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Associations between genomic stratification of breast cancer
and centrally reviewed tumour pathology in the METABRIC
cohort
A. Mukherjee1,2, R. Russell3, Suet-Feung Chin 3, B. Liu3, O. M. Rueda3, H. R. Ali3,4, G. Turashvili5, B. Mahler-Araujo6, I. O. Ellis1,2,
S. Aparicio5, C. Caldas3,6 and E. Provenzano6,7

The integration of genomic and transcriptomic profiles of 2000 breast tumours from the METABRIC [Molecular Taxonomy of Breast
Cancer International Consortium] cohort revealed ten subtypes, termed integrative clusters (IntClust/s), characterised by distinct
genomic drivers. Central histopathology (N = 1643) review was undertaken to explore the relationship between these ten molecular
subtypes and traditional clinicopathological features. IntClust subtypes were significantly associated with histological type, tumour
grade, receptor status, and lymphocytic infiltration (p < 0.0001). Lymph node status and Nottingham Prognostic Index [NPI]
categories were also significantly associated with IntClust subtype. IntClust 3 was enriched for tubular and lobular carcinomas, the
latter largely accounting for the association with CDH1 mutations in this cluster. Mucinous carcinomas were not present in IntClusts
5 or 10, but did not show an association with any of the remaining IntClusts. In contrast, medullary-like cancers were associated
with IntClust 10 (15/26). Hormone receptor-positive tumours were scattered across all IntClusts. IntClust 5 was dominated by HER2
positivity (127/151), including both hormone receptor-positive (60/72) and hormone receptor-negative tumours (67/77). Triple-
negative tumours comprised the majority of IntClust 10 (132/159) and around a quarter of IntClust 4 (52/217). Whilst the ten
IntClust subtypes of breast cancer show characteristic patterns of association with traditional clinicopathological variables, no
IntClust can be adequately identified by these variables alone. Hence, the addition of genomic stratification has the potential to
enhance the biological relevance of the current clinical evaluation and facilitate genome-guided therapeutic strategies.
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INTRODUCTION
The molecular heterogeneity of breast cancer (BC) is well-
recognised.1–4 This molecular diversity is currently poorly
accounted for in the clinical setting. Approaches for effective
and systematic genomic stratification of BCs are urgently required
in order to facilitate therapeutic strategies.
The traditional classification of BC has utilised tumour

morphology and assessment of oestrogen receptor [ER], proges-
terone receptor [PR] and human epidermal growth factor receptor
2 (HER2) expression. Expression signatures1,3 mostly reflect
tumour classification based on these markers alongside prolifera-
tion, with luminal subtypes showing ER and/or PR expression, a
HER2-positive subtype, and basal-like BCs being usually negative
for all three receptors (triple-negative). This is now reflected in the
most recent TNM prognostic stage grouping, which incorporates
anatomic stage, grade, ER/ PR and HER2 receptor status and
Oncotype Dx recurrence score [8th edition AJCC cancer staging
manual].5

Next-generation sequencing has further refined the molecular
profiles.6,7 The METABRIC (Molecular Taxonomy of Breast Cancer

International Consortium) study identified ten subtypes of BC
termed integrative clusters (IntClust), by joint analysis of copy
number and expression data to detect the cis genomics.8 These
ten subtypes show characteristic copy number aberrations (CNAs),
and importantly are associated with distinct patterns of survival
and response to neoadjuvant chemotherapy.9 IntClusts 3, 4, 7 and
8 have the best prognosis, IntClusts 1, 6 and 9 have an
intermediate prognosis, and IntClusts 2, 5 and 10 a poor
prognosis.10 IntClust 4 comprises a mixture of ER-positive and
-negative tumours and is characterised by a relative paucity of
CNAs and a gene expression signature reflecting immune
activation. The majority of ER-positive and HER2-negative tumours
are distributed within 8 IntClusts (1, 2, 3, 4, 6, 7, 8 and 9), but have
variable degrees of genomic instability and distinct CNAs. For
example, IntClust 3 has low genomic instability and a high
frequency of PIK3CA mutations, IntClust 6 has amplification of
8p12 with upregulation of ZNF703, a common Luminal B BC
oncogene11 and IntClust 2 has high genomic instability and
amplification of 11q13/14. IntClust 10, composed of tumours with
a high rate of TP53 mutations and 5q deletion, has a very poor
prognosis in the short term, but patients surviving beyond 6 years
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following treatment have an excellent long-term outcome.
IntClust 5, associated with HER2 amplification, has the worst
prognosis in this cohort of patients derived from the pre-
trastuzumab era.
The tumours in the original METABRIC cohort were collected

