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Abstract

Background There has been increasing interest in quan-
titative myocardial blood flow (MBF) imaging over the
last years and it is expected to become a routinely used
technique in clinical practice. Positron emission tomog-
raphy (PET) using ['°O]H,O is the established gold
standard for quantification of MBF in vivo. A fundamental
issue when performing quantitative MBF imaging is to
define the limits of MBF in a clinically suitable popula-
tion. The aims of the present study were to determine the
limits of MBF and to determine the relationship among
coronary artery disease (CAD) risk factors, gender and
MBF in a predominantly symptomatic patient cohort
without significant CAD.

Methods A total of 128 patients (mean age 54+10 years, 50
men) with a low to intermediate pretest likelihood of CAD
were referred for noninvasive evaluation of CAD using a
hybrid PET/computed tomography (PET/CT) scanner. MBF
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was quantified with ['?O]H,O at rest and during adenosine-
induced hyperaemia. Obstructive CAD was excluded in
these patients by means of invasive or CT-based coronary
angiography.

Results Global average baseline MBF values were 0.91+
0.34 and 1.09+0.30 ml'min '-g"' (range 0.54-2.35 and
0.59-2.75 ml'min "-g"") in men and women, respectively
(»<0.01). However, no gender-dependent difference in
baseline MBF was seen following correction for rate—
pressure product (0.98+0.45 and 1.09+0.30 ml'min '-g™!
in men and women, respectively; p=0.08). Global average
hyperaemic MBF values were 3.44+1.20 ml'min 'g”' in
the whole study population, and 2.90+£0.85 and 3.78+
1.27 ml'min~'-g”™' (range 1.52-5.22 and 1.72—
8.15 ml'min "-g™') in men and women, respectively
(»<0.001). Multivariate analysis identified male gender,
age and body mass index as having an independently
negative impact on hyperaemic MBF.

Conclusion Gender, age and body mass index substantially
influence reference values and should be corrected for
when interpreting hyperaemic MBF values.

Keywords Myocardial blood flow - Positron emission
tomography - Non-obstructive CAD - CAD risk factors -
Gender

Introduction

There has been increasing interest in quantitative myocar-
dial perfusion imaging over the last years and it is expected
to become routinely implemented in clinical practice [1-3].
Myocardial blood flow (MBF) measurements add incre-
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mental value to the diagnosis and evaluation of coronary
artery disease (CAD) compared with qualitative perfusion
imaging techniques [1, 4, 5]. Furthermore, quantitative
MBEF values can be used to evaluate the effect of life-style
changes and pharmacological interventions in patients with
CAD risk factors and impaired MBF. Positron emission
tomography (PET) is the established gold standard for
quantitative MBF imaging [1, 3, 4, 6]. A number of PET
tracers (e.g. ['*NINH;, %?Rb, and ['°O]H,0) are currently
available and are well validated [7-10]. Nonetheless, the
number of studies that have routinely evaluated the use of
quantitative MBF values in the diagnosis of CAD are
scarce [5, 11]. One of the fundamental issues when
performing quantitative MBF imaging, is to define lower
limits of (hyperaemic) MBF. Although databases are
available with normal MBF values, these data were
predominantly obtained in healthy volunteers in whom
CAD had not been excluded [12-14]. Furthermore, the
limits of MBF values obtained from these studies are of less
clinical value, taking into consideration that these studies
were performed in asymptomatic individuals without
multiple risk factors for CAD, which are known to affect
MBF even in the absence of epicardial atherosclerosis [15].

Therefore, the aims of this study were to determine the
limits of MBF and to investigate the impact of age, gender
and CAD risk factors on MBF using ['°O]JH,O PET in a
large clinical cohort of patients suspected of having and
with risk factors for CAD but in whom significant CAD
was excluded by invasive coronary angiography (ICA) or
CT-based coronary angiography (CTCA).

