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Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs 
(tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. 
Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor asso-
ciated platelets—TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets 
are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few 
hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, 
and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, 
it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic 
cells, and even enhance apoptosis. Undoubtedly, TAPs’ role seems to be more complex when compared to tumor associated 
neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and 
TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new 
therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor 
cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
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Background/Introduction

The association between inflammation and cancer has long 
been the subject of numerous studies. In 1863, Virchow put 
forward a hypothesis stating that immune cell infiltrations 

reflect the site of neoplastic lesions within the chronically 
affected tissue [1]. A decade later, Dvorak reported that car-
cinogenesis and inflammatory condition share some growth 
mechanisms, such as cell proliferation, increased survival, 
migration and enhanced angiogenesis, which are strictly 
controlled by growth factors, proinflammatory cytokines 
and proangiogenic factors. Moreover, he observed that cells 
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involved in inflammation infiltrate the neoplastic tissue as 
well [2, 3].

Transforming neoplastic cells are surrounded by numer-
ous cells: fibroblasts, endothelial cells, pericytes and mes-
enchymal cells that together form tumor stroma. These cells 
produce a number of cytokines and chemokines, which 
attract the subsequent populations of immune cells, includ-
ing macrophages, neutrophils, mast cells, dendrites and T, 
B and NK cells which by infiltrating tumor tissues form the 
tumor microenvironment [4]. Leukocytes may account for up 
to 50% of total tumor mass. The interaction of cancer cells 
with macrophages activates them to produce cytokines, e.g. 
IL-8 which stimulates further inflow of inflammatory cells 
[5, 6]. In the tumor microenvironment, cells communicate 
with one another via direct contact or production of various 
mediators [7]. The activity of inflammatory cells and the 
type and level of the expression of factors that modulate 
inflammation affects the balance between their pro- and anti-
neoplastic activity. In developed tumors, the inflammatory 
cells act in favor of the tumor, increasing the survival and 
proliferation of the transformed cells [8, 9].

Tumor‑associated macrophages (TAMs)

Macrophages are the main cells playing a role in the inflam-
matory condition accompanying neoplastic disease. They 
are derived from precursor cells-monocytes, activated 
by MCP-1/CCL2 (monocyte chemoattractant protein-1), 
cytokines (IL-6, CSF-1, VEGF) and chemokines (CCL2, 
CCL5, CCL8) produced by neoplastic cells. Macrophages 
are diverted from blood circulation to tissues where they 
differentiate from mature forms [10]. Present in the tumor 
microenvironment they are defined as tumor associated mac-
rophages (TAMs). TAMs can promote tumor cell death and 
preclude the formation of new blood vessels. At the same 
time they produce proangiogenic factors, growth factors and 
extracellular matrix metalloproteinases, which in turn may 
stimulate cancer growth [11, 12].

The opposite action of these cells is associated with the 
presence of two TAM phenotypes, namely M1 and M2 [12] 
(Suppl. Fig. 1). M1 macrophages are stimulated by IFN-
γ, LPS, TNF-α or GM-CSF, and inhibit tumor growth by 
producing pro-inflammatory cytokines such as: IL-1, -6, 
-8, -12, -23, TNF-α, small quantities of IL-10 as well as 
ROS (reactive oxygen species) and RNI (reactive nitrogen 
intermediates) [13]. These cells affect Th1 activation and 
enhance antineoplastic response. They can recognize tumors 
and kill tumor cells by cytotoxic effect (e.g. ROS) [14]. On 
the contrary, M2 macrophages display pro-tumor activity. 
M2, activated by IL-4 and -13, produce small amounts of 
IL-12 and -23 and large quantities of IL-10, which silences 
an acute inflammatory state and attenuates antineoplastic 

immune response of the body [8, 12, 15]. M2 macrophages 
have an effect on the inactivation of T cells, which crucially 
decreases the body’s ability to resist cancer development and 
progression [16]. TAMs can also promote tumor angiogen-
esis and metastatic potential by the synthesis of cytokines 
such as: IL-6, -17, -23, and inhibit cytotoxic T cell responses 
[11].

