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ABSTRACT Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed.
Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH)
resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in
2008 but newer LPAs have since been developed.

This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and
Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-
analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared
to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection
results were compared to culture.

74 unique studies were included. For RIF resistance (21225 samples), pooled sensitivity and specificity
(with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance
(20954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%).
Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard,
specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94%
(89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens.

In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high
specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice.
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Introduction
Tuberculosis causes 10.4 million cases and 1.8 million deaths annually and it is estimated that 4.3 million
cases go undiagnosed each year [1]. The emergence of multidrug and extensively drug-resistant
tuberculosis (MDR-TB and XDR-TB, respectively) is a major threat to global tuberculosis control [2].
Culture and drug-susceptibility testing (DST) using solid media can take up to 8–12 weeks for results [3]
and faster liquid-based culture techniques still take 4–6 weeks [4]. The delays associated with DST lead to
prolonged periods of ineffective therapy and ongoing tuberculosis transmission. The development of rapid
molecular diagnostic tests for the identification of Mycobacterium tuberculosis and drug resistance has
consequently become a research and implementation priority [5].

Line probe assays (LPAs) are rapid molecular diagnostics that can detect M. tuberculosis and drug
resistance. Although LPAs are more technically complex (designed for reference or regional laboratory
settings) and take longer to perform than the Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA), they
have the ability to detect isoniazid (INH) resistance in addition to rifampicin (RIF) resistance unlike Xpert
MTB/RIF [6]. LPAs detect RIF and INH resistance by identifying mutations in the rpoB, katG, and inhA
genes. By targeting mutations in the 81-base pair “core region” of the rpoB gene, more than 95% of all RIF
resistant strains can be detected [7]. In comparison, the mutations that cause INH resistance are located in
several genes and regions [8, 9]. Although mutations in katG and inhA account for approximately 80–90%
of INH-resistant strains [10], an additional 5–10% of INH-resistant strains have mutations in the ahpC–
oxyR intergenic region, often in conjunction with katG mutations outside of codon 315 [11].

The World Health Organization (WHO) approved LPAs for the diagnosis of M. tuberculosis and RIF
resistance in smear-positive tuberculosis in 2008 [12], guided by a systematic review evaluating two
first-generation LPAs: INNO-LiPA Rif.TB assay (Innogenetics, Ghent, Belgium) and Genotype MTBDR assay
(Hain Lifescience GmbH, Nehren, Germany) [13], both of which assays are no longer used in clinical practice.
Newer versions of the LPA technology have been developed [14–17] and additional studies have been
published. This systematic review was commissioned by the WHO to guide a policy update on the use of
molecular diagnostics. We evaluated the diagnostic accuracy of three LPAs (appendix A in the supplementary
material): GenoType MTBDRplus V1 (subsequently referred to as “Hain V1”), GenoType MTBDRplus V2
(subsequently referred to as “Hain V2”) and Nipro NTM+MDRTB Detection Kit 2 (subsequently referred to
as “Nipro”), for the detection of RIF and INH resistance and detection ofM. tuberculosis.

Methods
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and methods for systematic reviews and meta-analyses of diagnostic test accuracy [18, 19]. We
prepared a protocol for the literature search, article selection, data extraction, assessment of
methodological quality and synthesis of results.

Search methods
We performed a comprehensive search of the following databases (PubMed, EMBASE, BIOSIS, Web of
Science, LILACS, Cochrane) for relevant citations (full search strategy reported in appendix C in the
supplementary material). Our search was restricted to the time period January 2004 to August 2015, since
the first Hain LPA was introduced in October 2004. In addition, we contacted laboratory experts and the test
manufacturers for additional published studies. We also searched reference lists from included studies and
previous meta-analyses [13]. No language restriction was initially applied but at the full-text review stage we
restricted studies to English, French and Spanish. Abstracts or conference proceedings were not included.

Study selection and data extraction
Two review authors (R.R. Nathavitharana and P.G.T. Cudahy) independently assessed titles and abstracts
(screen 1). Any citation identified by either review author during screen 1 was selected for full-text review.
The same two review authors (R.R. Nathavitharana and P.G.T. Cudahy) independently assessed the
full-text articles for inclusion (screen 2). In screen 2, any discrepancies were resolved by discussion
between the review authors or by arbitration by a third review author (C.M. Denkinger). Two review
authors (R.R. Nathavitharana and P.G.T. Cudahy) extracted data from the included studies with a
pre-piloted standardised form and crosschecked to ensure accuracy. Disagreement between review authors
on data extraction was resolved by discussion or by a third reviewer (C.M. Denkinger). Studies without
extractable sensitivity and specificity data were excluded if no further information was acquired after three
attempts to contact the study authors.

Selection criteria
We included cross-sectional, case-control, cohort studies or randomised controlled trials comparing LPAs
to a reference standard test (see below), if at least 25 samples were tested. Patients of all age groups with
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suspected or confirmed pulmonary tuberculosis or MDR-TB were included, regardless of setting or
country. Specimen types were limited to sputum. Patients who were already on therapy were excluded
from analyses of M. tuberculosis detection (since dead bacilli not detected by culture could be detected by
LPAs leading to false positive results) but were included in analyses for RIF and INH resistance detection.

The reference standard test for the detection of M. tuberculosis was a positive solid or liquid culture for
M. tuberculosis. The reference standard test for the detection of RIF and INH resistance detection was
phenotypic DST for our primary analysis for all studies. Where data were available, LPA results were also
compared with a composite reference standard, which combined the results from targeted genetic
sequencing and phenotypic DST results (see appendix B in the supplementary material for details).

Outcome measures
Our outcome measures for all questions were sensitivity and specificity. Indeterminate results were
excluded from the analyses for determination of sensitivity and specificity and were reported separately
(further details in appendix B in the supplementary material).

Assessment of methodological quality
We used the Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Reviews-2
(QUADAS-2) instrument, a validated tool for diagnostic studies, to assess study quality [20]. The
information needed to answer QUADAS-2 questions was incorporated in the data extraction sheet. A
description of the QUADAS-2 items and the interpretation in the study context can be found in
appendices D1 and D2 in the supplementary material.

Statistical analysis and data synthesis
We performed statistical analyses using STATA (version 13; STATA corporation, College Station, TX,
USA). The studies were grouped by type of index test and reference standard used. Our QUADAS-2
analysis was performed using Excel (version 14.5.4; Microsoft, Seattle, WA, USA).

Meta-analysis
Meta-analysis was performed for each index test if at least four studies were available for the same index
test and if there was limited heterogeneity between studies. Bivariate random effects meta-analyses were
performed [21, 22] using the metandi package in STATA for index tests that included enough data to
calculate sensitivity and specificity, with 95% confidence intervals. Summary and individual estimates were
also presented graphically with the 95% confidence intervals and prediction region. Several studies did not
contribute to both sensitivity and specificity but only to one of the two. In order to make complete use of
the data for these studies we performed a univariate random effects meta-analysis of the sensitivity and/or
specificity estimates separately. Where there were fewer than four studies available or if substantial
heterogeneity precluded meta-analysis, a descriptive analysis was performed. Forest plots were visually
assessed for heterogeneity among the studies within each index test. Using summary plots, we examined
the variability in estimates and the width of the prediction region, with a wider prediction region
suggesting more heterogeneity. We anticipated that studies included in the meta-analysis would be fairly
heterogeneous and thus sub-groups for analysis were pre-specified as LPA type, specimen type, specimen
conditions and smear status.

