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Extracting massive features from images to quantify tumors provides a new insight to solve the problem that tumor heterogeneity is
difficult to assess quantitatively. However, quantification of tumors by single-mode methods often has defects such as difficulty in
features extraction and high computational complexity. The multimodal approach has shown effective application prospects in
solving these problems. In this paper, we propose a feature fusion method based on positron emission tomography (PET)
images and clinical information, which is used to obtain features for lung metastasis prediction of soft tissue sarcomas (STSs).
Random forest method was adopted to select effective features by eliminating irrelevant or redundant features, and then they
were used for the prediction of the lung metastasis combined with back propagation (BP) neural network. The results show that
the prediction ability of the proposed model using fusion features is better than that of the model using an image or clinical
feature alone. Furthermore, a good performance can be obtained using 3 standard uptake value (SUV) features of PET image
and 7 clinical features, and its average accuracy, sensitivity, and specificity on all the sets can reach 92%, 91%, and 92%,
respectively. Therefore, the fusing features have the potential to predict lung metastasis for STSs.

1. Introduction

Sarcomas are a highly heterogeneous group of tumors classi-
fied according to the similar adult tissue types in tissue occur-
rence [1]. It is characterized by invasive or destructive growth
that can recur and by distant metastasis [2]. As one of the sar-
comas, soft tissue sarcomas (STSs) can occur anywhere in the
body, and 59% of which originate in an extremity [3]. Unfor-
tunately, 10%-20% of the patients with sarcomas or STSs
have distant metastasis at the time of diagnosis. The metasta-
sis rate is approximately 30%-40% in the course of follow-up,
of which lung metastasis accounts for about 90% [4–6].
Moreover, there is a great deficiency in the cognition of the
prognostic factors of lung metastatic tumor resection and
the recurrence rate after resection is high [7]. Therefore, early
screening and prediction of lung metastasis can help patients
with STSs find corresponding self-treatment measures at an
early stage and improve the survival rate of patients.

The most common method to evaluate the risk of lung
metastasis is to study the heterogeneity of tumors from
histopathological samples, while the biological relationships

between different clonal subgroups or clones and microenvi-
ronments in solid tumors such as STSs are still unclear, so
that the information obtained from the samples is affected
by the sampled region, which is not necessarily representative
[8]. Therefore, it is hard to study the heterogeneity of tumors
from the point of view at the molecular level because solid
cancers are spatial and temporal heterogeneous. Lambin
et al. have suggested that extracting a large number of fea-
tures from medical images can solve this problem because
the radiomic feature has the ability to capture intratumoural
heterogeneity in a noninvasive [9]. Several studies have pre-
dicted the effect of lymph node metastasis and adjuvant
radiotherapy or chemotherapy in preoperative colorectal
cancer by using radiomic features [10, 11]. Corino et al. per-
formed radiomic analysis of STSs to distinguish moderate
and high lesions [12]. Valliã¨Res et al. extracted a large
number of texture features from 2-deoxy-2-[18F]fluoro-D-
glucose (FDG) positron emission tomography (PET) and
magnetic resonance imaging (MRI) data for the construction
of a STS lung metastasis prediction model [13]. However, the
cost of acquiring multiple modal images at the same time is
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high and may not be affordable for some patients. Also, the
image acquisition of different modes is complex, and differ-
ent image information sets tend to obtain several overlapping
feature information. In addition, the acquisition of a large
amount of information increases the complexity of the model
construction and the time complexity of the operation. The
features obtained from only a single image are limited, and
more other accessible modal data may be overlooked such
as clinical data. Actually, the fusion of image and other modal
information can help us to obtain features from multiple
aspects that are used to build a more accurate and stable
model. There are a few studies that have used the multimodal
method to achieve great results; for example, Aerts et al.
quantified the tumor microenvironment by fusing imaging,
gene, and clinical information to quantify tumor gene het-
erogeneity in the early stage [14]. Tingdan et al. developed
and validated a clinical radiomics nomogram for preoper-
ative prediction of lung metastasis in colorectal cancer
patients [15].

