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Abstract: In this research, a facile and effective approach was developed for the preparation
of well-designed AuPd alloyed catalysts supported on magnetic halloysite nanotubes
(HNTs@Fe3O4@AuPd). The microstructure and the magnetic properties of HNTs@Fe3O4@AuPd
were confirmed by transmission electron microscopy (TEM), high resolution TEM (HRTEM),
energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometry (VSM) analyses.
The catalysts, fabricated by a cheap, environmentally friendly, and simple surfactant-free formation
process, exhibited high activities during the reduction of 4-nitrophenol and various other
nitroaromatic compounds. Moreover, the catalytic activities of the HNTs@Fe3O4@AuPd nanocatalysts
were tunable via adjusting the atomic ratio of AuPd during the synthesis. As compared with
the monometallic nanocatalysts (HNTs@Fe3O4@Au and HNTs@Fe3O4@Pd), the bimetallic alloyed
HNTs@Fe3O4@AuPd nanocatalysts exhibited excellent catalytic activities toward the reduction
of 4-nitrophenol (4-NP) to 4-aminophenol. Furthermore, the as-obtained HNTs@Fe3O4@AuPd
can be recycled several times, while retaining its functionality due to the stability and magnetic
separation property.
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1. Introduction

Noble metal nanoparticles (NPs), owing to their remarkable chemical and physical properties,
have attracted significant attention in recent decades due to their potential use in electronics [1],
optical devices [2], fuel cells [3], chemical sensors [4], catalysis [5–7] and biological materials [8–10].
Among these metals, gold nanoparticles (Au NPs) are frequently used for various catalytic reactions
because Au catalyst is completely stable and active under mild condition [11,12]. For instance,
Suvith et al. reported that Au NPs can be utilized for the catalytic degradation of methylene
blue [13]. Toru Murayama et al. reported that nanoparticulate gold catalysts supported on niobium
oxides (Nb2O5) are effective catalysts for CO oxidation [14]. Furthermore, bimetallic NPs have
gained much attention due to the bi-functional properties generated from the monometallic
component, with applications in optics [15], fuel cells [3], and catalysis [16–18]. Many studies
demonstrated that the addition of palladium to gold or silver leads to more effective and high catalytic
performance in reactions as compared to monometallic NPs. For example, an AuPd–MnOx/ZIF-8–rGO
nanocatalyst prepared by a facile wet-chemical strategy showed highly efficient catalytic activity in
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the additive free dehydrogenation of formic acid [19]. In addition, Liu and co-workers reported
that PdAg-N-doped-MOF-C can be used in catalytic transfer hydrogenation of nitro-compounds
through the dramatically enhanced effect of Pd and Ag NPs in the reaction [20]. However, due to the
high surface energy, free noble metal NPs aggregate easily, leading to a major reduction in catalytic
activity and reusability. To solve this problem, many supporting materials, such as organic polymers
materials [21], metal-organic framework [19], mesoporous silica [22], carbon materials [23], and so
on [24,25], have been used to support and stabilize noble metal NPs.

Besides the above support materials, clay minerals are one of the more interesting nanostructured
supports and are also regarded as a potential candidate for supports due to their excellent chemical
and thermal stability. Among them, halloysite clay (HNT) is a natural and abundantly available
nanoparticle formed by rolled kaolin sheets [26]. Very pure halloysite that possesses 90–98% of
tubular structure (HNTs) is available in abundance only in France, Turkey, China, New Zealand,
and USA [26,27]. Halloysite nanotubes (HNTs) are promising as a supporting material due to the
inherent hollow tubular structure and charge differential between its inside and outside surfaces [28].
Due to its economical efficiency and biocompatibility [29–32], HNTs were recently studied for
the development of innovative nanomaterials useful for catalytic [33,34] and biotechnological
applications [35–38], with excellent geometrical and surface properties (large specific area, hollow
tubular shape and tunable surface chemistry). In addition, when compared to other tubulose
nanomaterials (such as boron nitride, metal oxide, and carbon nanotubes), HNTs are eco-compatible
and non-toxic natural nanomaterials with remarkable and convenient applications in material
science [26,27]. It is easy to imagine that in the near future HNTs could replace the much more
expensive carbon nanotubes and in many cases, HNTs could be used in high technological applications
where carbon nanotubes are just not suitable [26].