Results
Characteristics of included studies
From the literature search, we identified 1650 citations and reviewed 218 full-text articles. 74 studies were
included in this systematic review (figure 1) [15, 17, 23–94]. 16 of these studies contributed data to more
than one analysis, resulting in a total of 94 datasets. A list of excluded studies and the reasons for
exclusion is presented in appendix E in the supplementary material. Tables 1 and 2 demonstrate the
characteristics of the 94 datasets that provided data on RIF and INH (of note, four of these datasets only
provided data on RIF but not INH) and the six datasets that provided data on M. tuberculosis detection
respectively. The majority of datasets were cross-sectional in design and almost all were performed in
either a regional or national reference laboratory setting. 48 datasets evaluated LPA for direct testing on
sputum specimens [15, 17, 24, 25, 27, 29–32, 35–39, 41–43, 46, 47, 49, 50, 52, 57, 59, 62–69, 71, 72, 74,
77–82, 84, 87, 91, 93] and 46 datasets evaluated LPA for indirect testing on culture isolates [17, 23, 25–28,
33–35, 37, 39, 40, 44, 45, 48, 51–58, 60–62, 68, 70, 72, 73, 75, 76, 78, 79, 83, 85, 86, 88–90, 92, 94]. 83
datasets evaluated Hain V1, five datasets evaluated Hain V2 [15, 30, 36, 72] and six datasets evaluated
Nipro [17, 72, 79]. Very few datasets recorded demographic data or HIV status due to the use of
anonymised samples.
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Methodological quality
The methodological quality across all included studies is summarised in figure 2 and presented for each
individual study in appendix D3 in the supplementary material. Many studies did not report all factors
that could affect methodological quality. For the “patient selection’ domain, there was unclear risk of bias
for 56 out of 94 datasets for RIF and INH resistance and five out of six datasets for M. tuberculosis
detection predominantly because the method of sampling of patients was not defined. Applicability
concerns were unclear in 18 out of 94 datasets for RIF and INH resistance and one out of six datasets for
M. tuberculosis detection that did not specify the type of patients tested or laboratory setting. For the
“index test” domain, there was unclear risk of bias for 66 out of 94 datasets for RIF and INH resistance
and two out of six datasets for M. tuberculosis detection because it was not stated whether the person
performing the index test was blinded to the results of the reference standard testing. Applicability
concerns in this domain were high risk in eight out of 94 datasets that reported variations in test
processing that were not according to the manufacturer’s recommendations. For the “reference test”
domain, there was unclear risk of bias for many datasets (68 out of 94) for RIF and INH resistance and
three out of six datasets for M. tuberculosis detection because it was not stated whether the person
performing the reference test was blinded to the results of the index tests. Applicability concerns were low.
In the “flow and timing” domain, the majority of datasets (78 out of 94 and six out of six, respectively)
were judged to have a low risk of bias.

Indeterminate result and culture contamination rates
30 datasets reported indeterminate results for directly tested specimens with a median of 5.3% and range
of 1.0–14.5% for rifampicin and 5.6% and 0.9–14.5% for isoniazid (appendix F, table S1 in the

Potentially relevant

citations identified from

electronic databases:

n=1650

Full papers retrieved for

more detailed evaluation:

n=217

Papers included in the

systematic review:

n=74

Papers included for

rifampicin resistance:

n=74 (phenotypic)

n=21 (composite)

Papers included for

isoniazid resistance:

n=70 (phenotypic)

n=20 (composite)

Papers included for

Mycobacterium tuberculosis
detection:

n=6

Excluded at screen 1: n=1433

  Not relevant based on

  assessment of title and

  abstract

Excluded at screen 2: n=130

  Abstract on poster: n=35

  Duplicate data/study: n=3

  Not about pulmonary TB: n=2

  Other LPAs (including MTBDR): n=29 (13)

  No primary data: n=2

  Inappropriate ref standard: n=16

  No diagnostic accuracy data: n=30

  Unable to translate: n=13

Excluded for non-extractable data with no responses 

from authors: n=14

Included: only head-to-head comparison of target

LPAs (in submission at time of search but since 

published): n=1

FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram of included studies.
TB: tuberculosis; LPA: line probe assay.
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TABLE 1 Characteristics of included studies for rifampicin (RIF) and isoniazid (INH) resistance detection, grouped alphabetically by index test type

First author [ref.] Country (income
category)

Study design Laboratory
setting

Population Number
tested:
RIF

Number
tested:
INH

Direct or
indirect

Smear
status

Condition of
specimen

Phenotypic reference
standard

Hain Genotype MTBDRplus V1
AL-MUTAIRI [23]# Kuwait (A) Case–control National reference Culture

positives
125 125 Indirect N/A Unknown Radiometric BacTec

460
ALBERT [24] Uganda (B) Cross-sectional National reference At risk for

MDR-TB
97 97 Direct Positive Frozen Non-radiometric

BacTec MGIT
ANEK-VORAPONG [25] Thailand (B) Unclear Regional Culture

positives
50 50 Indirect N/A Frozen Non-radiometric

BacTec MGIT
ANEK-VORAPONG [25]# Thailand (B) Cross-sectional Regional Smear

positives
164 164 Direct Positive Frozen Non-radiometric

BacTec MGIT
ASANTE-POKU [26]# Ghana (B) Cross-sectional Regional Smear

positives
113 113 Indirect Positive Frozen Proportion method

ASENCIOS [27] Peru (B) Cross-sectional National reference Culture
positives

95 95 Indirect N/A Unknown Proportion method

ASENCIOS [27] Peru (B) Unclear National reference Smear
positives

100 100 Direct Positive Unknown Proportion method

AUNG [28]# Myanmar (B) Cross-sectional National reference Smear
positives

189 189 Indirect Positive Unknown Proportion method

AURIN [29] Bangladesh (B) Cross-sectional National reference At risk for
MDR-TB

277 277 Direct Positive Fresh Proportion method

BANU [31] Bangladesh (B) Cross-sectional Regional At risk for
MDR-TB

79 87 Direct Positive Unknown Proportion method

BARNARD [32] South Africa (B) Cross-sectional Regional Smear
positives

484 479 Direct Positive Unknown Proportion method

BROSSIER [33]# France (A) Unclear National reference Unspecified 113 113 Indirect N/A Frozen Proportion method
BWANGA [34] Uganda (B) Unclear National reference Unspecified 31 31 Indirect N/A Unknown Proportion method
CABIBBE [35] Uganda (B) Unclear Regional Unspecified 91 91 Indirect N/A Unknown Non-radiometric

BacTec MGIT
CABIBBE [35] Uganda (B) Unclear Regional Unspecified 49 49 Direct Both Unknown Non-radiometric

BacTec MGIT
CAUSSE [37] Spain (A) Unclear Regional Smear

positives
41 41 Indirect Positive Unknown Non-radiometric

BacTec MGIT
CAUSSE [37] Spain (A) Unclear Regional Smear

positives
18 18 Direct Positive Frozen Non-radiometric

BacTec MGIT
CHEN [38] China (B) Cross-sectional Regional Smear

positives
326 326 Direct Positive Frozen Proportion method

CHRYSSANTHOU [39] Sweden (A) Cross-sectional Regional Culture
positives

477 477 Indirect N/A Fresh Non-radiometric
BacTec MGIT

CHRYSSANTHOU [39] Sweden (A) Cross-sectional Regional Culture
positives

90 90 Direct Both Fresh Non-radiometric
BacTec MGIT

Continued
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TABLE 1 Continued

First author [ref.] Country (income
category)