Due to varying locations, certain TAMs produce growth 
factors (EGF, PDGF, IL-6, IL-8), or generate immunosup-
pressive factors (IL-10, TGF-β, PGE2) [12], whereas oth-
ers produce metalloproteinases (MMP7, MMP9, MMP12), 
urokinase plasminogen activator (uPA) and cathepsin B able 
to transform the extracellular matrix (ECM) [17]. In this 
way, these cells promote tumor proliferation and growth, 
tissue repair and remodeling and angio- and lymphangiogen-
esis through the production of VEGF, TNF-α and IL-8, and 
exert an immunosuppressive effect on the inflammatory cells 
[18]. The tumor microenvironment is formed first of all by 
TAM M2. A growing tumor uses substantial amounts of 
nutrients and oxygen, but lack of contact with the network 
of blood vessels inside it frequently leads to hypoxia. Hence, 
angiogenesis is an indispensable stage of cancer progres-
sion. The development of new blood vessels depends on the 
recruitment of TAMs which recognize hypoxia-associated 
signals. The production and release of TAMs as well as other 
cells of important proangiogenic factors, such as VEGF, 
IL-8 (CXCL8), EGF, CXCL1 and hypoxia- induced factor 
1 alpha (HIF1α) are regulated by NF-kB, STAT3 and AP-1 
[19]. Under the hypoxia condition, HIF-1α stimulates the 
expression of CXCL12, which leads to the activation and 
recruitment of endothelial cells [12]. Hypoxia decreases the 
expression of MMP-9 and TIMP-1 by increasing the expres-
sion of disintegrin and metalloproteinase domain-contain-
ing protein 8 & 9 coding genes (ADAM8 & ADAM9) [16]. 
HIF-1α is also the major transcription factor affecting the 
synthesis of VEGF—the major factor in the initial stages of 
new blood vessels [12].

TAMs, especially TAM M2, have a significant potential 
as diagnostic biomarkers in many cancers: breast, gastric, 
prostate and pancreatic cancer [16]. According to the new-
est knowledge TAMs could also be used as a prognostic 
biomarker in lung, esophageal squamous cell and bladder 
cancer [20].

Tumor‑associated fibroblasts (TAFs)

During tumor development, its stromal fibroblasts also 
undergo some phenotypic changes [21]. Tumor associated 
fibroblasts (TAFs) do not have a direct effect on cancer 
growth but they affect healthy fibroblasts in the tumor micro-
environment, changing their phenotype to the proneoplas-
tic one. The origin and role of TAFs are poorly understood 
but TAFs in the tumor environment become activated and 
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secrete a multitude of factors involved in tumorigenesis. 
TAFs produce extracellular matrix proteins (collagen and 
fibronectin), basement membrane proteins and metallopro-
teinases (MMP-1, -7, -9). Other soluble factors secreted by 
TAFs: IL-10, -13 possess an immunosuppressive effect, and 
inhibit synthesis of pro-inflammatory cytokines (e.g. IFN-γ, 
TNF-α, IL-2, -3) and TGF-β, can promote cancer invasive-
ness and metastasis [22]. TAFs can also promote neoangio-
genesis by synthesis of VEGF [12].

Tumor‑associated neutrophils (TANs)