between 1977–2005 from five centres in the UK and Canada. The
original annotation of these tumours was based on the primary
pathology reports, with obvious differences in terminology for the
classification of histological tumour types over time and between the
five contributing centres. Hence, the relationship between the IntClust
subgroups and traditional clinicopathological factors has not been
systematically investigated to date. Here, we have addressed this
shortcoming by conducting detailed central review of the tumour
pathology of the majority of cases comprising the original METABRIC
study and have tested for associations with IntClust subtype.

RESULTS
Patient profile
A total of 1643 cases (83%) from the METABRIC cohort were
available for central pathology review. The key clinicopathological
features of these cases are provided in Supplementary Table A (in
Supplementary File 1).

Histopathological parameters and IntClust associations
Tumour type. The IntClusts showed significant associations with
tumour type (p < 0.000001; for significant Chi-square residuals see
Fig 1; Table 1a for distribution). The commonest type, ductal NST,
was distributed across all IntClusts; however, NST tumours were
over-represented in IntClust 5 and 10, and under-represented in
IntClust 3. IntClust 3 is particularly interesting, as it shows a strong
association with tubular and lobular carcinomas, and an increase
in mixed-NST/ special type tumours. IntClust 3 shows an
association with CDH1 mutations. On closer analysis, this is largely
related to the lobular carcinomas within this IntClust; as would be
expected, none of the tubular carcinomas in IntClust 3 harboured
CDH1 mutations (OR 0.38 for tubular vs. 20.42 for lobular BC).
Mixed tumours were also increased in IntClust 8. Medullary
carcinomas were associated with IntClust 10 (15/26; 58%), which
did not contain any tubular, lobular or mucinous carcinomas.

Mucinous carcinomas were distributed in IntClusts 3, 4, 7 and 8,
but did not show an association with any one cluster.
Of 114 lobular carcinomas, 91 were in good prognosis IntClusts

(80%), ten were in intermediate prognosis IntClusts (9%), and 13
were in poor prognosis IntClusts 2 and 5 (5% and 4%,
respectively). 23 lobular carcinomas were of the solid/pleomorphic
varieties, traditionally associated with worse clinical outcome.
However, 13 of these fell in the good prognosis IntClusts (57%),
and conversely, only 5/13 lobular carcinomas in IntClust 5 and 2
were of solid/pleomorphic subtype (Table 1b). While histologic
subtype of lobular carcinoma did not explain the distribution
across IntClusts, there was a significant association of grade 3
lobular cancers with worse prognosis IntClusts (p = 0.02). Looking
at other variables, lesion size was not correlated with differential
distribution of lobular BC across IntClusts (p = 0.46).
Ductal NST tumours with apocrine differentiation fell in all

IntClusts except IntClust 2, with the largest proportion in IntClust
10 (9/31; 29%) (Table 1b). The distribution of the other rare BC
subtypes is given in Table 1b.

Tumour grade. IntClusts were significantly associated with the
overall tumour grade (p < 0.000001; Fig. 2) and with each of the
individual components (p < 0.000001) of grade: tubule formation,
nuclear pleomorphism and mitotic count (Supplementary Table B
in Supplementary File 1). Most grade 1 tumours fell in the good
prognosis IntClusts (172/187; 92%. Fig. 2), and were positively
associated with IntClusts 3 and 7 and negatively associated with 1,
5, 6, 9 and 10. Grade 2 tumours were spread across all IntClusts but
showed significant associations with IntClusts 3, 7 and 8. Grade 3
tumours showed a positive association with intermediate and poor
performing IntClusts 1, 5, 9 and 10, and a negative association with
IntClust 3, 4, 7 and 8. Despite these associations, 25% of grade 3
tumours fell in the good prognosis IntClusts (133/533). IntClust 2
has a poor prognosis and is resistant to neoadjuvant chemother-
apy, but showed no association with tumour grade.
The individual components of grade were examined separately.