Study design Laboratory
setting

Population Number
tested:
RIF

Number
tested:
INH

Direct or
indirect

Smear
status

Condition of
specimen

Phenotypic reference
standard

DAUM [40] South Africa (B) Cross-sectional Regional Culture
positives

26 26 Indirect N/A Frozen Non-radiometric
BacTec MGIT

DORMAN [41]# South Africa (B) Cross-sectional Regional Prior
screened

223 223 Direct Both Fresh Non-radiometric
BacTec MGIT

DUBOIS CAUWELAERT [42] Madagascar (B) Cross-sectional Regional Culture
positives

254 254 Direct Positive Unknown Proportion method

ELISEEV [43] Russia (A) Cross-sectional Regional Smear
positives

211 211 Direct Positive Unknown Non-radiometric
BacTec MGIT

EVANS [44] South Africa (B) Unclear Regional Culture
positives

223 223 Indirect N/A Unknown Non-radiometric
BacTec MGIT

FABRE [45]#,¶ Multiple (C) Unclear Regional Culture
positives

144 Indirect N/A Frozen Radiometric BacTec
460

FAROOQI [46]# Pakistan (B) Cross-sectional Regional Smear
positives

105 105 Direct Positive Fresh Proportion method

FELKEL [47]# Nigeria (B) Cross-sectional Regional Known
MDR-TB

32 32 Direct Unclear Frozen Non-radiometric
BacTec MGIT

FERRO [48] Colombia (B) Cross-sectional National reference Unspecified 221 222 Indirect N/A Frozen Proportion method
FRIEDRICH [49] South Africa (B) Cross-sectional Regional Prior

screened
94 94 Direct Both Fresh Non-radiometric

BacTec MGIT
GAUTHIER [50] Haiti (B) Cross-sectional National reference Smear

positives
221 221 Direct Positive Unknown Non-radiometric

BacTec MGIT
GITTI [51] Greece (A) Cross-sectional Regional Culture

positives
221 221 Indirect N/A Unknown Proportion method

HILLEMANN [52]# Germany (A) Case–control National reference Culture
positives

125 125 Indirect N/A Unknown Mixed

HILLEMANN [52]# Germany (A) Unclear National reference Smear
positives

72 72 Direct Positive Unknown Mixed

HUANG [53]# China (B) Cross-sectional Regional Smear
positives

215 215 Indirect Positive Unknown Proportion method

HUANG [54]# Taiwan (B) Unclear Regional Culture
positives

272 272 Indirect N/A Unknown Mixed

HUANG [55]# Taiwan (B) Unclear National reference Culture
positives

324 324 Indirect N/A Unknown Proportion method

HUYEN [56] Vietnam (B) Case–control Regional Culture
positives

110 110 Indirect Positive Frozen Proportion method

IMPERIALE [57] Argentina (B) Unclear National reference Culture
positives

30 30 Indirect Frozen Mixed

IMPERIALE [57]# Argentina (B) Unclear National reference Smear
positives

70 70 Direct Positive Frozen Mixed

Continued
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TABLE 1 Continued

First author [ref.] Country (income
category)

Study design Laboratory
setting

Population Number
tested:
RIF

Number
tested:
INH

Direct or
indirect

Smear
status

Condition of
specimen

Phenotypic reference
standard

JIN [58]# China (B) Unclear Regional Culture
positives

237 237 Indirect N/A Unknown Absolute
concentration

KAPATA [59] Zambia (B) Cross-sectional National reference Smear
positives

598 594 Direct Positive Frozen Proportion method

KHADKA [60] Nepal (B) Cross-sectional Unknown Culture
positives

207 207 Indirect N/A Unknown Absolute
concentration

KUMAR [61] India (B) Unclear National reference Culture
positives

141 141 Indirect N/A Unknown Non-radiometric
BacTec MGIT

LACOMA [62]# Spain (A) Unclear Unknown Culture
positives

62 62 Indirect N/A Frozen Radiometric BacTec
460

LACOMA [62] Spain (A) Unclear Unknown Unspecified 53 53 Direct Both Frozen Radiometric BacTec
460

LI [63]# China (B) Cross-sectional Unknown Smear
positives

1370 1370 Direct Positive Unknown Proportion method

LUETKEMEYER [64] Multiple (B) Cross-sectional Regional HIV positives 303 301 Direct Both Fresh Non-radiometric
BacTec MGIT

LYU [65] South Korea (B) Cross-sectional Regional Smear
positives

168 Direct Both Unknown Absolute
concentration

MACEDO [66] Portugal (A) Cross-sectional National reference Smear
positives

68 68 Direct Positive Frozen Radiometric BacTec
460

MASCHMANN RDE [67]# Brazil (B) Cross-sectional Regional At risk for
MDR-TB

66 66 Direct Positive Fresh Proportion method

MIOTTO [68] Italy (A) Cross-sectional Regional Culture
positives

206 206 Indirect N/A Frozen Non-radiometric
BacTec MGIT

MIOTTO [68] Italy (A) Cross-sectional Regional Culture
positives

78 78 Direct Both Unknown Non-radiometric
BacTec MGIT

MIOTTO [69] Burkina Faso (B) Cross-sectional National reference At risk for
MDR-TB

31 31 Direct Both Frozen Non-radiometric
BacTec MGIT

MIOTTO [69] Burkina Faso (B) Cross-sectional National reference At risk for
MDR-TB

11 11 Direct Both Frozen Non-radiometric
BacTec MGIT

MIRONOVA [70] Multiple (C) Cross-sectional National reference Unspecified 243 243 Indirect N/A Unknown Non-radiometric
BacTec MGIT

MIRONOVA [70] Multiple (C) Cross-sectional National reference Unspecified 74 74 Indirect N/A Unknown Proportion method
N’GUESSAN [71] Cote D’Ivoire (B) Cross-sectional National reference Smear

positives
120 120 Direct Positive Fresh Non-radiometric

BacTec MGIT
NATHAVITHARANA [72]# Multiple (C) Case–control National reference Culture

positive
376 378 Indirect N/A Frozen Mixed

NATHAVITHARANA [72] Multiple (C) Cross-sectional National reference At risk for
MDR-TB

455 462 Direct Both Fresh Mixed

Continued
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TABLE 1 Continued

First author [ref.] Country (income
category)

Study design Laboratory
setting

Population Number
tested:
RIF

Number
tested:
INH

Direct or
indirect

Smear
status

Condition of
specimen

Phenotypic reference
standard

NIEHAUS [73] South Africa (B) Cross-sectional Regional Unspecified 994 994 Indirect N/A Unknown Proportion method
NIKOLAYEVSKYY [74] Russia (A) Cross-sectional Regional Smear

positives
163 163 Direct Positive Fresh Mixed

NWOFOR [75] Nigeria (B) Cross-sectional National reference Culture
positives

97 97 Indirect N/A Unknown Proportion method

OCHERETINA [76]#,¶ Haiti (B) Unclear National reference Culture
positives

153 Indirect N/A Unknown Non-radiometric
BacTec MGIT

RAIZADA [77] India (B) Cross-sectional Regional At risk for
MDR-TB

267 267 Direct Positive Fresh Proportion method

RAVEENDRAN [78] India (B) Cross-sectional Regional Culture
positives

69 69 Indirect N/A Fresh Non-radiometric
BacTec MGIT

RAVEENDRAN [78] India (B) Cross-sectional Regional Smear
positives

16 16 Direct Positive Fresh Non-radiometric
BacTec MGIT

RIGOUTS [80] Tanzania (B) Cross-sectional National reference Smear
positives

303 303 Direct Positive Unknown Proportion method

RUFAI [81]¶ India (B) Cross-sectional National reference Smear
positives

23 Direct Positive Fresh Non-radiometric
BacTec MGIT

SANGSAYUNH [82] Thailand (B) Cross-sectional Regional At risk for
MDR-TB

18 19 Direct Both Fresh Proportion method

SCHON [83]¶ Sweden (A) Case–control Regional Culture
positives

95 Indirect N/A Frozen Absolute
Concentration

SCOTT [84] South Africa (B) Cross-sectional Unknown All-comers 89 89 Direct Both Frozen Non-radiometric
BacTec MGIT

SHUBLADZE [85] Georgia (B) Cases only National reference Known
MDR-TB

634 634 Indirect N/A Unknown Proportion method

SIMONS [86] Netherlands (A) Cross-sectional National reference Unspecified 2649 2649 Indirect N/A Unknown Non-radiometric
BacTec MGIT