Moreover, researchers usually selected the reduction of 4-NP by sodium borohydride (NaBH4) as
a model reaction to test the catalytic activity of various nanocatalysts [39,40]. The most likely reason is
that 4-NP is one of the most hazardous contaminants, which is present in waste-waters due to the usage
of pharmaceuticals, pesticides and dyes [41]. 4-NP can irreversibly damage the central nervous system,
liver, and kidney of animals and humans. Therefore, the removal of 4-NP is important to protect
the human being. Accordingly, several methods, such as photocatalytic degradation [42], microbial
degradation [43], hazardous substances adsorption [44], and electrochemical degradation [45] have
been developed to remove 4-NP. However, among the above techniques, the reduction of 4-NP to
4-aminophenol (4-AP) is the easiest way to remove 4-NP from the environment. The product 4-AP is a
useful intermediate for applications of antipyretic and analgesic drugs [46]. So, due to the reasons of
energy saving and safe operation, it is necessary to develop an effective, stable, easily available,
and highly efficient catalyst for the reduction of 4-NP to 4-AP in aqueous solution under mild
environments. Usually, noble metal formed nanocatalysts are difficult to recycle and reuse from
reaction solution because of their small sizes and the looking for suitable catalyst carrier is very
essential. HNTs@Fe3O4 is an ideal magnetic support [33], which is convenient to prepare and has more
active sites for the anchoring of noble metal NPs. It can not only prevent the aggregation of noble
metal NPs, but can also facilitate the recycle of nanocatalysts with the help of a magnetic field.

In this work, we reported a facile and convenient method to prepare the magnetic recoverable
nanocatalysts HNTs@Fe3O4@AuPd. Firstly, the HNTs were coated by magnetite Fe3O4 particles
through a one-pot solvothermal synthesis method. Secondly, the magnetic HNTs@Fe3O4 were further
modified by the AuPd alloyed NPs or monometallic Au or Pd NPs. The catalytic activities of the above
nanocatalysts toward the reduction reaction of 4-NP and its derivative in the presence of NaBH4 were
investigated. The synergistic effect between Pd and Au endowed HNTs@Fe3O4@AuPd with superior
activity when compared with monometallic HNTs@Fe3O4@Pd or HNTs@Fe3O4@Au catalysts.
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2. Results and Discussion

2.1. Structural and Morphology Characterization

To investigate the formation of HNT@Fe3O4@AuPd nanocomposited catalysts, X-ray diffraction
(XRD) analyses were conducted. Figure 1 represents the XRD patterns of HNT coated by Fe3O4, Au-Pd
alloyed NPs, monometallic Au or Pd NPs, respectively. The exhibited characteristic diffraction peaks
at 2θ = 12◦, 20.3◦, 24.9◦ originated from the HNTs for each sample, which demonstrate that the original
inner structure of halloysite is not damaged during the whole preparation of HNT@Fe3O4@AuPd
nanocatalysts. The observed XRD peaks at 2θ = 30.1◦, 35.5◦, 43.1◦, 53.5◦, 57.1◦ can be indexed to the
planes of fcc Fe3O4 (JCPDS-19-0629) [47]. The monometallic HNT@Fe3O4@Au and HNT@Fe3O4@Pd
composited nanoparticles exhibit wide diffraction peaks which well match to fcc structure of bulk Au
(JCPDS-65-8601) [48] and bulk Pd (JCPDS-65-2867) [49]. The weak diffractions detected for Au and Pd
from XRD patterns of the above bimetallic and monometallic nancatalysts indicate the formation of
small NPs [50]. Furthermore, as compared to the (111) diffraction peak of Pd NPs in HNT@Fe3O4@Pd,
the diffraction peaks of HNT@Fe3O4@AuPd shift to lower 2θ values towards the Au(111) peak, which
is due to the increase of the lattice parameters and the formation of the crystalline Au-Pd alloy
nanoparticles on HNT@Fe3O4 nanorods [19,51].
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Figure 1. X-ray diffraction (XRD) patterns of as-synthesized nanocatalysts.