PET image is a kind of reaction molecular metabolism
imaging. When the disease is changing in the early stage of
the molecular level and the morphology of the lesion area
has not been abnormal, the lesion can be found by PET
examination. Compared with other types of images, PET
has the characteristics of high sensitivity, high specificity,
and better security [16]. Therefore, this study extracted the
features from two kinds of data including PET image and
clinical data, and then the feature fusion was performed,
which was applied to the subsequent prediction model con-
struction. For the problem of model construction, it is
expected that the predictive model can be as simple as possi-
ble and has a good predictive effect. The aim of the simple
model is actually to expect it to be used as a representative
feature as possible for the model construction. Hence, it is
particularly important to choose higher importance features
from a large number of features. There are two functions
for feature selection including reducing the number of fea-
tures and lowering the dimension of features, which are
both used to make the model generalization more powerful
by reducing the overfitting and by enhancing the under-
standing of features. Taking into account that the random
forest algorithm has the ability to analyze the features of
complex interaction classification and has good robustness
for noise data or data with missing values, its variable
importance measure can be used as a feature selection tool
for high-dimensional data [17]. Therefore, the random for-
est method is applied to extract higher-contribution features
from multimode data. Then, they are used as the input for a
back propagation (BP) neural network with the superior
ability of nonlinear mapping, self-learning, self-adaptive,
generalization, and fault tolerance to construct the lung
metastasis prediction model [18]. The results showed that
the model constructed by combining the features of image
and clinical data has a better performance in all data sets.
Furthermore, it could be found that only the top PET fea-
tures and clinical features achieved a higher accuracy rate
of more than 90%. These features are strongly correlated
with lung metastasis and may be used as a label for lung
metastasis prediction of STSs.

2. Methods

2.1. Data Sources and Preprocessing. The FDG-PET imaging
data of 51 patients with STSs were included in this study,
and the corresponding clinical data were downloaded from
The Cancer Imaging Archive (TCIA). All patients underwent
pretreatment FDG-PET scanned between November 2004
and November 2011, during which 19 patients developed
lung metastases [13]. The FDG-PET slice thickness resolu-
tion was 3.27mm for all patients and the median inplane
resolution was 5:47 × 5:47mm2 (range: 3.91-5.47mm). The
details of samples could be found in Table 1.

We divided these samples into two groups, LungMets and
NoLungMets.NoLungMetswere patients that did not develop
lung metastases and LungMets were patients that eventually
developed lung metastases. The FDG-PET imaging data
also contained contours of the 3D tumor region of each

Table 1: Patient and tumor characteristics.

Clinical parameters

Age, years (mean ± SD) 54:8 ± 16:0
Gender, n (%)

Male 24 (47.1)

Female 27 (52.9)

Histology, n (%)

Malignant fibrous histiocytomas 17 (33.3)

Liposarcoma 11 (21.6)

Leiomyosarcoma 10 (19.6)

Synovial sarcoma 5 (9.8)

Extraskeletal bone sarcoma 4 (7.8)

Fibrosarcoma 1 (2.0)

Other 3 (5.9)

Grade, n (%)

High 28 (54.9)

Intermediate 15 (29.4)

Low 5 (9.8)

Unknown 3 (5.9)

Metastases, n (%)

Lung 19 (37.3)

Other 5 (9.8)

None 27 (52.9)

Time, days (mean ± SD)
Diagnosis to outcome 285.7± 252.3
Diagnosis to last follow-up 849± 447.4

Status, n (%)

No evidence of disease 26 (51.0)

Alive with disease 9 (17.6)

Dead 15 (29.4)

Note: SD: standard deviation; n: number; diagnosis to outcome: days elapsed
between the date of diagnosis of primary STS (biopsy) and the date of
diagnosis of recurrence or metastases; diagnosis to last follow-up: days
elapsed between the date of diagnosis of primary STS (biopsy) and the date
of last-follow-up (or death, if applicable).
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sample drawn by an expert radiation oncologist. To better
understand the difference of images between the two
groups, the region of interest (ROI) is a tumor area which
is extracted according to the lesion contour mask mapped
onto the original image. Therefore, ROI volumes of 51
patients are obtained for further analysis.

2.2. Feature Extraction. Considering that the standard uptake
values (SUV) as a semiquantitative index in PET can be effec-
tively applied in the evaluation of benign and malignant
tumors and evaluation of curative effect, the FDG-PET
volume is first converted to SUV maps and then a square
root transform is applied to help stabilize the PET noise in
the image.

These features are extracted from three aspects, and all of
which are derived from the ROI regions. In Table 2, there are
67 features including 5 SUV metrics features, 5 types of
texture features, and 6 types of clinical features. The study
uses five types of texture features, namely, global, gray-level
co-occurrence matrix (GLCM) [19], gray-level run-length
matrix (GLRLM) [20–23], gray-level size zone matrix
(GLSZM) [20–23], and neighborhood gray-tone difference
matrix (NGTDM) [24].