Methods
Patient population

Data were obtained from a cohort of 325 patients being
evaluated for CAD and therefore referred for CTCA,
coronary artery calcium (CAC) scoring and PET MBF
measurements using a hybrid PET/CT scanner (Gemini TF
64; Philips Healthcare, Best, The Netherlands). Patients
were referred because of stable (atypical) angina or an
elevated risk of CAD (presence of two or more risk factors)
in the absence of symptoms. Hypertension was defined as a
blood pressure >140/90 mmHg or the use of antihyperten-
sive medication. Hypercholesterolaemia was defined as a
total cholesterol level of >5 mmol/l or treatment with
cholesterol-lowering medication. Patients were classified as
having diabetes if they were receiving treatment with oral
hypoglycaemic drugs or insulin. A positive family history
of CAD was defined as the presence of CAD in first-degree
relatives younger than 55 years (men) or 65 years (women).
Obstructive CAD was considered to have been ruled out

when either one of the following criteria was met: (1)
absence of a luminal stenosis of more than 30% as
observed on ICA or a measured fractional flow reserve
(FFR) of >0.8; and (2) when ICA was not available, a
CAC score of zero combined with a CTCA of
sufficient quality to enable adequate grading of all
major coronary segments which did not display a
noncalcified plaque. Exclusion criteria were atrial
fibrillation, cardiomyopathies, renal failure defined as
glomerular filtration<45 ml'min~', second- or third-
degree atrioventricular block, symptomatic asthma, or
pregnancy. A total of 128 out of the 325 evaluated
patients met these criteria and were evaluated in the
current study (50 men, age range 32-75 years; 78 women,
age range 31-83 years). None of the patients had a
documented history of CAD. Electrocardiography did not
show signs of a previous myocardial infarction, and
echocardiography showed a normal left ventricular func-
tion without wall motion abnormalities in all patients.
CAD pretest likelihood was determined according to the
Diamond and Forrester criteria [16], using cut-off values
0f<13.4%, >87.2% and in between for low, high and
intermediate pretest likelihood, respectively. Patient char-
acteristics are shown in Table 1.

PET imaging

Patients were instructed to refrain from intake of products
containing caffeine or xanthine during the 24 h before the
scan. After a scout CT scan for patient positioning and
2 min after the start of intravenous adenosine infusion
(140 pgkg "min™"), 370 MBq of ['°> O]JH,O was injected
as a 5 -ml (0.8 ml's ") bolus, followed immediately by a
35 -ml saline flush (2 ml's™'). A 6-min emission scan was
started simultaneously with the administration of ['> O]
H,O. This dynamic scan sequence was followed immedi-
ately by a respiration-averaged low-dose CT scan to
correct for attenuation (55 mAs, rotation time 1.5 s, pitch
0.825, collimation 16%0.625, acquiring 20 cm in 37 s)
during normal breathing [17]. Adenosine infusion was
terminated after the low-dose CT scan. After an interval
of 10 min to allow for decay of radioactivity and washout
of adenosine, an identical PET sequence was performed
during resting conditions. Images were reconstructed
using the 3-D row action maximum likelihood algorithm
into 22 frames (1x10, 8x5, 4x10, 2x15, 3x20, 2x30
and 2x60 s), applying all appropriate corrections.
Parametric MBF images were generated and quantitatively
analysed using software developed in-house (Cardiac VUer)
[18, 19]. MBF was expressed in millilitres per minute per
gram of perfusable tissue and analysed on a per-segment
basis according to the 17-segment model of the American
Heart Association [20].
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Table 1 Baseline patient

characteristics according to Men (n=50) Women (n=78) p-value
gender
Age (years, mean=SD) 52410 55+10 0.18
Risk factors for CAD
BMI (kg'm 2, mean+SD) 27+4 27+4 0.52
Diabetes mellitus, n (%) 11 (22) 10 (13) 0.17
Hypertension, n (%) 18 (36) 33 (42) 0.48
Hypercholesterolaemia, n (%) 12 (24) 25 (32) 0.33
Family history of premature CAD, n (%) 21 (42) 39 (50) 0.38
History of smoking, n (%) 19 (38) 33 (42) 0.63
Medication, n (%)
Statins 24 (48) 39 (50) 0.83
Beta-blockers 26 (52) 48 (62) 0.29
Aspirin 28 (56) 46 (59) 0.74
ACE inhibitors 5 (10) 13 (17) 0.21
AT-II antagonists 4 (8) 14 (18) 0.09
Calcium antagonists 9 (18) 15 (19) 0.86
Long-acting nitrates 7 (14) 8 (10) 0.52
Reason for referral, n (%)
Typical angina pectoris 7 (14) 18 (23) 0.21
Atypical angina pectoris 19 (38) 37 (47) 0.29
Non-anginal chest pain 16 (32) 17 (22) 0.20
High risk, no chest discomfort 8 (16) 6 (8) 0.14
Pretest likelihood of CAD, n (%)
Low 10 (20) 25 (32) 0.14
Intermediate 35 (70) 45 (58) 0.16
High 5(10) 8 (10) 0.96
CT imaging evaluated according to a 16-segment coronary artery model