The TEM images of HNTs@Fe3O4 and HNTs@Fe3O4@AuPd are shown in Figure 2. These images
confirm that the nanocatalysts have been successfully fabricated and the HNTs still maintain their
rod-like morphology during the preparation process. From Figure 2a, we can see the Fe3O4

nanoparticles (around 150 nm) are attached on the HNTs surface without obvious aggregation.
AuPd bimetallic nanoparticles (diameter below 5 nm) have been successfully formed on the surface
of HNTs@Fe3O4 by simply mixing the HAuCl4 and K2PdCl4 at room temperature. As shown in
Figure 2b,c, there are many small nanoparticles adhered to the HNTs or Fe3O4 surface after the
coreduction and there are no isolated AuPd catalysts outside the HNTs@Fe3O4. High-resolution TEM
(HRTEM) (Figure 2d) and size distribution images indicate that the average size of AuPd bimetallic is
3.61 ± 0.28 nm. The chemical composition and elemental distribution of HNTs@Fe3O4@AuPd were
investigated by EDS-mapping and the energy-dispersive X-ray spectroscopy (EDX). HAADF-STEM
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measurements (Figure 3) were carried out to investigate the elemental spatial distribution of Pd and
Au. Here, it is necessary to mention that for the ultrafine AuPdNPs, while it is really difficult to
get their HAADF-STEM results. Therefore, AuPd NPs with some aggregation were found by the
HAADF-STEM test. The dark-field images indicate a abundant deposition of AuPd nanocatalysts on
the magnetic support. Clearly, from Figure 3, Si, Al and Fe atoms are distributed on HNTs@Fe3O4,
whilst Pd and Au atoms are distributed uniformly over the entire HNTs@Fe3O4@AuPd nanocatalysts,
which provide a strong proof on the formation of alloy decorated nanocatalyst [51]. Furthermore,
the typical HRTEM image (Figure 2d) of the AuPd NPs indicated that the interplanar spacing of the
particle lattice is 0.229 nm, which approximated both the (111) lattice spacing of face centered cubic
(fcc) Pd (0.223 nm) and Au (0.234 nm), and this may indicate that line defects are formed [52]. From the
EDX image (Figure 4a), we can observe the existence of Si, Al, Fe, Au and Pd elements, which can also
prove the successful deposition of Au and Pd on the HNTs@Fe3O4 catalysts carrier. According to the
ICP-AES analyses, the content of the total metal supported on the HNTs@Fe3O4@AuPd nanocatalysts
is 2.81 wt. % and the atomic ratio of Au:Pd is 0.402:0.598, which is consistent with the designed ratio.
As shown in Figure 4b, the magnetic properties of HNTs@Fe3O4 and HNTs@Fe3O4@AuPd at room
temperature demonstrate that the decreasing magnetization values can be assigned to the loading
of non-magnetic AuPd nanoparticles. However, the current magnetism is still strong enough for the
recycling and reusing of the catalysts during the whole catalytic experiments.
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2.2. Catalytic Activities of Bimetallic or Monometallic Au/Pd Modified Nanocatalysts in the Reduction of 4-NP

The catalytic activities of as-prepared bimetallic and monometallic nanocatalysts were tested by
the catalysts for the reduction of 4-NP with an excess of NaBH4, as depicted in Figure 5. The conversion
from 4-NP to 4-AP can be easily monitored by the UV–vis spectroscopy. Generally, the UV–Visible
spectra of 4-NP solutions have a distinct spectral profile with a maximum absorption peak at 317 nm
in neutral or acidic situation, which is presented in Figure 5a. After addition of NaBH4, the absorption
band shifts to 400 nm immediately, accompanied with the color change from light yellow to bright
yellow. This peak shift is due to the formation of 4-nitrophenolate ion as the alkalinity of the solution
increased [39]. Without the addition of the catalysts, the maximum absorption peak at 400 nm can not
be altered, indicating that there is no reduction reaction, which is caused by the high kinetic barrier
between 4-nitrophenolate ion and BH4

− ion.
After the addition of a small amount of HNT@Fe3O4@Au40Pd60 into the 4-NP and NaBH4 mixed

solution, the color of the solution changed from bright yellow to colorless quickly, signalling the
completion of the reaction. Time-dependent absorbance spectra of this reaction shows the intensity of
the absorption spectra at 400 nm gradually decrease along with a concomitant increase of the 300 nm
peak of 4-aminophenol, revealing the formation of 4-AP [51]. After 8 min, the peak at 400 nm is no
longer observed, indicating that the reduction reaction is completed (Figure 5b). We proposed that
BH4