The corresponding feature vector is calculated and
obtained for each feature. SUV-related features can be
obtained by simple mathematical calculations. Each extrac-
tion method of texture feature has a corresponding calcu-
lation formula, which can be obtained by corresponding
references [19–24]. Then, we calculated all the texture fea-
ture values corresponding to each sample by the formula
of each texture feature. Furthermore, considering that the
most clinical features are presented in text form, a coding
method called one-hot is applied to extract text features
[25]. For example, the Sex feature includes male and
female, the male is represented as 1 0 and the female is
denoted as 0 1. Similarly, feature Status is coded as Alive
(1 0 0), Alive with disease (0 1 0) and Dead (0 0 1). These
feature vectors make up a feature matrix with a size of
51× 67. Row denotes the sample and each column is a
feature vector.

2.3. Feature Selection Based on Random Forest. A random
forest is an integrated classifier with a set of decision tree clas-
sifiers that can be expressed as fhðX, θkÞ, k = 1, 2,⋯,Kg,
where fθkg is a random vector obeying independent and
identical distribution. K represents the number of decision
trees in random forest. The optimal classification result is
determined by the voting of each decision tree classifier when
given an argument X [17].

The variable importance assessment is a significant
feature of random forest algorithms. In this study, we use a
variable importance measure based on the classification
accuracy of out-of-bag (oob) data. The evaluation criterion
of this method is the average reduction of the classification
accuracy after the slight disturbance of the independent
variable of the oob data and classification accuracy before
the disturbance.

Assuming that there are bootstrap samples b = 1, 2,⋯:,B,
where B represents the number of training samples, the

variable importanceDjof feature Xi based on classification
accuracy is calculated by the following steps: Firstly, the
decision tree Tb is constructed based on training samples
after setting the value of b to 1, and then the oob data is
defined as Loobb . After that, the oob data is classified by using
the Tb, and the number of correct classifications is calculated
as Roob

b . For feature Xj(j = 1, 2,⋯,N), the value of the feature

Xj in Loobb is disturbed, and the data set after disturbance is

defined as Loobbj . The number of Loobb is classified by Tb, and

the count of correct classifications is calculated as Roob
bj . The

same steps are performed on other features. Finally, the
importance Djof feature Xj is calculated by the formula

Dj =
1
B
〠
B

i=1
Roob
b − Roob

bj

� �
: ð1Þ

2.4. Back Propagation (BP) Neural Network Model. The prin-
ciple of BP neural network is that the gradient descent
method is used to adjust the weights and thresholds, so that
the mean square error value of the actual output of the
network and the expected output is minimal. The training
simulation process is presented as follows.

Firstly, the BP neural network structure is determined
and the input layer to the implicit layer weight value wij,
the implicit value to the output layer weight vij, the implicit
layer threshold θj, and the output layer threshold ɤt are

assigned. Then the training samples (Pk, Rk) are randomly
selected to provide to the network. After that, the input of
each element of the implicit layer Sj is calculated by using

the output sample Pk, the connection weight value wij, and
the threshold value θj, and then the output Bj of the implicit
layer unit is calculated by using the Sj through the transfer
function as follows:

Sj = 〠
m

i=1
wijp

k
i − θj,

Bj = f Sj
� �

:

ð2Þ

Next, the output Lt of the output layer units is calculated
using the output Bj, weight value vjt , and threshold ɤt of the
middle layer, and then the response Ct of the output layer
unit is calculated by the transfer function so that the follow-
ing formulas are obtained:

Lt = 〠
n

j=1
vjtBj − γt ,

Ct = f Ltð Þ:
ð3Þ

The generalization error dt of the output layer can be cal-
culated using the expected output Rk and the network actual
output Ct , and the generalization error ej of each unit in the
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Table 2: SUV metrics features and Clinical features used in this study.