SINGHAL [87] India (B) Cross-sectional National reference Smear
positives

120 120 Direct Positive Unknown Non-radiometric
BacTec MGIT

TESSEMA [88] Ethiopia (B) Cross-sectional Regional Smear
positives

260 260 Indirect Positive Unknown Non-radiometric
BacTec MGIT

THO [89] Vietnam (B) Case–control National reference Culture
positives

150 150 Indirect N/A Frozen Proportion method

TOLANI [90] India (B) Cross-sectional Unknown Smear
positives

88 88 Indirect Positive Unknown Radiometric BacTec
460

TOLANI [90] India (B) Cross-sectional Unknown Smear
positives

67 67 Indirect Positive Unknown Radiometric BacTec
460

TUKVADZE [91] Georgia (B) Cross-sectional National reference Smear
positives

474 474 Direct Positive Frozen Mixed

VIJDEA [92]# Denmark,
Lithuania (C)

Case–control Supra-national
reference

Culture
positives

115 115 Indirect N/A Unknown Radiometric BacTec
460

YADAV [93] India (B) Cross-sectional Regional At risk for
MDR-TB

242 242 Direct Positive Fresh Proportion method

YORDANOVA [94] Bulgaria (B) Cases only National reference Known
MDR-TB

66 66 Indirect N/A Unknown Non-radiometric
BacTec MGIT

Continued
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TABLE 1 Continued

First author [ref.] Country (income
category)

Study design Laboratory
setting

Population Number
tested:
RIF

Number
tested:
INH

Direct or
indirect

Smear
status

Condition of
specimen

Phenotypic reference
standard

Hain Genotype MTBDRplus V2
BABLISHVILI [30] Georgia (B) Cross-sectional National reference Smear

positives
350 350 Direct Positive Fresh Mixed

CATANZARO [36] Moldova, India,
South Africa (B)

Cross-sectional Regional At risk for
MDR-TB

914 914 Direct Positive Unknown Non-radiometric
BacTec MGIT

CRUDU [15] Moldova (B) Cross-sectional National reference All-comers 156 156 Direct Both Fresh Proportion method
NATHAVITHARANA [72]# Multiple (C) Case–control National reference Culture

positive
376 378 Indirect N/A Frozen Mixed

NATHAVITHARANA [72] Multiple (C) Cross-sectional National reference At risk for
MDR-TB

452 452 Direct Both Fresh Mixed

Nipro NTM+MDR Detection Kit 2
MITARAI [17]# Japan (A) Cross-sectional National reference Unspecified 314 314 Indirect N/A Unknown Unknown
MITARAI [17] Japan (A) Cross-sectional National reference Unspecified 55 52 Direct Both Frozen Proportion method
RIENTHONG [79]# Thailand (B) Case–control Unknown Culture

positives
260 260 Indirect N/A Frozen Non-radiometric

BacTec MGIT
RIENTHONG [79] Thailand (B) Cross-sectional Unknown Unspecified 127 127 Direct Both Fresh Non-radiometric

BacTec MGIT
NATHAVITHARANA [72]# Multiple (C) Case–control National reference Culture

positive
378 378 Indirect N/A Frozen Mixed

NATHAVITHARANA [72] Multiple (C) Cross-sectional National reference At risk for
MDR-TB

475 474 Direct Both Fresh Mixed

MDR-TB: multidrug-resistant tuberculosis. ¶: these studies only contributed data to PICO A1a and 1b (Rifampicin resistance detection); #: these studies contributed data from which a
composite reference standard could be derived.
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TABLE 2 Characteristics of included studies for M. tuberculosis detection, grouped alphabetically by index test type

Author, year Country (income
category)

Study design Laboratory
setting

Population Number
tested

Direct or
indirect

Smear status Condition of
specimen

Processed per
manufacturer’s
instructions

Culture
reference
standard

Hain Genotype MTBDRplus V1
DORMAN [41] South Africa (B) Cross-sectional Regional Prior screened 223 Direct Both Fresh Yes Liquid: MGIT 960
FELKEL [47] Nigeria (B) Cross-sectional Regional Known MDR-TB 110 Direct Unclear Frozen Yes Liquid: MGIT 960
FRIEDRICH [49] South Africa (B) Cross-sectional Regional Prior screened 126 Direct Both Fresh Yes Liquid: MGIT 960
LUETKEMEYER [64] Multiple (B) Cross-sectional Regional HIV positives 595 Direct Both Fresh Yes Liquid: MGIT 960
SCOTT [84] South Africa (B) Cross-sectional Unknown All-comers 177 Direct Both Frozen Yes Liquid: MGIT 960

Hain Genotype MTBDRplus V2
CRUDU [15] Moldova (B) Cross-sectional National

reference
All-comers 336 Direct Both Fresh Yes–GenoLyse and

GeneXtract
Liquid: MGIT 960

MDR-TB: multidrug-resistant tuberculosis.
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supplementary material). Only five datasets reported indeterminate results for indirectly tested isolates but
these percentages were lower than for direct testing, with a median of 1.0% and range of 0.5–2.1% for
rifampicin and 0.5% and 0.5–1.0% for isoniazid. Only three datasets that performed direct testing for M.
tuberculosis detection reported indeterminate results, with a median of 1.0% and range of 0.7–1.7%. Data
on smear grade were limited. Studies did not typically report whether repeat testing was performed on
indeterminate results. For comparison purposes, four datasets reported the number of contaminated
cultures obtained using the culture reference standard, with a median of 7.6% and range of 2.8–17.2% of
the total specimens.

Analysis of primary outcomes of interest
Diagnosis of RIF resistance using a phenotypic reference standard
Pooled Analysis for all LPAs on all specimen types
91 datasets were included in the bivariate analysis, with a total of 21225 samples that included 6789 (32%)
confirmed RIF-resistant tuberculosis cases. Meta-analysis revealed a pooled sensitivity of 96.7% (95% CI
95.6–97.5%) and specificity of 98.8% (95% CI 98.2–99.2%) (table 3). Results were largely homogenous,
with a small proportion of studies being outliers. Pooled analysis stratified by LPA (appendix F, table S2 in
the supplementary material) demonstrated a slightly lower sensitivity for Hain V2 and Nipro (95.0% and
94.3% compared with 97.1% for Hain V1) although confidence intervals overlapped and specificity was
similar (98.3%, 98.1% and 98.9% respectively).

Direct testing
48 datasets tested RIF resistance detection with LPA directly from specimens, with a total of 10560
samples that included 2876 (27%) confirmed RIF-resistant tuberculosis cases. The pooled sensitivity was
96.3% (95% CI 94.6–97.5%) and specificity was 98.2% (95% CI 97.2–98.8%) (table 3, figure 3a). Outliers
with lower sensitivity and specificity were predominantly datasets with limited numbers of resistant
specimens (<10) and thus accompanied by very wide confidence intervals (figure 4).

Indirect testing
43 datasets tested RIF resistance detection with LPA indirectly from isolates, with a total of 10696 samples
that included 3913 (37%) confirmed RIF-resistant tuberculosis cases. The pooled sensitivity was 96.9%

a)

Reference standard

Flow and timing Flow and timing

QUADAS-2 domain

% of datasets

Index test

Patient selection

250 50 75 100

b)

Reference standard

QUADAS-2 domain

% of datasets

Index test

Patient selection

250 50 75 100

c)

Reference standard

QUADAS-2 domain

% of datasets

Index test

Patient selection

250 50 75 100

d)

Reference standard

QUADAS-2 domain

% of datasets

Index test

Patient selection

250 50 75 100

Low-risk of bias High-risk of bias Unclear risk of bias

Low concern High concern Unclear concern

FIGURE 2 QUADAS-2 summaries. a and c) Risk of Bias and Applicability Concerns summary about each
QUADAS-2 domain presented as percentages across the 94 included datasets for rifampicin (RIF) and isoniazid
(INH) resistance compared with phenotypic culture-based reference standard (of note, four datasets only
contributed to RIF). The summaries for the datasets for RIF and INH compared with composite reference
standard are not displayed separately since these datasets are a subset of the 94 datasets displayed below and
thus the figures displayed are thought to be accordingly representative. b and d) Risk of Bias and Applicability
Concerns summary about each QUADAS-2 domain presented as percentages across the six included datasets
for Mycobacterium tuberculosis detection compared with a culture-based reference standard.

https://doi.org/10.1183/13993003.01075-2016 11

TUBERCULOSIS | R.R. NATHAVITHARANA ET AL.