Patients with a stable heart rate below 65 bpm (either
spontaneous or after administration of oral and/or intrave-
nous metoprolol) underwent a CT scan for CAC scoring
and/or CTCA. A standard scanning protocol was applied,
with a section collimation of 64x0.625 mm, a gantry
rotation time of 420 ms, a tube voltage of 120 kV, and a
tube current of 800—1,000 mA (for CTCA) or 100-120 mA
(for CAC scoring) depending on the patient’s body size. All
scans were performed with electrocardiogram-gated dose
modulation to decrease the radiation dose. Calcium scoring
was obtained during a single breath-hold and coronary
calcification was defined as a plaque with an area of
1.03 mm? and a density =130 HU. The CAC score was
calculated according to the method described by Agatston
et al. [21]. After CAC scoring, CTCA was performed,
whereby a bolus of 100 ml iodinated contrast agent was
injected intravenously (5 mls™") followed by a flush with
50 ml 0.9% NaCl. All CT scans were analysed on a 3-D
workstation (Brilliance; Philips Medical Systems, Best, The
Netherlands) by an experienced radiologist and cardiologist
who were blinded to the PET results. The coronary tree was
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modified from that of the American Heart Association [22].
Invasive coronary angiography

ICA was performed according to standard clinical protocols.
The coronary tree was divided according to a 16-segment
coronary artery model modified from that of the American
Heart Association [22]. Significant CAD was ruled out when
no stenosis was present or the stenosis diameter was visually
scored as <30% or the FFR was >0.80. The FFR was
measured using a 0.014-inch sensor tipped guide wire, which
was introduced through a 6F or 7F guiding catheter,
calibrated and advanced into the coronary artery. Furthermore,
adenosine was infused either intravenously (140 pg'kg "'min")
or into the right and left coronary artery (40 pg) to induce
maximal coronary hyperaemia. The FFR was calculated as the
ratio of the mean distal intracoronary pressure measured with
the pressure wire to the mean arterial pressure measured with
the coronary catheter [23]. A stenosis with a FFR of >0.80
was considered as a haemodynamically nonsignificant
stenosis. All images were interpreted by at least two
experienced interventional cardiologists.
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Table 2 Systemic haemodynamic characteristics of the patients at baseline and during hyperaemia

Parameter Men (n=50) Women (n=78) p-value

Heart rate (bpm) Baseline 60+8 62+9 0.19
Hyperaemia 79+14 82+14 0.27
p-value (overall difference) <0.001 <0.001

Systolic blood pressure (mmHg) Baseline 109+16 110+16 0.65
Hyperaemia 113£17 11419 0.72
p-value (overall difference) 0.27 0.20

Diastolic blood pressure (mmHg) Baseline 60+10 59+7 0.93
Hyperaemia 60+7 59+8 0.63
p-value (overall difference) 0.39 0.60

Rate—pressure product (rnml-lg~min71) Baseline 6,523+1,423 6,876+1,551 0.20
Hyperaemia 8,959+2,184 9,372+2,370 0.33
p-value (overall difference) <0.001 <0.001

Mean arterial pressure (mmHg) Baseline 76+£11 76+9 0.85
Hyperaemia 76+10 77£11 0.66
p-value (overall difference) 0.90 0.64

Data interpretation

To account for changes in baseline MBF caused by cardiac
workload, baseline MBF values were corrected for the rate—
pressure product (RPP), an index of myocardial oxygen
consumption [24], by multiplying baseline MBF by the
mean RPP in the patients as a group, divided by the RPP in
the individual patient [25]. Coronary flow reserve (CFR)
was defined as the ratio between hyperaemic and baseline
MBEF. The corrected CFR was defined as the hyperaemic
MBF divided by corrected baseline MBF. Furthermore, the
coefficient of variation (COV) was calculated as the ratio of
the standard deviation and the mean value of the MBF
multiplied by 100.