Tumours with high tubule formation (tubule score 1) predomi-
nantly fell in IntClusts 3, 4 and 8 (Suppl Table Bi.a), which also
showed low mitotic counts (mitosis score 1) (Suppl Table Bii.a).
Poor tubule formation (tubule score 3) was more evenly
distributed across IntClusts. Tumours with high mitotic activity

Fig. 1 Integrative cluster associations with histopathological subtypes (HT) using Pearson Chi-square residuals
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(mitosis score 3) were concentrated in IntClusts 5 and 10, and
these IntClusts showed the highest proportion of tumours with
pleomorphism score 3 (Suppl Table Biii.a). The overall distribution
of grade 3 tumours mirrors the distribution of mitosis score more
closely than tubule formation, however, grade 1 tumours reflect
the distribution of both variables.

Lymphocytic infiltration. There was a significant association
between IntClusts and tumour lymphocytic infiltration (p < 0.001).

Two-hundred and thirty of 1637 cases showed high levels of
lymphocytic infiltration, and they were predominantly in IntClust 4
(n = 57) and 10 (n = 64) (Chi-square residuals 2.8 and 7.6,
respectively), representing 20% and 35% of cancers in these
IntClusts, respectively (Fig. 3).

Receptor status. Hormone receptor and HER2 status across the
entire cohort is summarised in Supplementary Table 1 (in
Supplementary File 1) and Supplementary Fig. 1. Data for all

Table 1a. Common breast cancer types vs. IntClusts

IntClust Tubular
carcinoma

Lobular
carcinoma

Mucinous
carcinoma

Medullary-like
carcinoma

NST NST-mixed Other Overall frequency of
IntClust

1 0 3a 3a 1 98 12 2 119 (7.2%)

CSR −1.4 −1.8 0.9 −0.6 0.8 −0.4 0.4

2 0 8a 1a 0 49 7 0 65 (4%)

CSR −1 1.6 0 −1 0 −0.1 −0.9

3 12 43 5 1b 134 44 1 240 (14.6%)

CSR 4.2 6.5 0.7 −1.4 −3.5 3.2 −1.2

4 6 27 8 5b 191 36 7 280 (17%)

CSR 0.7 1.7 1.8 −0.3 −1.5 0.8 1.8

5 0 5a 0 1 142 3 0 151 (9.2%)

CSR −1.5 −1.7 −1.5 −0.9 2.6 −3.4 −1.4

6 1a 4a 1a 0 56 6 1 69(4.2%)

CSR −0.1 −0.4 −0 −1 0.5 −0.6 0.1

7 3 6 3 0 130 25 4 171 (10.4%)

CSR 0.2 −1.7 −0.2 −1.6 0 1.3 1.2

8 4 15 3 0 176 43 2 243 (14.8%)

CSR 0.1 −0.5 −0.4 −2 −0.6 3 −0.6

9 0 3a 1a 3 101 9 3 120 (7.3%)

CSR −1.4 −1.8 −0.6 −0.8 1.1 −1.2 1.2

10 0 0 0 15 168 1 1 185(11.3%)

CSR −1.7 −3.6 −1.7 7.1 2.3 −4.4 −0.9

Total 26 (1.6%) 114 (6.9%) 25 (1.5%) 26 (1.6%) 1245
(75.8%)

186
(11.3%)

21 (1.3%) 1643 (100%)

Frequency distribution of different pathological types of breast carcinomas across the ten integrative clusters (IntClust)
CSR Chi-square residual values
aHighlights location of traditionally good prognosis subtypes in the intermediate/poor prognostic categories
bHighlights distribution of a cohort of medullary carcinomas in the good prognosis clusters

Table 1b. Special breast cancer subtypes vs. IntClusts

IntClust NST with
apocrine features

Solid/pleomorphic
lobular

Invasive
micropapillary

Invasive papillary with
or without ductal NST

Adenoid
cystic

Metaplastic Pleomorphic
carcinoma

1 1 2 0 2 0 0 0

2 0 3 0 0 0 0 0

3 2 8 1 0 0 0 0

4 5 3 1 2 2 1 1

5 3 2 0 0 0 0 0

6 2 1 0 1 0 0 0

7 1 1 1 3 0 0 0

8 3 2 0 2 0 0 0

9 5 1 2 1 0 0 0

10 9 0 0 0 0 1 0

Total 31 23 5 11 2 2 1

Distribution of some special types of cancers: solid/pleomorphic lobular; NST with apocrine features and the rare subtypes of BC
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three receptors were available for 1321 cases (Supplementary
Fig. 2) with significant associations observed between IntClust and
combined receptor status (p < 0.0001). Strengths of association of
ER and HER2 within IntClusts are depicted in the residual Chi-
Square analysis in Fig. 4 (PR was excluded as it produced small
subgroups limiting the statistical power).
ER + HER2- tumours were associated with IntClusts 3, 6, 7 and 8.