Neoplastic cells producing chemokines (e.g. CXCL1), 
cytokines (TNF-α and IFN-γ) and adhesion proteins can 
also recruit neutrophilic granulocytes to the tumor micro-
environment. Tumor associated neutrophils (TANs) have 
both pro- and anti-neoplastic functions. Similarly to mac-
rophages, they have two phenotypes: N1 can inhibit tumor 
growth by increasing the expression of MMP-8, inducing 
apoptosis via FAS pathway activation and as a result of trig-
gering antibody-dependent cellular cytotoxicity [23]. The 
N2 phenotype shows a proneoplastic action through the 
enhancement of MMP-9 expression and release of CXCL-1 
and -6, which recruit new proinflammatory cells to the tumor 
microenvironment. As a consequence of tumor growth and 
derived cytokines (IL-8 and G-CSF), also NETs (neutro-
phil extracellular traps) are formed, possibly as a side-effect 
of the cytokine environment [24]. Its role in cancer is still 
unclear and the first description of tumor-induced NET for-
mation was published in 2012 [25]. Formation of NETs may 
seem to be beneficial in fighting infection, as more NETs 
have a prothrombotic effect inducing intrinsic coagulation 
pathway, by binding and activation factor XII [26]. It seems 
that NETs in tumor-bearing mice were associated with the 
formation of thrombi in the lungs. Experimental research in 
cancer-bearing mice indicates that NETs also accumulate in 
the peripheral circulation, cause systemic inflammation and 
significantly reduce vascular function in the organs that are 
not sites for either primary or metastatic tumor growth [27].

Tumor‑associated platelets (TAPs)

However the phrase “tumor associated platelets” can be 
found in an earlier publication [28], we are the first to pos-
tulate that this term and its abbreviation (TAPs) should be 
commonly used in the scientific literature, along with TAMs, 
TAFs, and TANs. Taking into account the role of platelets 
in the development of cancer, it is justified to introduce the 
term TAPs. To the best of our knowledge, so far nobody has 
used this abbreviation, but its use seems to be justified. How-
ever, it is difficult to make such a strict division into TAP 
P1 and P2 as in the case of neutrophils and macrophages, 
because TAPs’ role is undoubtedly more complex. One 

example might be the role of CD40 ligand (CD40L) secreted 
from the granules of active platelets [29]. On the one hand 
CD40L can induce apoptosis of cancer cells, while on the 
other hand it can enhance tumor growth and progression 
[30]. The effect induced by CD40L appears to depend not 
only on the type of cells that show the receptors’ expres-
sion but also on the strength of the signal transmitted by the 
ligand. The strong signal (high number of CD molecules)—
induces apoptosis of cancer cells, whereas the weak signal 
(small number of CD receptors for the ligand) promotes 
tumor growth [31].

Tumor-associated platelets (TAPs) like other cells infil-
trate the tumor environment, although reports on the effect 
of blood platelets on tumor growth are inexplicit. It has been 
indicated that factors released from platelets can induce a 
cytotoxic effect on the proliferating neoplastic cells, cause 
mitotic arrest in the G0/G1 phase, and even enhance apop-
tosis. However, many researchers seem to suggest an active 
role for platelets in tumor growth and metastasis formation 
[32].

The interactions of blood platelets with cancer cells are 
complex. The latter induce platelet activation and aggrega-
tion both directly and indirectly. Cancer-dependent platelet 
activation involves both substances secreted by tumor cells 
and surface molecules of tumor cells [33] (Fig. 1).

Tumor cells-platelet binding is possible due to platelet 
receptors and molecules present on the platelet surface, 
e.g. GP Ib-IX-V, GP IIb-IIIa, GP V, P-selectin and CLEC-2 
(C-type lectin-like receptor 2) (Fig. 2). Newly discovered 
CLEC-2 and its activator, podoplanin (PDPN) – expressed 
on multiple tumor cells (e.g. colorectal, lung and bladder 
carcinomas), are key in platelet aggregation and seem to be 
important in platelet-cancer cell interaction [34][35][36]. It 
is possible that CLEC-2 inhibitors could be the new poten-
tial antitumor therapeutic target. In an experimental study 
with several monoclonal antibodies against PDPN-CLEC-2 
interactions revealed a decrease in the hematogenous metas-
tasis rate without significantly increasing risk of bleeding 
[37][38].