Fig. 1 Flow chart showing
criteria for exclusion of
obstructive CAD (/CA invasive
coronary angiography, FFR
fractional flow reserve, CTCA
CT coronary angiography,
CACS coronary artery

calcium score)

Statistical analysis

Continuous variables are presented as mean values + SD,
whereas categorical variables are expressed as actual
numbers. Continuous variables were compared between
males and females using the paired or unpaired two-sided
Student’s#-test or the Mann-Whitney test, as appropriate.
Differences between categorical variables were analysed by
the chi-squared test with Yates’ correction. Differences in
MBF between different myocardial regions and vascular
territories were compared using one-way analysis of variance
with Bonferroni’s correction for multiple pair-wise compar-
isons for localizing the source of the difference. Differences in
MBEF and CFR predicted by given differences in risk factors

Study population

(n =128, 50 men)

ICA No stenosis on CTCA
& CACS =0
(n =42, 17 men) (n =82, 33 men)

FFR > 0.80

(n =8, 3men)

Completely normal Stenosis < 30%

or minor wall irregularities

(n =30, 11 men) (n =4, 3men)

@ Springer
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Fig. 2 Frequency distributions a
of global baseline (a) and 50 -
hyperaemic (b) MBF in the
whole study population (a COV _ 40
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were estimated by linear regression analysis. Each variable
was first modelled separately. All variables that were
significant with univariate analyses were then entered
simultaneously in a multivariate regression analyses model
using backward elimination. Values of p <0.05 were
considered statistically significant. All statistical analyses
were performed using SPSS software package (SPSS 15.0;
Chicago, IL).

Results

Significant CAD was considered to be ruled out by ICA or
CTCA (Fig. 1). As shown in Table 1, CAD risk factors and
the use of medication were equally distributed between men
and women. The pretest likelihood for CAD was predomi-
nantly low (27%) or intermediate (63%), and did not show a
gender difference.

Haemodynamics

There was a significant increase in heart rate and RPP from
baseline to hyperaemia (61+9 to 81+14 bpm, and 6738+1506
to 9207+2298 mmHg'min ', respectively; both p<0.001).
There were no significant changes in systolic (p=0.09) or
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diastolic (»p=0.33) blood pressure, or mean arterial pressure
(»p=0.66). Table 2 summarizes the haemodynamic character-
istics of the patients at rest and during adenosine-induced
hyperaemia according to gender.

Baseline MBF

The frequency distribution of global MBF (i.e. mean
flow in the whole left ventricle) is shown in Fig. 2a.
MBF was 1.02+0.32 ml'-min '-g"' (range 0.54—
2.75 ml'min '-g”", COV 31%) and the average corrected
MBF was 1.05+£0.37 ml'-min '-g"' (range 0.61—
3.27 ml'min "-g”!, COV 35%). Baseline MBF was
significantly higher in women than in men (p<0.01,
Table 3). However, the corrected MBF was comparable
between men and women (0.98+0.45 and 1.09+
0.30 ml'min '-g”!, range 0.61-3.27 and 0.61—
2.21 ml'min "-g"', respectively; p=0.08). MBF did not
differ between the three vascular territories at baseline in
the whole study population (»p=0.08). However, a signif-
icant difference was seen in baseline MBF between the
anterior and inferior segments (1.12+£0.38 vs. 0.95+
0.29 ml'min '-g™'; p<0.01) in the whole study population
and in women, owing to a diminished resting perfusion in
the inferior wall (Table 3).