Type Name Description

SUV metrics

SUVmax Maximum SUV of the tumour region

SUVpeak
Average of the voxel with maximum SUV within the tumour region

and its 26 connected neighbors

SUVmean Average SUV value of the tumour region

aucCSH
Area under the curve of the cumulative SUV volume histogram

describing the percentage of total tumour volume above a percentage
threshold of maximum SUV

PercentInactive

Percentage of the tumour region that is inactive. A threshold of
0:005 × SUVmaxð Þ2 followed by closing and opening morphological
operations were used to differentiate active and inactive regions on

FDG-PET scans

Textures

Global

Variance

Skewness

Kurtosis

GLCM

Energy

Contrast

Entropy

Homogeneity

Correlation

SumAverage

Variance

Dissimilarity

AutoCorrelation

Textures

GLRLM

SRE (short run emphasis)

LRE (long run emphasis)

GLN (gray-level nonuniformity)

RLN (run-length nonuniformity)

RP (run percentage)

LGRE (low gray-level run emphasis)

HGRE (high gray-level run emphasis)

SRLGE (short run low gray-level emphasis)

SRHGE (short run high gray-level emphasis)

LRLGE (long run low gray-level emphasis)

LRHGE (long run high gray-level emphasis)

GLV (gray-level variance)

RLV (run-length variance)

GLSZM

SZE (small-zone emphasis)

LZE (large-zone emphasis)

GLN (gray-level nonuniformity)

ZSN (zone-size nonuniformity)

ZP (zone percentage)

LGZE (low gray-level zone emphasis)

HGZE (high gray-level zone emphasis)

SZLGE (small-zone low gray-level emphasis)

SZHGE (small-zone high gray-level emphasis)

LZLGE (large-zone low gray-level emphasis)

LZHGE (large-zone high gray-level emphasis)

GLV (gray-level variance)

ZSV (zone-size variance)
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middle layer can be also calculated based on three parameters
including vjt , dt , and Bj.

dt = r − Ctð Þ ⋅ Ct 1 − Ctð Þ

ej = 〠
p

t=1
dt ⋅ vjt

" #
Bj 1 − Bj

� � ð4Þ

Then, the connection weight vjt and threshold γt are cor-
rected by using the generalization error dt of the output layer
units and the output Bj of each unit in the middle layer.

vjt N + 1ð Þ = vjt Nð Þ + α ⋅ dt ⋅ Bj,
γt N + 1ð Þ = γt Nð Þ + α ⋅ dt:

ð5Þ

Therefore, the fixed connection weight wij and threshold
θj can be obtained as follows:

wij N + 1ð Þ =wij Nð Þ + β ⋅ ej ⋅ pi,
θj N + 1ð Þ = θj Nð Þ + β ⋅ ej, 0 < β < 1:

ð6Þ

Furthermore, the next train sample is randomly selected
to provide to the network according to the previous method
of training until the training samples are fully trained.

3. Results

3.1. Feature Selection Based on Random Forest. Feature selec-
tion can not only improve the performance of the model but
also help us to understand the characteristics of the data and
the underlying structure, which plays a significant role in the
further improvement of model and algorithm. In this study,
the number of trees in random forest is set to 250, and then
there are 67 features including 5 SUV metrics features, 5
types of texture features, and 6 types of clinical features. In
order to explore the contribution of these features to the pre-
diction model, random forest was applied to sort these fea-
tures. 36 features were selected whose importance values
were more than 0.01. Moreover, a T test is used to verify
the performance of random forest method in this study. 25
significant features were retained in these features by using
the T test with a confidence level of 95% which are shown
in Figure 1.

As shown in Figure 1, these selected features contain 6
clinical features and 19 image features including 5 SUV fea-
tures and 14 types of texture features. Furthermore, 6 of the
top 10 features are clinical features, including age, status,
treatment, and MSKCC type, and the other features belong
to image features namely SUV features, including SUVpeak,
SUVmax, aucCSH, and PercentInactive. Therefore, there is
no any texture feature.

Table 2: Continued.

Type Name Description

NGTDM

Coarseness

Contrast

Busyness

Complexity

Strength

Clinical

Age Age

Sex
Male

Female

Treatment

Radiotherapy + surgery + chemotherapy
Radiotherapy + surgery
Surgery + chemotherapy

Status

Alive

Alive with disease

Dead

Grade

High

Intermediate

Low

MSKCC type

Liposarcoma

Leiomyosarcoma

Synovial sarcoma

Malignant fibrous histiocytomas

Extraskeletal bone sarcoma

Fibrosarcoma

Other
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3.2. BP Neural Network. After obtaining those features, the
BP neural network model was constructed, including 1 input
layer, 1 hidden layer, and 1 output layer as shown in Figure 2.