ER + PR + cases formed the majority in IntClusts 2 (73%), 3 (64%), 6
(60%), 7 (69%), 8 (75%) and 9 (51%), while ER + PR- was the

predominant fraction in poor prognosis IntClust 1 (47%).
HER2 status was available from IHC supplemented by copy

number analysis where required for 1611 cases (Supplementary
Fig. 1b). HER2 + tumours were associated with IntClust 5 regard-
less of hormone receptor status. The majority of HER2 + cancers
clustered in IntClust 5 (127/198; 64%); conversely, 84% of cancers
in IntClust 5 were HER2 + .
The majority of triple-negative cancers clustered in IntClust 10

(132/227; 58%) and formed the largest proportion of cases within

Fig. 2 Pearson Chi-square residuals for Integrative Cluster (IntClust) associations with grade [distribution of grade 1–3 within IntClusts to be
read left to right across x-axis; data labels show absolute values; areas within the tiles in the spine-plot are proportional representations; x-axis:
(of the whole cohort); y-axis: (within each IntClust)]

Fig. 3 Lymphocyte distribution within Integrative Clusters (IntClust) [data labels show absolute values; areas within the tiles in the spine-plot
are proportional representations; x-axis: (of the whole cohort); y-axis: (within each IntClust)]
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this group (132/159; 83%); of the remainder, 23% (52/227) group
in IntClust 4 and form 24% of this cluster (52/217).The remaining
IntClusts except IntClust 5 showed a negative association with ER
−HER2- status.

Lymph node-positive status and Nottingham Prognostic Index
[NPI]. A significant association was observed between lymph
node status and IntClust (p < 0.001). IntClusts 1, 5, 6 and 9 showed
a greater frequency of lymph node positivity compared to other
IntClusts (Fig. 5a; 50%, 64%, 58% and 58%, respectively) with the
strongest association in IntClust 5. IntClusts 3, 4, 7 and 8 showed
the lowest rates of lymph node positivity (39%, 43%, 41% and
42%, respectively). In the lymph node-positive group (n = 770),
384 cases (49%) were in good prognosis IntClusts, and only 216
(28%) were in the poor prognosis IntClusts. Lymph node negative
cases were mostly (546/868, 63%) distributed in good prognosis
IntClusts, but 138 (16%) were in intermediate prognosis and 184
(21%) were in poor prognosis IntClusts.
Given the strong associations with grade and lymph node

status, it is not surprising that IntClust stratification was also
significantly correlated (p < 0.001) with the NPI status (Fig. 5b).
Tumours in the poor prognosis IntClusts 5 and 10 had mostly high
NPI (poor and very poor NPI categories combined), 90% and 94%,
respectively, (Chi-square residuals 3.6 and 4.7, respectively). But
high NPI was also present in intermediate (IntClust 1–80%, IntClust
6–78% and IntClust 9–83%) and good prognosis IntClusts (IntClust
3–47%, IntClust 4–60%, 51% IntClust 7–51% and IntClust 8–48%).

Subgroup analysis of IntClust based on ER status. All IntClusts
were analysed for subgroups based on ER status, with distinct
subgroups observed within IntClust 4. Few significant observa-
tions were made in other IntClust, which were either predomi-
nantly ER + or ER−.
IntClust 4: Seventy-five cases were ER − (27%) and 204 were

ER + (73%); ER status was unavailable in 1 case. The ER + tumours
were of lower grade (17% grade 1 and 15% grade 3), compared
with ER − tumours (50% grade 3 and 4% grade 1; p < 0.0001).
Heavier lymphocytic infiltration was observed in ER − (43%) vs. ER
+ cancers (12%) (p < 0.001). ER + cancers were evenly spread

across good and poor NPI categories (46% and 54%, respectively),
whereas ER − cancers were skewed towards poorer NPI prognostic
categories (79%) (p = 0.0004).