Table 3 Baseline MBF

(ml'min”"-g"™") in men Parameter Men Women p-value
and women. Values are
means + SD (range) Global® 0.91+0.34 (0.54-2.35)  1.09+0.30 (0.59-2.75) <0.01
Vascular territory
Left circumflex artery 0.91+0.36 (0.54-2.38)  1.12+0.30 (0.55-2.70) <0.01
Right coronary artery 0.86+0.32 (0.40-2.33)  1.03+0.28 (0.55-2.40) <0.01
Left anterior descending artery ~ 0.974+0.36 (0.57-2.34)  1.11+0.34 (0.64-3.07) 0.02
p-value 0.33 0.16
Myocardial region
Septum 0.92+0.36 (0.52-2.57)  1.08+0.33 (0.58-3.02) 0.01
Inferior 0.84+0.30 (0.35-2.08)  1.01+£0.27 (0.55-2.18)*  <0.01
*p<0.01, inferior vs. anterior Lateral 0.92+0.36 (0.54-2.38)  1.12+0.30 (0.55-2.70) <0.01
wall. Anterior 1.0340.39 (0.56-2.45)  1.18+0.36 (0.71-3.19)  0.03
“Mean MBF in whole left p-value 0.07 0.01
ventricle
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Table 4 Hyperaemic MBF
(ml~min71~g71) in men

and women. Values are
means + SD (range)

“Mean MBF in whole left

Parameter Men Women p-value
Global® 2.90+0.85 (1.52-5.22)  3.78+1.27 (1.72-8.15)  <0.001
Vascular territory

Left circumflex artery 2.994+0.99 (1.63-6.62)  3.84+1.23 (1.74-7.89)  <0.001
Right coronary artery 2.83+£0.84 (1.43-5.41)  3.67+1.34 (1.83-8.85)  <0.001
Left anterior descending artery ~ 2.92+0.86 (1.51-5.49)  3.85+1.35 (1.60-8.38)  <0.001
p-value 0.67 0.61

Myocardial region

Septum 2.78+0.78 (1.33-4.70)  3.76+1.40 (1.71-8.67)  <0.001
Inferior 2.95+1.05 (1.39-7.00)  3.70+1.30 (1.77-8.05)  <0.01
Lateral 2.99+1.00 (1.59-6.62)  3.84+1.23 (1.74-7.89)  <0.001
Anterior 2.98+0.98 (1.38-6.31)  3.92+1.58 (1.65-9.51)  <0.001
p-value 0.51 0.78

ventricle

Hyperaemic MBF

The frequency distribution of global hyperaemic MBF
in the whole study population is shown in Fig. 2b. MBF
was 3.44+1.20 ml'min g ' (range 1.52-8.15, COV
35%). Hyperaemic MBF was significantly higher in
women than in men (p<0.001, Table 4). Hyperaemic
MBF was distributed homogeneously throughout the
myocardial walls and vascular territories in both men
and women.

Coronary flow reserve

Global CFR in the whole study population was 3.57+
1.37 (range 1.36-9.06, COV 38%) and the average
corrected CFR was 3.51+1.46 (range 1.11-9.74, COV
42%). There were no differences in CFR between men
and women (Table 5), and there were no differences in
CFR among the three vascular territories in the whole
study population (p=0.60). However, there was a signif-
icant difference in CFR between the anterior and inferior

segments (3.35+1.41 vs. 3.86+1.70, p=0.05) in the whole
study population. This pattern was more pronounced in
men than in women (Table 5).

Impact of CAD risk factors on myocardial perfusion
and flow reserve

The impact of age, gender, CAD risk factors and BMI
on (hyperaemic) MBF and CFR are shown in Table 6.
Except for the gender differences mentioned above,
resting MBF was comparable between subgroups. Mean
hyperaemic MBF was significantly lower in older
patients, men and subjects with diabetes, hypercholes-
terolaemia and obesity (all »p<0.05). A similar reduction
in CFR was observed in these subgroups, except in obese
and hypercholesterolaemic patients (p=0.19 and p=0.10,
respectively). Univariate analysis showed that age (p<
0.01), male gender (p<0.001), BMI (p<0.01) and diabetes
mellitus (p<0.01) had a significant impact on hyperaemic
MBEF. In addition, multivariate analyses showed that only
age, male gender and BMI independently had a negative