For this neural network model, there are 25 most impor-
tant features so that the number of neurons for input layer is
25. In order to make the model as simple as possible and the
time complexity lower, the model in this paper is a simple
three-layer model that is the hidden layer is single. The num-
ber of neurons for the output layer is 2 because the output
layer contains two groups: LungMets and NoLungMets.

In this study, the sigmod function was applied to be the
activation function and the method of adaptive learning rate
adjustment used to avoid local optimization and overfitting
[26]. Then, 51 samples were randomly disrupted and divided
into three types according to the proportion of 70%,15%, and
15%, which included 35 training samples, 8 test samples, and
8 validation samples. When the number of iterations reached
1000 times or the gradient value is less than 0.001, the train-
ing model was considered to have been trained. Furthermore,
in order to overcome the impact of small sample volume and
sample specificity on the model, the samples were randomly
divided 10 times and then repeated the above process in
our study.

In order to measure the performance of the model, three
indicators were used in this study, including accuracy, speci-

ficity, and sensitivity, as shown in Figure 3(a). In addition, the
best validation performance of a randomly selected model is
shown in Figure 3(b).

It is expected that the model has a high specificity and is
sensitive on the basis of high accuracy. In other words, we
hope that the model will have a better effect on both Lung-
Mets and NoLungMets. In terms of the total performance of
the model, the average accuracy is 92%, and the specificity
and sensitivity are 89% and 94%, respectively. Moreover,
the model can achieve a good performance in training and
validation set as expected. In fact, the results of the test set
are more concerned because the model construction is based
on the training set and the validation set; the test set is actu-
ally not involved in the construction of the model and
completely independent of other sets. Therefore, the result
of the test set is the standard of model performance evalu-
ation; it can be seen from Figure 3(a) that the average accu-
racy, specificity, and sensitivity of the test set reached 90%,
87%, and 92%, respectively. In addition, the best validation
performance is shown in Figure 3(b); the model has been
trained after iterating 43 times, and the gradient mean
square error is less than 0.001. At the same time, it can be
seen on the validation set that the overall trend of the curve
is also in the gradient drop. These evidences not only show
that this model has good stability but also show that the
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selected features can predict the lung metastasis in the soft
tissue sarcomas.

4. Discussion

In order to further confirm whether the prediction effect after
feature fusion is really better than that of the single type of
features and to avoid the occurrence of chance, this study
merely compares the final results of feature fusion with those
of image features or clinical features as shown in Figure 4.

Compared with the original features, the effect of predic-
tion is obviously improved based on the selected features by
using random forest. For the test set, the prediction accuracy
based on the original feature is 83%, while the model predic-
tion accuracy after feature extraction reaches 90%, and the
sensitivity of the model is increased by 16%. Therefore, the
random forest method can effectively extract the features of
higher contribution to the prediction model from the original
features and can greatly improve the specificity and sensitiv-
ity of the prediction model. In addition, in order to verify the
necessity of feature fusion based on multimodal data, the fea-
tures of single modal data are used to establish a prediction
model. The evaluation results of model according to the three
measurement indices show that the prediction performance
of the feature fusion model is better than that using a single
class of modal data at the level of all data sets. For the test
set, the multimodal features can obtain higher accuracy and
specificity, and although image features also reveal a high
average value of sensitivity, it cannot characterize its high
sensitivity because the variance is actually too large. More-
over, the sensitivity is not even exceeding 70% in the training
and test set because the image features alone are used to
construct the model so that the model cannot be trained
very well.

It is worth mentioning that the top 10 features of the 25
features include 3 SUV features and 4 types of clinical

features, but these do not contain texture features. Therefore,
the prediction model with 10 features as the model input was
constructed in this study, and it was compared with the pre-
vious model with 25 features as shown in Figure 5.

It can be seen from Figure 5(a) that the top ten features of
the contribution ranking are mainly 5 types, of which the
image features include three SUV features and the clinical
features include the Status, Treatment,Age, andMSKCC type.
In Figure 5(b), it can be found that the prediction accuracy of
the model without texture features decreased by less than 1%
compared to the model with 25 features, and the sensitivity
increased significantly although the specificity does not seem
to be as ideal. These results suggest that the effect of the 10
features is similar to that of the 26 features, which means that
it may be not necessary to do a lot of complex texture feature
calculations to obtain the same good prediction effect, while
the basic clinical features and SUV features are easier to
obtain to get than texture features.