Prediction of IntClusts from clinicopathological variables: regression
models. There is only a 39% agreement between IntClusts
predicted from clinicopathological variables vis a vis DNA/RNA
classifier (Supplementary Fig. 3a). The probability of prediction of
each individual IntClust based on clinicopathological variables
alone was < 0.25 for all IntClusts (Supplementary Fig. 3b). A model
of conditional independence including grade or receptor status
did not explain the distribution of histological types within each
IntClust (Supplementary Table Ci and Cii in Supplementary File 1).

Comparison of IntClust classification vs. other classifiers. The
predominant PAM50 category distribution among the IntClusts
was as follows: 1 (LumB 66%); 2 (LumB 48%); 3 (LumA 69%); 4
(LumA 34%); 5 (Her2 55%); 6 (LumB 49%); 7 (LumA 66%); 8 (LumA
67%); 9 (LumB 48%) and 10 (Basal-Like 88%) (Supplementary
Table Di in Supplementary File 1).
The predominant SCMGENE12 category distributions among the

IntClusts were as follows: ER + /Her2-ve, high proliferation BCs
formed the predominant subtype in IntClusts 1 (63%), 2 (66%), 6
(71%), 9 (67%) while ER + /Her2-ve, low proliferation BCs
predominated in IntClusts 3 (70%), 4 (45%), 7 (46%) and 8
(51%). Eighty-three percent of IntClust 5 was Her2 + while 75%
of IntClust 10 was ER − /HER2-ve (Supplementary Table Dii in
Supplementary File 1). All currently known genomic and
pathological associations for IntClusts are summarised in Supple-
mentary Table E.

DISCUSSION
Following central review of tumour pathology, we found that the
genome driver-based IntClust subtypes of BC show characteristic
patterns of association with clinicopathological variables. Our
findings highlight that molecular BC subtyping based on multi-
platform analyses converge with traditional histopathological
features, and that the two are complementary.

Fig. 4 Pearson Chi-square residuals for IntCluster correlations with receptor subtype (ER/HER2)
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Our study has several limitations. Materials were from archival
samples at multiple institutions and pre-dated the trastuzumab
era. There is a bias towards banking of large cancers in the
historical tumour bank collections that comprise the METABRIC
cohort (as compared to 70% T1 tumours in ONCOPOOL,13 only
43% were T1 in METABRIC) and this may skew the distribution of
pathological and prognostic variables within the IntClusts.
Histopathological parameter modelling of prognostic effects
within the IntClusts, though attempted, was underpowered in
sub-categories to draw definite conclusions. Addressing the
prognostic and predictive effects of histological features within
the IntClusts will require analyses on larger data sets from multiple
sources, with detailed pathological and clinical annotation.
Tubular carcinomas, a well-recognised special type of BC,

showed the least variability and were distributed in the good
prognosis IntClusts consistent with the excellent behaviour of
tubular carcinomas documented in other series.14 The strongest
association was with IntClust 3, defined by low genomic instability
and a high incidence of PIK3CA mutations. Of the remaining
tubular carcinomas, 3 fell in IntClust 7 (with 16q loss and MAP3K1
mutations), 4 fell in IntClust 8 (1q gain, 16q loss and PIK3CA and
GATA3 mutations) and 6 belonged to IntClust 4 (few copy number
alterations and activation of immune pathways). This illustrates
that a histologically distinct special type BC can have diverse
genomic drivers.
Other typically ER + histological types, including lobular and

mucinous cancers, showed a more variable distribution across
IntClusts. IntClust 3 is enriched for CDH1 mutations, and this is
secondary to the association with lobular carcinoma. Although the
majority of lobular carcinomas belong to the good prognosis

IntClusts, a significant number were found in the intermediate and
poor prognosis IntClusts. This distribution was not explained by
pleomorphic or solid subtype, but showed an association with
grade 3 lobular tumours. This supports the findings of Rakha
et al.,15 who found an association with worse prognosis for grade
3 lobular carcinomas, but not the pleomorphic subtype on its own.
Of interest, the two largest groups of lobular carcinomas were
present in IntClust 3 and 4; both defined by low genomic
instability. The former is associated with frequent PIK3CA
mutations, while the latter is associated with immune response.
Immune related and hormone-related subtypes of lobular
carcinomas have been recently described in the TCGA (The
Cancer Genome Atlas)16 and RATHER cohorts.17 This may offer
novel treatment options for lobular BC dependent upon the
molecular profile.
Mucinous tumours were relatively evenly distributed across all