− would adsorb onto the surface of HNT@Fe3O4@Au40Pd60 and divert activated hydrogen to the
AuPd active centre to form a metal hydride complex [53]. Meanwhile, 4-NP can also simultaneously
stick to the surfaces of HNT@Fe3O4@Au40Pd60 via chemical adsorption [54]. In the above factors,
the transformation of adsorbed hydrogen species to 4-NP can reduce the nitro groups to amino groups,
which is strongly supported by previous results [55,56].
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For a comprehensive elucidation of the catalytic property of the HNT@Fe3O4@Au40Pd60 and
the synergetic effects of Au and Pd catalytic architecture in the reduction of 4-NP, we investigated
the catalytic behaviour of monometallic HNT@Fe3O4@Au, HNT@Fe3O4@Pd, and bimetallic
HNT@Fe3O4@Au40Pd60 with different molar compositions of Au versus Pd under the identical
conditions (the amount of each catalyst is controlled at 5 µg). As shown in the time-dependent
UV-vis absorption spectra of Figure 5c,d, the time for HNT@Fe3O4@Pd to finish the reduction is slight
shorter than that for HNT@Fe3O4@Au, while the time of the two catalysts used are obvious longer
than that for HNT@Fe3O4@Au40Pd60. These results indicate that the catalytic activity of magnetic
HNT-based AuPd alloyed bimetallic nanocatalysts is evidently enhanced as compared to the Au or
Pd monometallic nanocatalysts. As a matter of fact, the catalytic activities of the HNT@Fe3O4@AuPd
nanocomposite are tunable by altering the Au versus Pd atomic ratios. The catalytic reactions own the
highest reaction rate when the atomic ratio of the alloyed catalysts reaches Au40Pd60, which can be
understood in Figure 6a.
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time-dependent UV-vis absorption spectra of reduction of 4-NP by NaBH4 in presence of
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To further evaluate the catalytic activities of the above different nanocatalysts, a pseudo-first
order kinetics equation was applied, which is due to the amount of BH4

− in the catalytic system is
more excessive than that of 4-NP and the reaction rate is not affected by the concentration of BH4

−.
The experiment was carried out under the same conditions and the rate constant (k) is calculated
as: kapt = ln(Ct/C0), where C0 is the initial absorbance of the reagents at the maximum absorption
wavelength, Ct is the absorbance of reagents at maximum absorption wavelength under different time
t and Kap is the apparent rate constant. Figure 6a shows the approximately linear relationships of
ln(At/A0) vs. reaction time in the reaction catalyzed by the as synthesized nanocatalysts. It can be
clearly seen that the reactions follow the pseudo-first-order reaction kinetics. Hence, the apparent rate
constants obtained from the slopes of the linearly plots are 0.520, 0.389, 0.216, 0.023, and 0.174 min−1

for the HNT@Fe3O4@Au40Pd60, HNT@Fe3O4@Au67Pd33, HNT@Fe3O4@Au50Pd50, HNT@Fe3O4@Au
and HNT@Fe3O4@Pd, respectively. It is obvious that all the HNT@Fe3O4@Au40Pd60 nanocatalysts
have the highest catalytic ability and its reaction rate is about 22.61 and 2.98 times faster than that of
the monometallic Au or Pd modified nanocatalysts, which is accordance with the results obtained
from the time-dependent UV-vis absorption spectra.
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Furthermore, the scope of the catalytic activity of HNT@Fe3O4@Au40Pd60 in the reduction for
other nitroaniline derivates was also investigated. All the catalytic conditions of these analogues
are same as that of 4-NP and the reaction progress of the nitroaniline was monitored by UV-vis
absorption spectrometry. The data of reaction time and the conversion were calculated and are
listed in Table 1, revealing our catalysts have excellent catalytic activities with perfect yield toward
nitrophenol and nitroaniline derivatives regardless of the types and position of the substituents.
Four kinds of nitroaniline can be reduced within 8 min with a conversion more than 99%. Interestingly,
when the HNT@Fe3O4@Au40Pd60 was used to reduce the nitrotoluene analog substrate, it displayed
a lower activity than those of nitroaniline and nitrophenol, which indicated that the reaction
processes of nitrotoluene derivatives are more complicated than those of nitroaniline and nitrophenol
derivatives [57].
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reduction of 4-NP.

Table 1. Reduction of various nitrobenzenes using HNT@Fe3O4@Au40Pd60 catalysts.