(95% CI 95.5–98.0%) and specificity was 99.3% (95% CI 98.6–99.6%) (table 3; and appendix F, figure S8a
in the supplementary material). Point estimates for sensitivity for individual studies were even more
homogenous than those for direct testing (appendix F, figure S4 in the supplementary material). The
reasons for the outlier studies with lower sensitivities were unclear as the populations tested (all-comers
versus those with MDR-TB risk) differed in the respective studies [60, 73, 90]. One outlier demonstrated a
lower specificity (78.3%, 95% CI 63.6–89.1%) for specimens tested by solid (Löwenstein–Jensen) rather
than liquid (Mycobacteria Growth Indicator Tube (MGIT)) culture [70].

Diagnosis of RIF resistance using a composite reference standard
Pooled Analysis for all LPAs on all specimen types
23 datasets contained data comparing LPA with a composite reference standard (using the results from
targeted sequencing of either the RIF-resistance determining region or rpoB gene and phenotypic DST),
with a total of 5483 samples that included 2091 (38%) RIF-resistant M. tuberculosis cases [17, 23, 26, 41,
45–47, 52–58, 62, 63, 67, 79, 92]. Most studies only performed sequencing on discrepant results, thus
results from this analysis may be potentially biased in favour of the LPAs. Bivariate meta-analysis of these
studies revealed a pooled sensitivity of 95.3% (95% CI 93.4–96.6%) and specificity of 99.5% (95% CI 98.6–
99.8%) (table 3).

Specificity increased when a composite standard was used as 37 LPA “false-positive results” based on
comparison to phenotypic DST (from 11 datasets) were reclassified as true positives as sequencing
confirmed the presence of known resistance-conferring mutations (appendix F, table S3a in the
supplementary material). Of note, the sensitivity was lower in this subset of datasets for which data on a
composite reference standard could be derived compared with the overall dataset, which we hypothesise may
be due to some selection bias in the studies that performed targeted sequencing alongside phenotypic DST.

Heterogeneity across studies was limited (appendix F, figure S5 in the supplementary material).
MASCHMANN RDE et al. [67] demonstrated a sensitivity of 82.8% and stated that two out of the five
specimens incorrectly classified had insertions in codons 516–517 which may have caused hybridisation of
the corresponding wild-type probe (wt3 for codons 517–520) and the other three were wild-type on
sequencing, suggesting that resistance may be driven by mutations outside of the rpoB hotspot.

Diagnosis of INH resistance using a phenotypic reference standard
Pooled analysis for all LPAs on all specimen types
87 datasets were included in the bivariate analysis, with a total of 20954 samples that included 8135 (39%)
confirmed INH-resistant tuberculosis cases. Meta-analysis revealed a pooled sensitivity of 90.2% (95% CI
88.2–91.9%) and specificity of 99.2% (95% CI 98.7–99.5%) (table 3). Results were moderately heterogeneous

TABLE 3 Diagnostic accuracy of line probe assays for all three assays combined for rifampicin (RIF) and isoniazid (INH)
resistance and multidrug-resistant tuberculosis (MDR-TB) detection

Reference standard Test Direct or
indirect

Smear
status

Datasets
(samples) n

Sensitivity
(95% CI)

Specificity
(95% CI)

Phenotypic drug susceptibility testing RIF Both All 91 (21225) 96.7% (95.6–97.5) 98.8% (98.2–99.2)
RIF Direct All 48 (10560) 96.3% (94.6–97.5) 98.2% (97.2–98.8)
RIF Indirect All 43 (10696) 96.9% (95.4–98.0) 99.3% (98.6–99.6)

Composite drug susceptibility testing RIF Both All 23 (5483) 95.3% (93.4–96.6) 99.5% (98.6-99.8)
Phenotypic drug susceptibility testing
(same samples as composite drug
susceptibility testing)

RIF Both All 23 (5484) 95.2% (93.2–96.7) 98.9% (98.0–99.4)

Phenotypic drug susceptibility testing INH Both All 87 (20954) 90.2% (88.2–91.9) 99.2% (98.7–99.5)
INH Direct All 46 (10472) 89.2% (85.8–91.9) 98.4% (97.5-98.9)
INH Indirect All 41 (10462) 91.0% (88.6–93.0) 99.7% (99.3–100)

Composite drug susceptibility testing INH Both All 24 (4516) 85.1% (80.8–88.6) 99.9% (99.6–99.9)
Phenotypic drug susceptibility testing
(same samples as composite drug
susceptibility testing)

INH Both All 24 (4520) 85.0% (80.5–88.6) 99.5% (99.1–99.8)

Phenotypic drug susceptibility testing MDR-TB Both All 57 (13033) 92.9% (90.2–94.7) 99.3% (98.7–99.6)
Composite drug susceptibility testing MDR-TB Both All 12 (2745) 86.6% (81.9–90.3) 99.6% (98.9–99.9)
Phenotypic drug susceptibility testing
(same samples as composite drug
susceptibility testing)

MDR-TB Both All 12 (2745) 86.9% (82.1–90.7) 99.5% (97.9–99.9)
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for sensitivity, whereas specificity estimates were more homogeneous. Pooled analysis stratified by LPA
(appendix F, table S2 in the supplementary material) demonstrated a lower sensitivity for Nipro (86.9%)
and higher sensitivity for Hain V2 (93.6%) compared with Hain V1 (90.2%) although specificity was
similar (99.1%, 99.1% and 99.2%) respectively.

Direct testing
46 datasets tested INH-resistance detection with LPA directly from specimens against a phenotypic
reference standard, with a total of 10472 samples that included 3576 (34%) confirmed INH-resistant
tuberculosis cases. The pooled sensitivity across studies was 89.2% (95% CI 85.8–91.9%) and specificity
was 98.4% (95% CI 97.5–98.9%) (table 3, figure 3b). Greater heterogeneity was noted for INH-sensitivity
compared with RIF for sensitivity (figure 5). Several outliers had limited numbers of resistant specimens
(<10) and were thus accompanied by very wide confidence intervals [17, 31, 82, 84]. Explanations for
outlier results included the known geographic variation of mutations and heteroresistance.

Indirect testing
40 datasets tested INH resistance detection with LPA indirectly from isolates against a phenotypic reference
standard, with a total of 10462 samples that included 4559 (44%) confirmed INH-resistant tuberculosis
cases. The pooled sensitivity across studies was 91.0% (95% CI 88.6–93.0%), which was higher than seen
with direct testing, as was the case for specificity, which was 99.7% (95% CI 99.3–100.0%) (table 3; and
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FIGURE 3 Hierarchical summary receiver operating characteristic graphs of summary estimates. Bivariate
analysis of the sensitivity and specificity for all line probe assays for the diagnosis of drug resistance
detection compared with a phenotypic reference standard for specimens tested directly for a) rifampicin
resistance, b) isoniazid resistance, c) multi-drug resistance and d) the detection of Mycobacterium tuberculosis
compared to a culture reference standard. In the plots below, the red squares represent the pooled summary
estimates, the dashed red lines represent the 95% confidence region and the dashed green lines represent
the 95% prediction region. The individual circles represent each study and the size of the circle is proportional
to the total sample size.
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appendix F, figure S8b in the supplementary material). Several studies were outliers for sensitivity but
specificity was largely homogeneous (appendix F, figure S6 in the supplementary material). Reasons for
lower sensitivity include the use of different types of phenotypic DST within a study [17], the presence of
less common resistance mutations due to geographic variation and difficulty detecting low-level INH
resistance [62]. The outlier for specificity only contained three INH-sensitive strains [90].