Table 5 CFR in men and

women. Values are means + SD Parameter Men Women p-value
(range)
Global® 3.42+1.24 (1.55-7.97) 3.67+1.45 (1.36-9.06) 0.33
Vascular territory
Left circumflex artery 3.52+1.42 (1.64-9.88) 3.64£1.46 (1.36-9.38) 0.66
Right coronary artery 3.56+1.39 (1.44-8.93) 3.77+1.66 (1.44-10.00)  0.46
Left anterior descending artery ~ 3.25+1.21 (1.48-7.37) 3.66+1.46 (1.26-9.36) 0.10
p-value 0.45 0.86
Myocardial region
Septum 3.27+1.17 (1.19-6.97) 3.68+1.50 (1.15-8.84) 0.10
Inferior 3.77+1.54 (1.52-10.41)  3.91+1.80 (1.62-10.33)  0.64
Lateral 3.51+1.44 (1.63-9.87) 3.64+1.46 (1.36-9.47) 0.61
Anterior 3.12+1.28 (1.23-7.36) 3.49+1.48 (1.21-9.00) 0.15
#Mean CFR in whole left p-value 0.09 0.40

ventricle
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Table 6 MBF and CAD risk

factors. Values are means + SD Factor n MBF (ml'min”"-g"") CFR
Baseline Hyperaemic
Age (years)
31-49 41 1.06+0.39 3.72+1.46 3.75+1.53
50-57 45 1.00+0.34 3.63+1.10 3.88+1.45
58-83 42 0.99+0.24 2.95+0.84* 3.07+0.93
p-value (overall difference) 0.58 <0.01 0.01
Gender
Men 50 0.91+0.34 2.90+0.85 3.42+1.24
Women 78 1.09+0.30 3.78+1.27 3.67+£1.45
p-value (7 test) <0.01 <0.001 0.33
Hypertension
Yes 51 1.04+0.34 3.31+1.23 3.38+1.46
No 77 1.00+0.32 3.52+1.18 3.70+£1.30
p-value (¢ test) 0.15 0.30 0.09
Diabetes
Yes 21 1.03£0.45 2.70+0.61 2.80+0.72
No 107 1.02+0.30 3.58+1.23 3.73+1.42
p-value (7 test) 0.67 <0.01 <0.01
History of smoking
Yes 52 0.99+0.21 3.50+1.14 3.68+1.40
No 76 1.04+0.38 3.39+£1.24 3.50+1.35
p-value (¢ test) 0.84 0.47 0.54
Hypercholesterolaemia
Yes 37 1.01+0.37 3.17+1.26 3.33+£1.32
No 91 1.03+0.31 3.55+1.16 3.67+1.39
p-value (7 test) 0.78 0.03 0.10
Family history
Yes 60 1.05+0.35 3.55+1.03 3.67+1.45
No 68 1.00+0.31 3.34+1.33 3.49+1.30
p-value (¢ test) 0.52 0.13 0.51
BMI (kg'm?)
<25 43 1.06+0.35 3.87+1.29 3.86+1.40
25-28 42 1.01+0.38 3.37+1.12 3.55+1.19
*p<0.05, age band 31-49 vs. >28 43 0.97+0.24 3.07+1.05%* 3.32+1.47
50-57; **p<0.01, vs. subjects p-value (overall difference) 0.50 <0.01 0.19

with BMI <25 kg'm >

impact on hyperaemic MBF, as shown in Table 7 and
Fig. 3. Univariate analysis showed that the CAD risk
factors age (p<0.01), BMI y(p=0.03) and diabetes
mellitus (p<0.01) had a statistically significant negative
effect on CFR. Multivariate analysis, however, showed
that only age and diabetes mellitus had a negative impact
on CFR, as shown in Table 7.

Discussion

In the present study in predominantly symptomatic patients
who were evaluated for the presence of CAD hyperaemic
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MBF was higher in women and was independently and
inversely correlated with age and body mass. Baseline
MBF was also significantly higher in women, which can be
ascribed predominantly to a higher metabolic demand as
reflected by an increased RPP.

Resting myocardial blood flow

Average baseline MBF was 1.02+0.32 ml'min "-g "' in the
current patient population and ranged from roughly 0.5 to
3.0 mI'min "-g"'. Of the investigated parameters, only
gender was significantly associated with resting MBF.
These results are in line with those of previous studies in
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Table 7 Results of univariate and multivariate linear regression analysis of hyperaemic MBF and CFR