IntClusts except IntClusts 5 and 10. This finding highlights the
heterogeneity in underlying genomic drivers of mucinous
tumours despite their distinctive morphological appearance and
typical ER + HER2− phenotype. Mucinous carcinomas less fre-
quently harboured 1q and 16p gain and 16q and 22q loss
compared to other histotypes in this series, as described by
others.18

The prognostic relevance of medullary-like BC remains con-
troversial.19 Here, most triple-negative and basal-like cancers
including medullary-like tumours belonged to IntClust 10, which is
associated with the greatest genetic instability, harbouring
characteristic cis-acting alterations (5q loss and 8q, 10p and 12p
gain) associated with impaired DNA damage repair and cell-cycle
checkpoint regulation. However, a significant proportion also fell

Fig. 5 Prognostic features: a Lymph node positivity and b NPI categories vs. Integrative Clusters (IntClust) [data labels show absolute values;
areas within the tiles in the spine-plot are proportional representations; x-axis: (of the whole cohort); y-axis: (within each IntClust)]
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in IntClust 4 characterised by low genomic instability and
prominent lymphocytic infiltration. A CD8 + lymphocyte infiltrate
is a good prognostic feature in basal-like cancers20,21 and further
evidence is emerging that lymphocytic infiltration may risk stratify
patients.22 It has become apparent that a subset of ER − breast
tumours, including those that belong to IntClusts 4 and 10, are
associated with a significant immune response conferring better
outcome.
Some special type tumours were present in relatively small

numbers in the series precluding ability to draw definitive
conclusions. Papillary carcinomas, which are a mixture of Luminal
A and B types,23 fell within good and intermediate prognosis
IntClusts. Despite their association with lymphovascular invasion
and suggested poorer outcome in some series,24 micropapillary
carcinomas fell across the good prognosis IntClusts 3, 4 and 7 with
two in IntClust 9 defined by high-genetic instability, 20q
amplification and intermediate prognosis. The two Adenoid cystic
carcinomas both fell into IntClust 4, consistent with their known
indolent behaviour despite their basal-like features, and have
recently been shown to harbour a characteristic MYB-NFIB gene
translocation with low background genetic instability.25,26

Ductal NST carcinomas lacking the characteristics of a special
histological type form a morphologically and prognostically
heterogeneous group, so it is unsurprising that they are
distributed across all IntClusts. Two thirds of the NST carcinomas
showing apocrine differentiation fell in the intermediate and poor
IntClusts, with only 10% in IntClust 5 consistent with reported
HER2 positivity rates for these tumours.27 Interestingly, mixed-NST
and special type tumours predominantly fell in the good
prognosis ER + IntClusts 3 and 8, possibly reflecting more indolent
underlying molecular biology related to the special type
component.
Grade is a routinely assessed traditional pathological prognostic

factor, which shows strong association with patient outcome.28

Although there was an association between grade and IntClust,
tumours of grades 1–3 fell across all IntClusts except 10. Grade 1
tumours were more predictive of IntClust subtype, whereas grade
3 tumours were found in all IntClusts including those associated
with good clinical outcome. Hence, tumour grade has limited
utility in predicting the underlying genomic drivers of an
individual cancer. Grade 3 cancers in intermediate and poorer
prognostic IntClusts had a higher proportion of BC-specific deaths
[1: 31%; 2: 44%; 5: 38%; 6: 30%; 9: 27%; 10: 29%] than grade 3
cancers in good prognosis IntClusts [3: 16%; 4: 21%; 7: 10%; 8:
24%]. Hence the genomic heterogeneity may explain differential
rates of BC-specific death within grade 3 BC.
Looking at the individual components of grade, poor tubular

differentiation was the only component that was significantly
associated with BC-specific deaths in the whole cohort (p = 0.001),
as well as ER + (p = 0.02) but not ER-ve subgroups (p = 0.89). A
recent study of the molecular portraits of BC including the
METABRIC cohort29 indirectly surmised that differentially
expressed genes associated with poor tubular differentiation
differed from signatures of either marked nuclear pleomorphism
or higher mitotic counts, which were both enriched for prolifera-
tion genes. Given the sporadic distribution across IntClusts for BCs
with poor tubular differentiation, it is unsurprising that these are
not enriched for a particular gene-set, and the tubular differentia-
tion component of grade may be a product of several biologically
complex events.
Interestingly in METABRIC the genomic diversity of ER +