Diagnosis of INH resistance using a composite reference standard
Pooled analysis for all LPAs on all specimen types
24 datasets contained data comparing LPA with a composite reference standard, with a total of 4516
samples that included 2346 (52%) INH-resistant M. tuberculosis cases [17, 23, 25, 26, 28, 33, 41, 46, 47,
52–55, 58, 62, 67, 68, 79, 92]. Bivariate meta-analysis of these studies revealed a pooled sensitivity of 85.1%
(95% CI 80.8–88.6%) and specificity of 99.9% (95% CI 99.6–100.0%) (table 3). Bivariate analysis of the
same 24 datasets compared to phenotypic DST revealed a pooled sensitivity of 85.0% (95% CI 80.5–88.6%)
and specificity of 99.5% (95% CI 99.1–99.8%).

Sequencing also revealed resistance mutations that were not detected by LPA (appendix F, table S3b in the
supplementary material). For example, 10 of the 11 strains with a rarer katG mutation S315N were not
detected in the study by JIN et al. [58] due to the lack of the appropriate mutation probe in the Hain V1
assay and because the wild-type band also failed to disappear. Although seven LPA false-positive results
(from six datasets) were reclassified as true positives in total based on sequencing confirming a known
resistance mutation (four katG S315T mutations and three inhA c-15t mutations), specificity barely
increased when a composite standard was used.

MTBDRplus V1

MTBDRplus V2

SCOTT [84]
RIGOUTS [80]
CHRYSSANTHOU [39]
MASCHMANN RDE [67]
FELKEL [47]
DORMAN [41]
KAPATA [59]
CHEN [38]
LI [63]
ASENCIOS [27]
FAROOQI [46]
SANGSAYUNH [82]
RAIZADA [77]
BANU [31]
LYU [65]
IMPERIALE [57]
NIKOLAYEVSKYY [74]
TUKVADZE [91]
HILLEMANN [52]
NATHAVITHARANA [72]
SINGHAL [87]
DUBOIS CAUWELAERT [42]
YADAV [93]
BARNARD [32]
CABIBBE [35]
FRIEDRICH [49]
LACOMA [62]
LEUTKEMEYER [64]
MIOTTO [68]
MIOTTO [69]
MIOTTO [69]
ALBERT [24]
ANEK-VORAPONG [25]
AURIN [29]
CAUSSE [37]
ELISEEV [43]
GAUTHIER [50]
MACEDO [66]
N'GUESSAN [71]
RAVEENDRA  [78]
RUFAI [81]

BABLISHVILI [30]
CRUDU [15]
CATANZARO [36]
NATHAVITHARANA [72]

Nipro
RIENTHONG [79]
NATHAVITHARANA [72]
MITARAI [17]

40.00 (5.27–85.34)
60.00 (14.66–94.73)
75.00 (19.41–99.37)
82.14 (63.11–93.94)
83.33 (35.88–99.58)
85.71 (57.19–98.22)
85.71 (42.13–99.64)
85.94 (74.98–93.36)
88.49 (81.98–93.28)
91.67 (73.00–98.97)
92.45 (81.79–97.91)
93.33 (68.05–99.83)
93.38 (87.81–96.93)
93.55 (84.30–98.21)
94.29 (80.84–99.30)
96.15 (80.36–99.90)
96.40 (91.03–99.01)
96.55 (91.41–99.05)
96.77 (83.30–99.92)
97.08 (93.31–99.04)
97.56 (91.47–99.70)
97.92 (88.93–99.95)
98.59 (92.40–99.96)
98.95 (94.27–99.97)
100.00 (73.54–100.00)
100.00 (2.50–100.00)
100.00 (86.77–100.00)
100.00 (84.56–100.00)
100.00 (29.24–100.00)
100.00 (82.35–100.00)
100.00 (63.06–100.00)
100.00 (78.20–100.00)
100.00 (82.35–100.00)
100.00 (98.07–100.00)
100.00 (66.37–100.00)
100.00 (94.79–100.00)
100.00 (76.84–100.00)
100.00 (85.18–100.00)
100.00 (94.48–100.00)
100.00 (47.82–100.00)
100.00 (83.16–100.00)

90.28 (80.99–96.00)
94.34 (88.09–97.89)
96.65 (94.62–98.07)
98.25 (94.96–99.64)

75.00 (34.91–96.81)
96.49 (92.52–98.70)
100.00 (29.24–100.00)

96.43 (89.92–99.26)
98.48 (96.17–99.59)
98.84 (93.69–99.97)
94.12 (80.32–99.28)
100.00 (86.77–100.00)
99.01 (96.47–99.88)
99.26 (98.12–99.80)
93.13 (89.36–95.88)
97.17 (96.05–98.05)
98.68 (92.89–99.97)
96.08 (86.54–99.52)
66.67 (9.43–99.16)
93.75 (87.55–97.45)
84.62 (54.55–98.08)
100.00 (97.26–100.00)
100.00 (90.75–100.00)
89.47 (75.20–97.06)
98.83 (97.03–99.68)
100.00 (91.19–100.00)
97.09 (94.35–98.74)
94.44 (81.34–99.32)
98.06 (95.10–99.47)
99.42 (96.78–99.99)
99.44 (97.98–99.93)
100.00 (90.00–100.00)
100.00 (95.94–100.00)
86.36 (65.09–97.09)
95.38 (92.08–97.59)
98.48 (91.84–99.96)
83.33 (51.59–97.91)
50.00 (1.26–98.74)
94.81 (87.23–98.57)
100.00 (97.49–100.00)
100.00 (95.89–100.00)
100.00 (66.37–100.00)
98.08 (93.23–99.77)
100.00 (98.13–100.00)
100.00 (92.13–100.00)
74.55 (61.00–85.33)
100.00 (71.51–100.00)
100.00 (29.24–100.00)

99.61 (97.85–99.99)
96.00 (86.29–99.51)
97.89 (95.69–99.15)
97.82 (95.31–99.20)

100.00 (96.95–100.00)
97.45 (94.83–98.97)
100.00 (93.15–100.00)
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FIGURE 4 Forest plots demonstrating the sensitivity and specificity of all line probe assays for rifampicin resistance-detection for sputum specimens
tested directly compared with phenotypic drug susceptibility testing. TP: true positive; FP: false positive; FN: false negative; TN: true negative.
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Heterogeneity assessment (appendix F, figure S7 in the supplementary material) demonstrated
homogenous results for specificity, which was largely also the case for sensitivity aside from a few outliers.
MITARAI et al. [17] demonstrated a specificity of 61.6% (95% CI 52.9–69.7%). Of the 53 isolates incorrectly
identified as sensitive by LPA, 24 had a range of rare katG mutations not identified by any of the katG
probes, 17 had fabG1 inhA mutations and 12 were identified as wild-type by sequencing. MASCHMANN RDE

et al. [67] demonstrated a sensitivity of 60.4% (95% CI 45.3–74.2%) and reported that all 19 strains
misclassified as susceptible on LPA were found to have wild-type katG and inhA genes according to
targeted sequencing, indicating that there may have been mutations in other genes associated with INH
resistance or efflux systems that could not be detected by the LPA.

Diagnosis of multidrug resistance
Pooled analysis for all LPAs on all specimen types
57 datasets included data on the diagnostic accuracy of LPA for MDR-TB detection, with a total of 13033
samples that included 4248 (33%) confirmed MDR-TB cases [23–29, 32, 34, 35, 37, 38, 41–44, 48, 50, 52–56,
58–64, 66–69, 71–73, 75, 78, 80, 82, 84, 88, 90, 91, 93]. Bivariate meta-analysis of these datasets revealed a
pooled sensitivity of 92.9% (95% CI 90.4–94.8%) and specificity of 99.3% (95% CI 98.7–99.6%) (table 3 and
figure 3c). Figure 6 demonstrates homogenous results for specificity aside from a few outliers in which the
number of sensitive (non-MDR strains) was <15, which was largely also the case for these sensitivity outliers.