Variable Hyperaemic MBF CFR

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

163 p-value 163 p-value 6] p-value I6] p-value
Age —-0.03 <0.01 —0.04 <0.001 —-0.03 <0.01 —-0.03 0.02
Gender (male) —0.88 <0.001 —0.94 <0.001 —-0.25 0.33 - -
BMI —-0.08 <0.01 —0.07 <0.01 —0.06 0.03 - -
Diabetes mellitus type 11 —0.88 <0.01 - - -0.92 <0.01 —0.80 0.01
Hypertension -0.22 0.32 - - -0.32 0.20 - -
Hypercholesterolaemia —0.38 0.10 - - -0.34 0.21 - -
Smoking history 0.11 0.61 - - 0.18 0.47 - -
Family history of CAD 0.20 0.34 - - 0.18 0.47 - -

healthy subjects, which have demonstrated higher resting
MBF in women [12, 13, 26, 27]. This gender-related
difference could be explained by differences in haemody-
namic conditions, and were no longer apparent when MBF
was corrected for the RPP. This indicates that resting MBF is
autoregulated to meet metabolic demand which is dictated by
heart rate, left ventricular wall stress and contractile function.
Therefore, RPP can be used for indexing baseline MBF to
cardiac workload. However, it should be noted that some
previous studies have demonstrated that even after correction
for RPP, resting MBF remains higher in women [12]. Clearly
more studies are warranted to further investigate the
determinants of resting MBF. Nonetheless, quantitative
resting MBF is not likely to play an important role in the
detection of CAD as studies have already established that
epicardial CAD does not affect resting MBF until the point
of subtotal obstruction [25, 28].

Resting MBF displayed regional differences where
values in the inferior wall were lower than in other
myocardial segments. This pattern has been observed
previously in resting MBF determined using ['°OJH,O
[12]. Although physiological heterogeneity in perfusion
could be responsible, spillover artefacts from abdominal
organs (e.g. liver) probably also account for these (small)
differences.

Hyperaemic myocardial blood flow

Hyperaemic MBF was distributed homogeneously across
the myocardium with an average of 3.44+1.20 ml'min "-g '
in the whole study population, and varied considerably
among subjects ranging from approximately 1.5 to
8.0 ml'min "-g '. This wide range and homogeneous
pattern of hyperaemic MBF is in agreement with previous
data obtained in healthy individuals [12, 27]. There was a
distinct difference between the genders with a substantial

higher perfusion in women despite similar baseline

characteristics in terms of age, CAD risk profile and
pretest likelihood for CAD. Multivariate analysis
revealed that besides gender, age and obesity were also
associated with reduced stress perfusion. These risk
factors have long been recognized to induce increased
coronary microvascular resistance and hence limit hyper-
aemic MBF [15]. It is therefore reasonable to assume that
a proportion of the current population had a diminished
hyperaemic MBF as a consequence of coronary microvas-
cular disease, reflecting the functional counterpart of CAD
risk factors. However, it is rather difficult to exactly
identify these subjects given the large heterogeneity of
perfusion values observed in the present study and in
asymptomatic subjects without CAD risk factors [12].
Relative to these risk factors, however, gender exerted the
biggest influence on hyperaemic MBF [13, 26]. Some
hypotheses have been postulated to account for this
phenomenon. First, the protective effect of oestrogen on
the coronary vasculature might preserve its function in
women. However, in the current study, gender-related
discrepancies in hyperaemic perfusion remained when
only women over 50 years were included in the analysis,
which suggests that the observed difference may not be
completely explained by a direct effect of oestrogen.
Indeed, Duvernoy et al. showed that in postmenopausal
women, hyperaemic MBF remained significantly higher
than in men [26]. Furthermore, postmenopausal women
receiving hormone therapy display similar hyperaemic
MBEF values to postmenopausal women without hormone
therapy, suggesting that hormonal milieu does not signif-
icantly affect minimal microvascular resistance [29].
Second, it has been suggested that women may have a
different response to adenosine, resulting in a greater
catecholamine response, which may lead to an additional
rise in MBF [26, 30].