tumours seems to be more prominent than that of ER − tumours.
A proportion of every IntClust was formed by ER + tumours. This
mirrors the findings of Horlings et al.30 who observed that ER +
BCs are characterised by considerable variation in levels of genetic
instability.
HER2 + tumours predominate in IntClust 5 regardless of ER

status, but they also occur in other groups. The diversity of

clinically HER2 + tumours has been reported previously; using
PAM50 only 64% are assigned to the HER2-enriched group, the
remainder distributing across all intrinsic subtype categories.31,32

Clinical HER2 status was shown to be non-contributory to
prognosis after intrinsic subtype categorisation.31 Our findings
provide a further example of the added value of molecular tumour
subtyping in identifying tumours where HER2 is the primary
molecular driver regardless of clinical HER2 status. There were 64
cases where there was a discrepancy between HER2 immunohis-
tochemistry performed on Tissue Micro-Arrays (TMAs) and HER2
copy number data (HER2 positivity defined as copy number > 6).
Of these, 59 cases (92%) appear to have false-negative immuno-
histochemical staining, with a HER2 copy number ranging from
6.02 to 51.2 (mean 12.9). False-negative immunohistochemistry
results may be explained by inadequate fixation in this historical
series of tumours, and by sampling errors in TMAs related to
intralesional heterogeneity. Fourteen false-negative cases fell
within IntClust 5 (mean HER2 copy number 22.4), strengthening
the association between this IntClust and HER2 amplification. An
analysis of the NOAH study found that HER2-enriched tumours
showed a higher pathological complete response rate following
trastuzumab therapy compared with non-HER2-enriched clinically
HER2 + tumours.33 Patients in the METABRIC cohort had not
received trastuzumab, and it remains to be demonstrated if the
IntClust 5 group respond better to HER2-targeted agents.
Pathway analysis within the IntClusts can help us understand

why some tumours with distinctive morphology behave aber-
rantly in terms of prognosis. Molecular interrogation of different
histological subtypes of BC for such new drivers will help further
unravel links with microscopy. For example, the molecular profile
of ER-positive luminal A BCs has been investigated from six
different data sets including the TCGA and METABRIC.34 The copy
number high Luminal A sub-class has been shown to have a
poorer prognosis compared to the low copy number variety.34

This category harbours 8q gain, 5q loss and 20q gain and parallels
the intermediate and poor prognosis IntClusts in the METABRIC
landscape. Given the ability of METABRIC IntClusts to provide
prognostic information, it is unsurprising that the IntClusts
associate strongly with parameters such as grade and lymph
node status and to the traditional NPI.35 However, positive lymph
node status or high NPI can occur even in the good prognosis
IntClusts. IntClust subtype provides a basis for the behavioural
diversity in historical prognostic models, and integration of
genomic data with clinicopathological factors offers superior
prognostic models to either variable alone.36,37

In summary, we have conducted a central pathology review of
the largest case series of BC with matched genomic data. While
the genome-driven IntClusts are significantly associated with
traditional clinicopathological variables, IntClust subtype could not
be reliably predicted based on current histological parameters
alone. Adoption of genome-guided therapeutic strategies first
requires classification of tumours into homogenous groups in
terms of genomic alterations. IntClust subtypes are classified on
this basis; therefore, a test for prospective assignment of IntClust
subtype in the clinical setting, especially for predictive analyses,
would be useful.

METHODS
Genomic and transcriptomic profiling and generation of
integrative clusters
All patient samples were acquired with appropriate consent from
respective institutional review boards (REC ref 07/H0308/161; REC ref 12/
EE/0484; REC ref 07/Q0106/63). DNA and RNA isolation from samples was
followed by hybridisation to the Affymetrix SNP 6.0 and Illumina HT-12 v3
platforms for profiling. Full details of genomic and transcriptomic profiling
and CNA/ variation analyses and allocation to integrative clusters are
described in Curtis et al.8 IntClusts 3, 4, 7 and 8 are defined as the good
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prognosis groups, IntClust 1, 6 and 9 as intermediate prognosis groups,
and IntClust 2, 5 and 10 as poor prognosis groups.10