Comparison of diagnostic accuracy from direct versus indirect testing
Based on the analysis of all data, the estimates for sensitivity of LPA for RIF and INH resistance were almost
identical for LPA performed directly on sputum specimens and indirectly on culture isolates (96.3% and

MTBDRplus V1

MTBDRplus V2

RIGOUTS [80]
MASCHMANN RDE [67]
DORMAN [41]
SCOTT [84]
RAIZADA [77]
MIOTTO [68]
CABIBBE [35]
KAPATA [59]
FAROOQI [46]
CHEN [38]
LI [63]
DUBOIS CAUWELAERT [42]
FRIEDRICH [49]
GAUTHIER [30]
ALBERT [24]
SINGHAL [87]
FELKEL [47]
LEUTKEMEYER [64]
RAVEENDRAN [78]
IMPERIALE [57]
CHRYSSANTHOU [39]
TUKVADZE [91]
HILLEMANN [52]
MIOTTO [69]
YADAV [93]
BANU [31]
LYU [65]
SANGSAYUNH [82]
ANEK-VORAPONG [25]
BARNARD [32]
NATHAVITHARANA [72]
N’GUESSAN [71]
LACOMA [62]
ELISEEV [43]
ASENCIOS [27]
NIKOLAYEVSKYY [74]
AURIN [29]
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96.9% respectively for RIF, 89.2% and 91.0% for INH). Specificity was slightly increased for indirect testing
(99.3% compared with 98.2% for RIF, 99.7% compared with 98.4% for INH). The summary point estimates
approach the upper left-hand corner of the plots, suggesting good accuracy of LPAs for detection of RIF and
INH resistance whether tested directly or indirectly. No studies performed LPA testing on specimens and
culture isolates from the same patients precluding direct within-study comparisons.

Diagnosis of pulmonary M. tuberculosis using a culture-based reference standard
Data to answer this question were limited, as the majority of LPA studies identified by our search criteria
did not report results for M. tuberculosis detection. Of the 21 datasets that did report data on
M. tuberculosis detection, 15 studies were excluded because they either tested patients who were on
treatment or did not specify that patients on treatment were excluded.

Six datasets were included in the bivariate analysis [15, 41, 47, 49, 64, 84], with a total of 3451 samples that
included 1277 (37%) confirmed M. tuberculosis cases tested directly with LPA. Meta-analysis of datasets that
reported both sensitivity and specificity revealed a pooled sensitivity of 85.0% (95% CI 70.0–93.3%) and
specificity of 98.0% (95% CI 96.2–99.0%) independent of smear-status (table 4 and figure 3d). Of note, a post
hoc bivariate analysis of the 21 datasets (including those that did not exclude patients on treatment) revealed
a sensitivity of 94.8% (95% CI 87.8–97.9%) and specificity of 95.7% (95% CI 85.0–98.9%).
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FIGURE 6 Forest plots demonstrating sensitivity and specificity of all line probe assays for multidrug-resistant tuberculosis detection for both
specimen types compared with phenotypic drug susceptibility testing. TP: true positive; FP: false positive; FN: false negative; TN: true negative.
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Investigation of heterogeneity
Moderate heterogeneity was seen among the sensitivity estimates for M. tuberculosis detection, which
suggests that this pooled estimate has to be considered with caution (figure 7). Possible explanations
include testing of a high proportion of smear negatives by CRUDU et al. [15] and DORMAN et al. [41] (74%
and 50% respectively). SCOTT et al. [84] reported that they used frozen samples for LPA in comparison
with fresh samples and used a non-standard protocol for phenotypic DST testing, which may have
decreased sensitivity. Specificity estimates were homogeneous.

Primary sub-group analysis by smear status
Five out of six included datasets that evaluated LPA on direct testing of clinical specimens reported smear
status and were further evaluated. Two studies only reported on sensitivity and so bivariate meta-analysis
was not possible for the other three studies.

Univariate analysis of the smear positive data for all five studies, which accounted for 802 samples, of which 781
were confirmedM. tuberculosis cases, revealed a sensitivity of 94.4% (95% CI 89.4–99.4%). For the three studies
that contributed data to specificity, estimates were 50%, 100% and 100% [15, 49, 64]. The specificity of 50%
(95% CI 0.01–98.7%) by CRUDU et al. [15] represented one out of twoM. tuberculosis-negative specimens.

Five studies provided data on M. tuberculosis detection in smear negative cases, which accounted for 961
samples, of which 487 were confirmed M. tuberculosis cases. Sensitivity estimates across the studies ranged
from 0% to 76%. Four studies only contributed data to both sensitivity and specificity and a bivariate
meta-analysis revealed a pooled sensitivity of 44.4% (95% CI 20.2–71.7%) and specificity of 98.9% (95% CI
95.4–99.7%). The dataset by FRIEDRICH et al. [49] only tested one non-M. tuberculosis smear-negative
specimen that was misidentified as M. tuberculosis by LPA. Given the substantial heterogeneity and the
small number of studies, these estimates have to be interpreted with caution.

Secondary sub-group analysis by specimen condition
Given the low numbers of datasets reporting information on specimen condition, only a limited analysis
was possible. Two datasets performed LPA testing on frozen specimens and reported a sensitivity of 94.7%
and 76.1% respectively [47, 84]. Bivariate meta-analysis of the four datasets that performed LPA testing on

TABLE 4 Diagnostic accuracy of line probe assays for all three assays for Mycobacterium tuberculosis (MTB) detection

Reference standard Test Direct or indirect Smear status Datasets (samples) n Sensitivity (95% CI) Specificity (95% CI)

Culture reference MTB Direct All 6 (3451) 85.0% (70.0–93.3) 98.0% (96.2–99.0)
MTB Direct Positive 5 (802)¶ 94.4% (89.4–99.4) #

MTB Direct Negative 5 (961) 44.4% (29.2–71.7) 98.9% (95.4–99.7)
Culture reference MTB Direct: fresh Both 4 83.0% (61.9–93.6) 98.8% (97.2–99.5)
Culture reference MTB Direct: frozen Both 2+ # #

+: meta-analysis was not possible based on the number of datasets identified for this subset. #: not estimable. ¶: two of these five studies only
reported on sensitivity so bivariate meta-analysis for specificity was not possible. Of the three studies that contributed data on smear positive
specificity, estimates were 50% (n.b. only had 2 specimens that were MTB negative), 100% and 100%.
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FIGURE 7 Forest plots demonstrating the sensitivity and specificity of all the line probe assays evaluated for the diagnosis of pulmonary
Mycobacterium tuberculosis compared with culture. TP: true positive; FP: false positive; FN: false negative; TN: true negative.
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fresh specimens demonstrated a pooled sensitivity of 83.0% (95% CI 61.9–93.6%). No conclusion could be
drawn in regards to the effect of the specimen condition for the sensitivity of the test.

Secondary sub-group analysis by smear grade
It was not possible to perform a sub-group analysis to evaluate smear grade on the accuracy of LPA for M.
tuberculosis detection due to the lack of reported data on this variable. NATHAVITHARANA et al. [72] found that
smear grade affected indeterminate rates for RIF and INH detection (see section on indeterminate results) and
other studies also mentioned that smear grade affected the number of valid results, often resulting in studies
only evaluating smear-positive specimens or selecting specimens with the highest smear grade for analysis.

Sensitivity analyses
We assessed whether excluding studies that: selected for MDR-TB risk, used convenience sampling, used a
case–control design or did not blind operators (or if studies were unclear on these criteria). These
sensitivity analyses made no difference to any of the findings (appendix F, tables S4 and S5 in the
supplementary material).