Entry Compound Time/min Conversion/%

1 p-Nitroaniline 8 99
2 m-Nitroaniline 6 99
3 o-Nitroaniline 5 99
4 2,4-Nitroaniline 7 99
5 m-Nitrotoluene 68 81
6 o-Nitrotoluene 76 75
7 2,4-Dinitrotoluene 82 79

2.3. Reusability of the HNT@Fe3O4@Au40Pd60

It is well known that the reusability is a main advantage of using a heterogeneous catalyst rather
than a homogeneous catalyst. As the Fe3O4 NPs have remarkable magnetic properties [58], the catalysts
were recovered by simple magnetic separation with the help of a magnetic field after completion of
the reduction reaction and then washed with water for reusing in the next cycle. The reusability of
the HNT@Fe3O4@Au40Pd60 were studied for the reduction of 4-nitrophenol with NaBH4. As shown
in Figure 6b, even after five successive recycle, HNT@Fe3O4@Au40Pd60 still displayed excellent
conversion efficiency without significant loss of its activity. Besides the catalytic activity and reusability,
the stability of the catalysts is also a very important issue for industrial applications. To examine the
stability of the nanocatalysts, the reduction reaction was repeated using composited catalysts for more
than three months. The conversion of 4-NP was similar after the catalysts are prepared three months
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later, suggesting that the catalysts were stable and can be used within three months without an obvious
loss of activity [59].

3. Materials and Methods

3.1. Materials

Halloysite was purchased from China-Kaolinite Company (Suzhou, China). Ferric chloride
hexahydrate (FeCl3·6H2O), sodium acetate (NaAc), polyethylene glycol (PEI), ethylene glycol (EG),
potassium tetrachloropalladate (K2PdCl4)m and hydrogen tetrachloroaurate (HAuCl4) were obtained
from Sinopharm Chemistry Reagent Co., Ltd. (Beijing, China). 4-nitrophenol, p-nitroaniline,
m-nitroaniline, o-Nitroaniline (o-NA), 2,4-Nitroaniline and sodium hydroxide (NaBH4) were bought
from Sigma Aldrich. All of the chemicals were of chemical reagent grade and used without
any further purification. Ultrapure water was prepared by using NANO Pure Infinity System
(Barnstead/Thermolyne Corp, Dubuque, IA, USA).

3.2. Preparation of HNT@Fe3O4

HNT coated by Fe3O4 were synthesized through a solvothermal reaction according to a previously
described method with some modification [60]. Briefly, 1 g of FeCl3·6H2O was added to 30 mL of
ethylene glycol. A clear yellow solution was obtained after sonication for 3 min. Then, 2.7 g of
sodium acetate (NaAc) and 0.75 g PEI were added to the above solution and stirred for another 0.5 h.
Subsequently, 0.3 g HNT was added. When the mixed solution was ultrasonically dispersed for 3 h to
form a homogeneous dispersion, the mixture solution was transferred to a Teflon-lined stainless-steel
autoclave (50 mL capacity). The autoclave was sealed and maintained at 200 ◦C. After reaction for
8 h, the autoclave was naturally cooled to ambient temperature. The obtained HNT@Fe3O4 black
magnetic particles were collected by an external magnetic field and washed four times with ethanol
and deionized water in sequence. The product was then dried in vacuum at 60 for 12 h.

3.3. Preparation of HNTs@Fe3O4@AuPd, HNTs@Fe3O4@Au and HNTs@Fe3O4@Pd

In a typical synthesis of HNTs@Fe3O4@AuPd, 5.0 mL aqueous solution containing HNT@Fe3O4

(50 mg), HAuCl4 (0.5 mL, 10 mM), and K2PdCl4 (0.5 mL 10 mM) was kept in a glass bottle under
stirring for 3 h. Then, the fresh 1.0 mL aqueous solution NaBH4 (28 mg, 0.7 mmol) was added and the
resulting solution was stirred for another 0.5 h at ambient temperature. Then, the reaction mixture
was centrifuged and washed with pure water to remove the remaining reagents. For comparison,
other catalysts were also prepared using the same method: (1) HNT@Fe3O4 (50 mg) and HAuCl4
(0.5 mL, 10 mM) for HNTs@Fe3O4@Au, (2) HNT@Fe3O4 (50 mg) and K2PdCl4 (0.75 mL, 10 mM) for
HNTs@Fe3O4@Pd and (3) HNT@Fe3O4 (50 mg), 0.5 mL 10 mM HAuCl4 and v mL 10 mM K2PdCl4
(v = 0.25, 0.75) for HNTs@Fe3O4@AuxPdy.