For PET images, SUV is widely used in the identification
and prognosis prediction of benign and malignant tumors.
SUVmax is always used as the initial index of benign and
malignant tumor due to the characteristics of simple opera-
tion, good repeatability and not affected by the sketch area
of interest. Compared to SUVmax, SUVpeak overcomes the
problem of insensitive to image noise but is sensitive to
regions of interest, and PercentInactive denotes the percent-
age of the inactive tumour region. A threshold of 0:005 ×
ðSUVmaxÞ2 followed by closing and opening morphological
operations is used to differentiate active and inactive regions
on FDG-PET scans. For patients with lung metastasis, a vast
majority of tumors are at a low differentiation stage, and
these characteristics of SUV are indicators to distinguish
the low differentiation of tumors. Furthermore, we calculated
the correlation between these top features and lung metasta-
sis events, which is the label shown in Figure 6(a). In order to
verify the relationship between the most contributing feature
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Figure 3: (a) The performance of model including accuracy, sensitivity, and specificity from different data sets. (b) Best validation
performance of the neural network.
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Status and lung metastasis, the clinical data of 254 sarcoma
samples with complete information was downloaded from
the TCGA database, including 220 samples of NoLungMets
and 34 LungMets, and then these sets of information were
applied to calculate the survival curve of sarcoma patients,
as shown in Figure 6(b).

It can be seen from Figure 6(a) that there is over medium
even strong correlation between most features and label,
especially for the Status, Treatment, and SUV features. More-

over, the correlation between features is weak, except for
the features of the same types that are very strong, such
as SUVmax, SUVpeak, Age, and Status. It is also completely
understandable, such as the feature Age is either greater
than 60 or less than 60. Therefore, these types of nonrelated
features are highly representative and can be used as a fea-
ture of the prediction model effectively. Figure 6(b) shows
that the data of LungMets and NoLungMets has a significant
difference in patient survival time, which demonstrates that
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Figure 4: Performance comparison of feature selection. (a) represents the overall performance from the perspective of all data sets.
(b–d) denote the performance from the three types of data sets including training, validation, and test set, respectively. Feature_selection
represents 24 features selected by random forest and T test methods. Original denotes 67 features including 48 image features and 16
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the correlation between survival state and lung metastasis is
strong. In other words, our results suggest that the feature
Status is very helpful for the prediction of lung metastasis,
and it is easy to obtain the information about the state of
survival in practical clinical.

With the development of comprehensive treatment of
tumors and the prolongation of survival of cancer patients,
the incidence of lung metastatic tumors is increasing. How-

ever, in the past, there were few studies on lung metastasis
prediction of soft tissue tumors. Valliã¨Res et al. used PET
andMRI image data to construct different prediction models,
and obtained a considerable prediction accuracy rate by
selecting the optimal model [13]. Their study mainly used a
large number of texture features with a large number of
different parameters. There were more than 9000 texture
features extracted from PET data according to different
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parameters that resulted in excessive time complexity. In our
study, the texture features under the optimal parameters were
selected, which were merged with SUV features to construct
the prediction model for the lung metastasis prediction as
shown in Figure 5. It can be drawn from the figure that the
performance of models constructed with only image features
is significantly lower than that of images and clinical fusion
features. Moreover, compared with the best model proposed
in [13] based on PET data, the specificity of model was signif-
icantly improved, which overcomes the problem of using a
large number of texture features. In fact, each texture feature
corresponds to a texture feature algorithm, which was com-
plex in the implementation of feature acquisition.

5. Conclusion

Based on the complementarity between different modal data
features, extracting features from images and clinical data
separately provides a new idea to construct predictive
models. In this study, the texture and SUV features were
extracted from the PET image, and the features of age, gen-
der, and others were extracted from the clinical data. Then,
all features were sorted by random forest and two-sample T
test. The selected features were constructed using the BP neu-
ral network to predict the model. The results showed that the
performance of multimodal feature fusion was better than
that of the image data or clinical data alone. At the same time,
the study further analyzed the top 10 significant features, and
these features were applied to construct predictive model. It
was found that the performance of the model could still
achieve the previous effects without the presence of texture
features, which were hard to obtain. Furthermore, the
method proposed in this study could effectively select high-
performance features to construct a prediction model of lung
metastasis in STSs, and a high predictive performance was
achieved in all data sets. In the future, we hope that this
method can integrate more modal data to construct a more
effective model to achieve better results, including molecular
data such as genes and proteins. At the same time, this
method can be extended to other prediction problems such
as tumor staging and degree of tumor differentiation.
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