Discussion
Principal findings
For the detection of RIF resistance, pooled bivariate analyses from 21225 samples (91 datasets)
demonstrated a sensitivity of 96.7% and specificity of 98.8%. For the detection of INH resistance, pooled
bivariate analyses from 20954 samples (87 datasets) demonstrated a sensitivity of 90.2% and specificity of
99.2%. Sensitivity and specificity were similar for direct and indirect testing for both RIF and INH. While
INH resistance was only detected with moderate sensitivity (90.2%), INH resistance is also highly
correlated with RIF resistance in high-burden settings [95] and a negative result in the context of RIF
resistance needs to be treated with caution. LPAs demonstrated good sensitivity (92.9%) and high
specificity (99.3%) for MDR-TB detection.

For the detection of M. tuberculosis, data were far more limited and results have to be interpreted with
caution. Pooled bivariate analyses from 3451 samples (six datasets) demonstrated a sensitivity of 85.0%
and specificity of 98.0% on directly tested specimens. Data on smear status were limited. However, our
analysis demonstrated that the assay performs well in smear-positive samples (sensitivity 94.4%) but only
detects about 44% of cases in smear-negative specimens. This compares with the 67% sensitivity for Xpert
MTB/RIF on smear-negative specimens when used as an add-on test [96]. However the smear-negative
sensitivity estimate is derived from only four datasets and a univariate analysis that included datasets with
patients on treatment provided a higher sensitivity estimate (58%). These estimates must therefore be
considered with caution given the substantial remaining heterogeneity observed.

Strengths and limitations of the meta-analysis
Our study includes the largest number of studies (74 studies, 21225 samples) evaluated as part of a
systematic review to assess the diagnostic test accuracy of LPAs for RIF resistance, INH resistance and M.
tuberculosis detection. The prior WHO-commissioned systematic review on LPAs in 2008 only assessed
detection of multidrug resistance without including accuracy for M. tuberculosis detection. It also evaluated
two assays (INNO-LiPA and Hain MTBDR), which did not detect INH resistance due to inhA mutations
and are no longer commercially available. Although the majority of datasets included in this study
evaluated Hain V1, our analyses included data on Hain V2 and Nipro, which have not previously been
reviewed systematically. A recent study demonstrated that the assays are non-inferior in respect to
resistance detection, while slightly favouring Hain V2 due to lower indeterminate results on paucibacillary
samples [72]. Differences between the index LPAs are therefore more likely to be due to variation in the
study populations than due to true differences in accuracy between the tests.

Overall, studies included for the assessment of diagnostic accuracy for RIF and INH resistance were fairly
homogeneous. Data from this systematic review reinforces the diagnostic accuracy estimates from the
previous systematic review [13] and again demonstrates a greater degree of heterogeneity for INH
compared to RIF. This is attributed to INH-resistance mutations being detected in a wider range of genetic
loci than for RIF. Other explanations for residual heterogeneity include the predominance of different
mutations between datasets due to strain and patient diversity with different mutations being seen in
mono-resistant versus MDR strains and heteroresistance also being more common in patients that develop
resistance on treatment rather than having transmitted resistance [97, 98]. Furthermore predominant mutations
have been described both for INH and RIF resistance that differ by geographic locations [10, 17, 99].

Targeted sequencing was only performed in approximately one-third of studies and often only on
discrepant results between LPA and phenotypic DST, which limits the validity of the composite reference
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standard analysis. Nonetheless, this analysis suggests that decreases in LPA sensitivity are likely due to
mutations outside of the probe hotspots or other mechanisms of resistance such as efflux pumps that are
also not detected by targeted sequencing. Use of the composite reference standard increased the specificity
for RIF and INH resistance detection due to reclassification of some LPA false positives when mutations
known to be of clinical significance were detected by LPA but missed by phenotypic DST [100, 101].

Aside from the large number of studies identified, strengths of this study included the use of a standard
protocol and predefined analyses using bivariate random-effects models. However, we also recognise some
limitations. Despite our comprehensive search strategy, we acknowledge that some relevant studies may have
been missed. Publication and selection bias could have resulted in overly optimistic estimates of the diagnostic
accuracy of LPAs. Many studies were laboratory based and did not report on the selection criteria of patients.
Others included patients that were exposed to MDR-TB patients or already identified as MDR-TB, which
may bias the expected pool of mutations detected. If LPAs are utilised more broadly in patients independent
of risk factors for drug resistance, then a slightly different pool of mutations and more heteroresistance may
impact their sensitivity [97, 98]. Available data for Hain V2 and Nipro were more limited. Further research
evaluating the effect of smear status, smear grade and other covariates such as HIV on the diagnostic accuracy
of LPAs is needed. A more comprehensive approach to a sequencing reference standard is needed as many
studies suffered from bias due to a discrepant analysis. It is also essential for authors of diagnostic accuracy
studies to follow the Standards for Reporting Diagnostic accuracy studies (STARD) criteria [102] and
QUADAS-2 framework to ensure methodological quality and adequate reporting [103].

Potential clinical and epidemiologic relevance of LPA use in practice
The first pillar of integrated patient-centred care and prevention of the End TB Strategy published by
WHO in 2015 [104] states the need for the “early diagnosis of tuberculosis including universal drug
susceptibility testing”. This highlights the importance of LPAs for the rapid diagnosis of tuberculosis and
multidrug resistance. LPAs are also recommended by the International Standards for Tuberculosis Control
(3rd Edition) [105] and represent a widely used assay for the diagnosis of MDR-TB, particularly in
settings where there are heightened concerns for INH mono-resistance. This review provides evidence to
support the ongoing use of LPAs based on their diagnostic accuracy when used directly on sputum
smear-positive specimens or indirectly on culture isolates, as an initial test or in parallel with culture-based
DST for the detection of M. tuberculosis and multidrug resistance based on data acquired from a range of
laboratory settings in different countries. In low- and middle-incidence countries, LPAs may also serve as
a critical tool for tuberculosis elimination efforts as part of laboratory surveillance as well as the prompt
diagnosis of tuberculosis including MDR-TB in high-risk groups, such as migrants [106–108].

WHO also released recommendations in support of the use of the shorter MDR-TB regimen [109] in May
2016 [110]. This regimen contains kanamycin, high-dose moxifloxacin, prothionamide (or ethionamide),
clofazimine, high-dose INH, pyrazinamide and ethambutol, given together in an initial phase of 4–6 months,
followed by 5 months of treatment with moxifloxacin, clofazimine, pyrazinamide and ethambutol. Although
the guidelines state that INH resistance does not preclude the use of this regimen, the efficacy of high-dose
INH in patients with katG mutations is unclear [111–114] and is currently the subject of an ongoing clinical
trial [115]. Similarly, due to cross-resistance, strains with inhA mutations are typically resistant to
ethionamide (and also prothionamide) although these patients may benefit from high-dose INH [73].
Therefore patients with katG and/or inhA mutations may potentially have between one and two fewer active
drugs in the regimen. Many patients started on the short MDR-TB regimen will have been diagnosed by
Xpert MTB/RIF, which does not detect INH resistance, and therefore knowledge of INH resistance mutations
obtained from first line LPAs (as evaluated in this study), while not required, may provide additional valuable
information to clinicians, provided it does not delay the start of therapy. Although culture-based DST may
also provide these answers, this usually takes several weeks and is not frequently done. This highlights a
possible adjunctive role for LPAs in the appropriate early management of MDR-TB [116, 117].

Conclusions
In adults with pulmonary tuberculosis, LPAs demonstrated high accuracy overall for the detection of RIF
resistance. LPAs demonstrated high specificity for INH resistance detection with good sensitivity. The
accuracy of LPAs for M. tuberculosis detection on smear-positive specimens is high, but suboptimal in
smear-negative samples. These results were used to inform updated WHO policy recommendations.
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