3.4. Catalytic Reduction of Nitrobenzene

The reduction of 4-NP with NaBH4 was chosen to examine the catalytic activity and reusability
of the HNTs@Fe3O4@Au40Pd60 catalysts. In a typical procedure, 1 mL of 4-NP (0.1 mM) and
1.0 mL of fresh NaBH4 (10 mM) was taken in a quartz cuvette, followed by addition of 20 µL
of catalysts (0.25 mg/mL) to the mixture. The reaction solution was immediately monitored
using UV–vis spectrophotometer at 1 min interval. The color of the solution changed gradually
from yellow to colorless. The catalytic reduction of other nitroaniline were conducted under the
same condition of 4-NP. Following the similar procedures, HNT@Fe3O4@Au, HNT@Fe3O4@Pd,
and HNT@Fe3O4@AuxPdy (each of 5 µg) were also used as catalysts for the reduction of 4-NP.
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3.5. Characterization

Transmission electron microscopy (TEM), high resolution transmission electron microscopy
(HRTEM), and the energy dispersive spectra (EDS) were determined by a Tecnai-G2-F30 at acceleration
voltages of 200 kV. X-ray diffraction (XRD) measurements were carried out on a X’pert PRO X-ray
power diffractometer using Cu Ka radiation of 1.5406 A (40 kV, 30 mA). Magnetization measurements
were performed on a vibrating sample magnetometry (VSM, LAKESHORE-7304, Westerville, OH, USA)
at room temperature. The UV measurement was finished on a Shimadzu UV-240 spectrophotometer.
Au, Pd contents of the samples were determined by inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) using an IRIS Advantage ER/S spectrophotometer.

4. Conclusions

In conclusion, we fabricated magnetically separable and well dispersed bimetallic Au40Pd60

alloyed nanoparticles on HNT@Fe3O4 by a facile method. The HNT@Fe3O4@Au40Pd60 nanocatalysts
were explored for the reduction of organic pollutants in an aqueous medium. When compared
with the monometallic HNT@Fe3O4@Au and HNT@Fe3O4@Pd nanocatalysts prepared under the
same conditions, the AuPd alloyed HNT@Fe3O4@Au40Pd60 nanocatalysts exhibited the much better
catalytic performance, which may be ascribed to the synergistic effects of Pd and Au. Furthermore,
the HNT@Fe3O4@Au40Pd60 catalysts can be easily separated from the reaction system with the help of
an external magnet and reused several cycles without significant loss of the activity. The as-obtained
hybrids may become ideal recyclable catalysts for the reduction of aromatic nitro compounds owing to
their stability and efficient magnetism.

Acknowledgments: This work was supported, in part, by the National Natural Science Foundation of China
(No. 51773052, No. 21404033 and No. 21401046), the Science and Technology Research Project of Henan province
(162102210065 and 152102210314) and the Fundamental Research Funds for the Universities of Henan Province.

Author Contributions: Lei Jia conceived and designed the experiments; Tao Zhou, Zhouqing Xu, Beibei Zhang,
Fenghai Li, Shengli Guo and Xiaoke Shen performed the experiments and analyzed the data; Jun Xu provided
the concept of this research and managed all the experimental and writing process as the corresponding authors;
all authors discussed the results and commented on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Toyoda, K.; Hamada, I.; Lee, K.; Yanagisawa, S.; Morikawa, Y. Density functional theoretical study of
pentacene/noble metal interfaces with van der Waals corrections: Vacuum level shifts and electronic
structures. J. Chem. Phys. 2010, 132, 134703. [CrossRef] [PubMed]

2. Mulvihill, M.J.; Ling, X.Y.; Henzie, J.; Yang, P. Anisotropic etching of silver nanoparticles for plasmonic
structures capable of single-particle SERS. J. Am. Chem. Soc. 2009, 132, 268–274. [CrossRef] [PubMed]

3. Bulut, A.; Yurderi, M.; Karatas, Y.; Say, Z.; Kivrak, H.; Kaya, M.; Gulcan, M.; Ozensoy, E.; Zahmakiran, M.
MnOx-Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room
Temperature. ACS Catal. 2015, 5, 6099–6110. [CrossRef]

4. Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assunção, M.; Rosa, J.; Baptista, P.V. Noble metal
nanoparticles for biosensing applications. Sensors 2012, 12, 1657–1687. [CrossRef] [PubMed]

5. Hunt, S.T.; Milina, M.; Alba-Rubio, A.C.; Hendon, C.H.; Dumesic, J.A.; Román-Leshkov, Y. Self-assembly
of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.
[CrossRef] [PubMed]
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