoreceptor; RGC, retinal ganglionic cell. Data represent the mean ± SEM
(n = 4). * p ≤ 0.05, ** p ≤ 0.01.

3.8. m-RhoP23H -Specific Ablation Rescues PRs and Preserves Long-Term Vision by Suppressing
UPR/ERS-Mediated Autophagy

Corrected rhodopsin trafficking preserved PRs and long-term vision by suppressing
ERS/UPR and inhibiting autophagy-mediated apoptosis of PRs. We analyzed the transcript
levels of marker genes for UPR and ERS (Perk, Atf6, BiP, Chop) along with markers of
autophagy (Becn1, Atg5 and Atg7). We observed a significant decrease in the mRNA
levels of Perk (p ≤ 0.05), Atf6 (p ≤ 0.01) and Chop (p ≤ 0.05), whereas only the mRNA
levels of BiP (p ≤ 0.05) increased significantly in AAV-treated compared to untreated retina
(Figure 7A, n = 4). Reduced BiP and elevated Chop are typically associated with persistent
stimulation of the UPR and PERK pathways in degenerative retina due to P23H rhodopsin
expression [30,31]. As a key suppressor of UPR/ERS-induced apoptosis, BiP overexpression
promotes survival pathways in PRs and reduces the rate of PR degeneration in P23H
rat [31,32]. Selective activation of autophagy and increased autophagosome formation
is well documented in P23H animals [33,34]. Hence, to check the status of selective
autophagocytic activation and its association with autophagosome formation, we measured
the levels of upstream genes (Becn1, Atg5 and Atg7) and autophagosome-related genes
(LC3B and P62/SQSTM1).
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Figure 7. m-RhoP23H ablation reduced retinal autophagy via suppressing UPR and ERS. (A) qPCR of 
Perk, BiP, Atf6, Chop (marker genes of UPR and ERS) and Becn1, Atg5, Atg7 (marker genes of autoph-
agy). In AAV-treated retinas, only the BiP functional transcripts showed significantly increased ex-
pression, whereas mRNA levels of remaining genes associated with UPR/ERS and autophagy de-
creased significantly compared to untreated retina. (B) Immunofluorescence of (i) autophagosomes 
(LCB3), (ii) autophagy receptors (P62/SQSTM1) and (iii) lysosomes (cathepsin D) in AAV-treated 
vs. untreated retinas. LC3B, P62 and cathepsin-D immunoreactivity was decreased significantly in 
AAV-treated retina compared to the untreated retina. LC3B expression was restricted to the outer 
segments of the PR layer in AAV-treated retina. By contrast, untreated retina showed punctate ex-
pression of LC3B, P62, and cathepsin D in the INL. Significantly reduced expression of P62 and 
cathepsin D was observed in RPE, ONL, and INL of AAV-treated retina. Scale bar, 100 μm. Nuclei 
were stained with DAPI. INL, inner nuclear layer; IS, inner segment; ONL, outer nuclear layer; OS, 