Irrespective of the underlying causes that account for the
differences in hyperaemic perfusion, an attempt should
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Fig. 3 Hyperaemic MBEF in relation to gender, age and BMI. *p<0.05

preferably be made to include gender in defining normal
MBF values, although further studies are warranted to
investigate gender-related differences in normal vasomotor
function. Therefore, the cut-off value for detection of a
flow-limiting, i.e. significant, stenosis will probably yield
different values for men and women. However, given the
heterogeneity of perfusion values as observed in the present
study, it may prove difficult to define an optimal cut-off
value for diagnostic accuracy. Of the traditional CAD risk
factors, BMI had a relatively large effect upon hyperaemic

@ Springer

MBF. Obese patients showed a significantly reduced MBF
during stress as compared to patients with a normal BMIL.
This is in line with the findings of Schindler et al., who
found a decreased hyperaemic MBF in obese individuals
without traditional CAD risk factors using ['*NJNH; PET
[31]. The aetiology of the link between obesity and a
decreased hyperaemic MBF is not completely understood,
but may very well be multifactorial, including lipid
disorders, inflammation with increased oxygen radicals
and insulin resistance. Regardless of the exact mechanistic
link between obesity and reduced hyperaemic MBF, the
current data support the opinion that obesity is a major but
modifiable risk factor for the development of coronary
atherosclerosis.

Coronary flow reserve

The average CFR in the present study was 3.46+1.32, and
varied considerably among subjects ranging from approxi-
mately 1.2 to 9.0. Owing to the increased MBF during both
resting and stress conditions in women, no gender-related
differences were observed in CFR, which is consistent with
previous data [26]. Given the wide range in CFR, defining
normal values and optimal thresholds for identifying haemo-
dynamically significant CAD is rather difficult. In fact, it has
been shown that measurement of absolute hyperaemic MBF
is superior to CFR for identifying haemodynamically
significant CAD [32]. The dependency of CFR on both
baseline and hyperaemic MBF probably contributes to these
observations, as a reduction in CFR is not necessarily a
reflection of a reduced hyperaemic MBF, but could be a result
of high baseline values. Therefore, CFR for the identification
of CAD is probably of less value in detecting haemodynami-
cally significant CAD than quantitative hyperaemic MBF
measurements alone. This implies that a single measurement
of hyperaemic MBF could suffice in diagnostic imaging
protocols. Needless to mention, more studies are needed to
substantiate this hypothesis. Of interest, multivariate analysis
revealed that only aging and the presence of diabetes were
independently related to a diminished CFR. Cut-off values for
identification of CAD using CFR therefore appear to be less
influenced by gender and risk profile than to hyperaemic
MBEF, and would therefore potentially require less consider-
ation of specific subgroups.

Study limitations

Some limitations of our study that may have affected the
current findings must be acknowledged. First, significant
CAD was presumed to have been excluded by ICA or
CTCA. ICA was only performed in 42 patients, so the
presence of significant CAD could not be entirely ruled out
in the present study population. Although CTCA is an
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excellent tool for ruling out significant CAD with a negative
predictive value of 97% to 99% [33], some patients with
haemodynamically significant coronary lesions may have
been included. Second, subjects with obstructive CAD were
not included in the current study. Therefore, more quantitative
perfusion studies in a larger number of patients with and
without clearly defined CAD are warranted to define the
optimal diagnostic threshold for absolute MBF. Third, in the
subgroup analyses the studied patient population was too
small to draw definite conclusions. In contrast to other
studies, hypertension, hypercholesterolaemia and diabetes
mellitus appeared not to be independent predictors of a
reduced hyperaemic MBF, but this might have been a result
of the small study population. Furthermore, in the present
study ['°OJH,O was used as perfusion tracer, which is not
widely available. However, several studies have demonstrated
that ['"*NJNH; should provide comparable estimates of MBF
over a wide range of flow velocities [34, 35]. Regarding
82Rb, there are limited data available comparing **Rb with
established quantitative flow tracers such as ['*NJNH; and
['*O]H,0. These results suggest that MBF values obtained
using ®*Rb would be in fair agreement with the validated
flow tracers mentioned above [36, 37]. Clearly more studies
seeking to quantify MBF with ®Rb PET are warranted.
Finally, it must be emphasized that the current data were
obtained in patients without a history of cardiac disease and
with normal left ventricular function. Consequently, the
currently observed reference flow values cannot be applied
to patients with prior coronary revascularization procedures
and/or heart failure, which markedly affect MBF values in the
absence of significant coronary stenoses [38—40].

Conclusion

Gender, age and BMI substantially influence reference
values and should preferably be corrected for when
interpreting hyperaemic MBF values.
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