Inclusion criteria and histopathology review
Cases were included from the METABRIC cohort (n = 1980) only if histology
slides were available for central pathology review along with matched
clinical and expression analyses data. Any cases with no tumour slides
available or non-invasive disease only were excluded from analysis.
A representative H&E section from each case was reviewed by a

specialist breast pathologist (A.M., E.P., I.O.E., G.T., B.M.-A.). The following
variables were assessed: histological tumour type,38 histological grade39

(including the individual components tubule formation, nuclear pleo-
morphism and mitotic frequency), lymphocytic infiltration, presence of
lymphovascular invasion, and presence of in situ disease (DCIS and LCIS)
and precursor lesions. For purposes of analyses, tumour types were
grouped as follows: tubular (including tubular, cribriform and tubulo-
lobular cancers), lobular (including classical, alveolar, solid and pleo-
morphic patterns), mucinous, medullary-like, NST, mixed-NST and special
type, and other rare types (including metaplastic, adenoid cystic, papillary,
micropapillary, apocrine).
At least 25% of the cases (n = 405) were reviewed by two or more of the

study histopathologists. Any discrepancies in histological type and grade
between the central reviewers were resolved by consensus review of
scanned images. The concordance between the specialist breast pathol-
ogists was excellent (kappa statistic 0.9) for all variables assessed.
Information on lymph node stage and tumour size was available from

original histopathology reports. Lymphocytic infiltration was categorised as
either ‘low’ (absent to mild) or ‘high’ (moderate to severe).

Receptor status determination
Tissue micro-arrays were constructed from the BC cases as per standard
protocol.40 Micro-arrays were stained for ER, PR and HER2 using routine
immunohistochemistry protocols summarised in Supplementary Table F
(Supplementary File 1).41 The proportion of cells staining positively (Allred
score) was used to determine ER and PR status: 0 = 0, < 1% = 1, 1%–9% = 2,
10%–32% = 3, 33–66% = 4, > 66% = 5.42 Any score of 2 or above was
deemed positive. For cases with missing IHC data (due to missing/
unavailable cores), the ER, PR status was supplemented from the
histopathology reports at the time of diagnosis. HER2 was scored as per
UK guidelines.43 A 2 + score or missing HER2 status was supplemented by
results from original histopathology reports, if available, or from METABRIC
HER2 gene copy number analysis ( > 6.0 copies deemed positive).44

Prediction of IntClusts from clinicopathological variables:
regression models
In order to determine whether clinicopathological variables could predict
molecular subtype, ten multivariable logistic regression models were fit for
each of the ten IntClust groups, with the dependent variable as one
IntClust vs. the remaining nine clusters. Clinical and pathological variables
(NPI category, tumour size, lymphocytic infiltration, grade, ER status,
HER2 status, histological subtype and lymph node status) were taken as
predictors of each IntClust. The predicted probability of a tumour
belonging to each of the ten clusters was derived based on these models.
Final IntClust subtyping was based on the highest assigned probability and
these assignments compared to gold-standard subtyping based on
genomic data. Also, to evaluate whether grade or receptor status explains
the differences in histological types within IntClusts, a log-linear model of
conditional independence: [IntClust-Grade, Histology-Grade] and a more
general model that also includes the association between IntClusters and
Histology: [IntClust-Grade, Histology-Grade, IntClust-Histology] were fitted.
The two models were compared with the Deviance test, showing that the
more general model produced a better fit to the data (p-value < 0.01) and,
therefore, the distribution of tumour grade does not explain properly the
distribution of histological types in each IntClust.

Comparison of IntClust distribution with other classifiers
IntClust classification for the cohort was compared with PAM50 and
SCMGENE classification, as described by Ali et al.9

Statistical analyses
Associations were studied between IntClust and histopathological para-
meters and analysed by Chi-square analyses using SPSS. A p-value of < 0.05
was considered to be statistically significant. For association of individual
subtypes of histopathological parameters with IntClusts, Pearson residuals
of the Chi-squared test was calculated and a threshold of + /−2.5 was
deemed significant.

Data availability statement
All primary data, deposited at the EGA (EGAS00000000083), may be
downloaded by requesting the METABRIC Data Access Committee. Gene
expression data, copy number data from the original METABRIC publica-
tion can be found on the freely available cBioPortal. Published IDs for the
cases included in the study have been provided in a supplementary file
[Supplementary File 5: Published IDs.doc].
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