Figure 7. m-RhoP23H ablation reduced retinal autophagy via suppressing UPR and ERS. (A) qPCR
of Perk, BiP, Atf6, Chop (marker genes of UPR and ERS) and Becn1, Atg5, Atg7 (marker genes of
autophagy). In AAV-treated retinas, only the BiP functional transcripts showed significantly increased
expression, whereas mRNA levels of remaining genes associated with UPR/ERS and autophagy
decreased significantly compared to untreated retina. (B) Immunofluorescence of (i) autophagosomes
(LCB3), (ii) autophagy receptors (P62/SQSTM1) and (iii) lysosomes (cathepsin D) in AAV-treated
vs. untreated retinas. LC3B, P62 and cathepsin-D immunoreactivity was decreased significantly in
AAV-treated retina compared to the untreated retina. LC3B expression was restricted to the outer
segments of the PR layer in AAV-treated retina. By contrast, untreated retina showed punctate
expression of LC3B, P62, and cathepsin D in the INL. Significantly reduced expression of P62 and
cathepsin D was observed in RPE, ONL, and INL of AAV-treated retina. Scale bar, 100 µm. Nuclei
were stained with DAPI. INL, inner nuclear layer; IS, inner segment; ONL, outer nuclear layer; OS,
outer segment; PR, photoreceptor; RGC, retinal ganglionic cell. Data represent the mean ± SEM
(n = 4). * p ≤ 0.05, ** p ≤ 0.01.
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We observed a significant decrease in mRNA levels of Becn1 (p ≤ 0.05), Atg5 (p ≤ 0.01),
and Atg7 (p ≤ 0.05) as well as LC3B and P62/SQSTM1 protein expression in AAV-treated
compared to untreated retinas (Figure 7A, n = 4). In untreated retina, a significant increase
in Becn1, Atg5 and Atg7 transcript levels as well as LC3B and P62/SQSTM1 protein levels
was observed in INL (Figure 7A,B). This is consistent with the selective activation of
autophagy and increased autophagosome formation due to rhodopsin accumulation in
the ER of rod cells in untreated retinas of P23H rats [33,34]. In contrast, we observed
significantly decreased transcript levels of Becn1, Atg5 and Atg7 as well as increased protein
levels of LC3B (fold change: 1.3, p ≤ 0.01, n = 4, Figure 7B(i)) and P62/SQSTM1 (fold
change: 2.1, p ≤ 0.01, n = 4, Figure 7B(ii)) in AAV-treated retina. This demonstrated a
significant reduction in autophagosome formation due to wild-type rhodopsin (RhoWT)
trafficking from the ER to OS in the PRs of AAV-treated retinas. The expression of LC3B
was restricted to OS, which indicates the formation of autophagosome vesicles to support
OS recycling in AAV-treated retina. In the untreated retina, OS was largely absent but
contained punctate expression of LC3B in the inner segment/outer nuclear layer (IS/ONL)
and INL. Significantly increased expression of the autophagy receptor P62/SQSTM1, shown
by P62-immunoreactivity indicated increased autophagy in untreated retina compared to
the AAV-treated retina. Moreover, significantly increased immunoreactivity of Cathepsin
D (fold change: 1.8, p ≤ 0.05, n = 4, Figure 7B(iii)) observed as green puncta was also
documented in the untreated retinal regions compared to areas proximal to the AAV-
injection site. Significantly increased Cathepsin-D suggests increased LMP and proteolytic
degradation of autophagosomes and lysosome-mediated apoptosis of PRs.

4. Discussion

Retinitis pigmentosa is characterized by progressive loss of rod and cone photorecep-
tors, which eventually leads to blindness. Although treating adRP is challenging, recently,
popularized CRISPR/Cas9-based gene editing strategies showed promising results in pre-
clinical settings to correct adRP-associated mutations [9–12,35,36]. In this study, we utilized
the AAV-CRISPR/Cas9 approach to target the most prevalent RhoP23H mutation. We found
subretinal injection to be an effective method of delivering AAV-SaCas9/gRNA into pho-
toreceptors. In vivo RhoP23H disruption efficiency using CRISPR/Cas9 was high in our
model with no detectable off-target cleavage in genes other than RhoP23H. Selective ablation
of RhoP23H restored RhoWT trafficking to outer segments and preserved PRs and vision by
suppressing UPR/ERS-induced autophagy, which mitigated apoptotic responses. Taken
together, our study demonstrated that long-term vision was preserved by the selective
ablation of a dominant allele using CRISPR/Cas9.

Photoreceptor outer segments are renewed approximately every 10 days in higher
vertebrates [37–39]. During disc morphogenesis, membrane proteins such as rhodopsin
and cone opsins are synthesized in the inner segment, targeted to the outer segments,
and degraded by retinal pigment epithelial (RPE) cells via phagocytosis. RhoP23H is the
most common cause of adRP in patients [40,41]. m-RhoP23H has been shown to cause
rhodopsin misfolding and mistrafficking in rod photoreceptors, leading to ER stress and
cell death [42,43]. Here, we showed that, in untreated retinas, misfolding and mistrafficking
of P23H rhodopsin results in ER retention, which triggers ERS/UPR-induced autophagy
responses and mediates rod photoreceptor degeneration via apoptosis. Meanwhile, RhoP23H

ablation restored proper folding and trafficking of the RhoWT and inhibited UPR/ERS-
induced autophagy-mediated apoptotic responses in rods, which provided long term
protection of the retina and visual functions.

Although we documented the preservation of PRs and vision for 15 months, visual
function as measured by ERG never reached to wild-type level in terms of both a- and b-
wave amplitudes. Our previous study has shown that rod function was compromised at
the early stage of retinal degeneration [25]. Although, in this study, gene editing targeted
to rods did not rescue rod function to a normal level, progressive retinal degeneration
was significantly slowed. Continued vision loss and PR degeneration were reported, not
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unlike that observed in current gene replacement therapies [44–46]. Contributing factors for
efficacy deterioration overtime may involve the limitation from a single subretinal injection,
which affects about one-third of the retinal area. The toxic degenerating retinal micro-
environment may expose treated retina to apoptotic and necrotic signals from degenerative
regions. The long-term expression of Cas9 and/or mCherry may also activate the immune
system to eliminate the edited cells [47]. Although we did not detect T-cells (CD3) or
macrophages (CD68) near the injection site (data not shown), we cannot exclude the
possibility of exogenous proteins posing challenges to the retina that result in cell loss over
time. Short-term expression of Cas9 is desired, and methods for Cas enzyme inactivation
are being explored [48–50].

We expected low or no mCherry expression in vivo using AAV as the inverted terminal
repeats (ITR) of the vector flanked the Cas9/gRNA targeting construct. However, we ob-
served mCherry expression up to 15 months. We posited three possibilities for the observed
mCherry and tested our AAV construct accordingly. First, CMV-mCherry was packaged in
addition to mOp500.SaCas9-U6.gRNA.AAV since AAVs have been shown to accommodate
transcripts significantly larger than 4.7 kb with reduced packaging efficiency. Second,
CMV-mCherry was packaged at the expense of mOp500.SaCas9, or with lower probability
by size ratio, and lastly, CMV-mCherry was packaged at the expense of U6.gRNA. Because
AAV treatment disrupted RhoP23H at the predicted site in vivo, we hypothesized that these
‘mis-packing’ scenarios occurred to a low degree from the inherent inefficiency of AAV
packaging. We determined the relative abundance of vector components by real-time PCR
and determined that mOp500-SaCas9 was 7 × 104-fold more abundant than CMV-mCherry
(Figure S5). This explains the substantively greater proportion and distribution of SaCas9
in photoreceptors compared with those that expressed mCherry. Thus, mCherry expression
likely underestimated the total number of PRs in which SaCas9/gRNA was active.

The two most relevant questions for any new therapeutic approach involve the du-
ration of the therapeutic effect and how late in the disease process the therapy can be
effective. We observed retinal protection and vision rescue for at least 15 months in rat,
which represents approximately 50 years in humans [51]. Our histological and functional
data showed that RhoP23H-specific ablation significantly slowed down deterioration of
retinal morphology and visual function. However, potential off-target cleavage events
using CRISPR/Cas9 in vivo may limit the use of dominant allele ablation in translational
medicine [52,53]. In a recent in vivo study, the off-target effects were detectable at low
levels compared with targeted editing in clinically relevant P23H animals [11,35]. Limita-
tions of our study included use of a transgenic model, which carries two wild-type Rho
alleles in addition to RhoP23H. Although this does not accurately represent the situation in
patients who would presumptively be left with one functional RHO allele, the problem for
haploinsufficiency has not been reported. Individuals bearing one functional RHO allele are
frequently asymptomatic. Furthermore, RHOP23H hemizygosity with 13% mosaicism was
observed in a middle-aged individual with normal vision, suggesting that P23H ablation
in a moderate-fraction PR is sufficient to prevent significant loss of PRs and functional
vision. With current gene editing technology, animal model testing is still meaningful, as
it provides a window to study the safety and efficacy of CRISPR/Cas9 as well as other
in vivo gene editing techniques.

Increasing gene editing efficacy and AAV distribution by multiple injections may
further improve therapeutic efficiency by reducing the negative impact from untreated
degenerative retina. Other delivery modalities, such as intravitreal injections, may provide
greater distribution. Delivery of Cas9 mRNA permits transient expression, which limits the
potential for off-target effects and long-term expression of Cas9. Furthermore, determining
the underlying multi-omics landscape of edited retinal cells may identify key transcrip-
tional changes that promote long-term PR survival and the spatio-temporal transcriptomic
changes that occur in surrounding retinal cells, such as secondary horizonal cells, bipolar
cells, projecting ganglion cells, and RPE. Advancing the knowledge of the host environment
may help to optimize treatments for inherited retinal diseases.
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