Platelets are indirectly activated by tumor cells via 
coagulation activation induced mainly by TF present on 
tumor cells [39]. Thus, on the one hand platelets can affect 
the development of the tumor microenvironment, vascular 
neoangiogenesis and as a consequence metastasis forma-
tion. On the other hand, however, cancer cells themselves 
stimulate blood platelets by secreting TF, CP and col-
lagen, and by using them to initiate processes that war-
rant survival and proliferation [40]. Adhesion and tumor 
cell-induced platelet aggregation are very important pro-
cesses contributing to cancer progression regulated by 
platelets and their granular contents. Platelet aggregation 
in response to tumor cell stimulation is known as tumor 
cell-induced platelet aggregation (TCIPA) [41]. Blood 
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platelets are also a source of TGF-β (transforming growth 
factor-β), which as an activator of the NF-κB signaling 
pathway in transformed cells stimulates cancer progression 
e.g. by promoting metastasis formation [42]. It also stimu-
lates differentiation of endothelial cells into mesenchymal 
cells able to migrate and proliferate. The epithelial-mes-
enchymal transition (EMT) is an indispensable process 

promoting cancer metastases [38]. Platelet molecules such 
as P-selectin and GP IIb/IIIa have also been implicated in 
platelet-induced NET formation [40][27]. It is believed 
that NETs constitute a scaffold for platelet activation and 
thrombus formation.

Fig. 1   Platelet activity in 
cancer. ADP adenosine diphos-
phate, ANG-1 angiopoietin 1, 
CLEC-2 C-type lectin receptor 
2, CP cancer procoagulant, 
EGF epidermal growth factor, 
LPA lysophosphatidic acid, 
MMPs matrix metalloprotein-
ases, P2Y12 chemoreceptor for 
adenosine diphosphate, PAR -1, 
-4 protease-activated receptor 
-1, -4, PDGF platelet-derived 
growth factor, TCIPA tumor 
cell-induced platelet aggrega-
tion, TF tissue factor, TGF-β 
transforming growth factor β, 
TXA2 Thromboxane A2, VEGF 
vascular endothelial growth 
factor

Fig. 2    Binding of plate-
let receptors to ligands on 
cancer cells. CD cluster of 
differentiation, CLEC-2 C-type 
lectin receptor 2, GPIb-V-IX 
glycoprotein Ib-V-IX complex, 
GPIIbIIIa glycoprotein IIb/IIIa, 
integrin αIIbβ3, GPVI glycopro-
tein VI, PAR protease-activated 
receptor, PDGF platelet-derived 
growth factor, PDGF-R platelet-
derived growth factor receptor, 
PSGL-1 P-selectin glycoprotein 
ligand-1, TCIPA tumour cell-
induced platelet aggregation, 
TGF-β transforming growth 
factor β, TGF-β-R transforming 
growth factor β receptor, α2β1 
integrin also known as VLA-2, 
GPIa-IIa, CD49b
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Platelets in repressing immune response

To survive in the circulatory system, tumor cells need to 
finagle immune cells. Therefore they turn to subvert the 
immune system by hijacking its antitumor properties or 
attracting immunosuppressive cells. For example, tumor 
cells may bear a resemblance to platelets by presenting sev-
eral platelets’ receptors [28]. Circulating tumor cells can 
also bind to platelets, which protects them from NK cells. 
This is achieved by the translocation of the major histocom-
patibility complex class I (MHC class I) from platelets to 
the tumor cells, resulting in the antitumor properties of NK 
cells. Moreover, platelets release TGF-β, which reduces the 
expression of natural-killer group 2, member D on NK cells 
(NKG2D), and thus leads to the impairment of interferon-γ 
production and NK cell cytotoxicity. TGF-β also inhibits 
NK cells activation/function via the suppression of mTOR 
activity [28, 43, 44].

Platelets can also exert antitumor immunity activ-
ity through the debilitation of tumor-infiltrating lym-
phocytes (TILs). TGF-β released from platelets converts 
CD4 + (Tcony) cells into induced regulatory T (iTreg) cells, 
which kills activated T cells in a granzyme B (GzmB)-
dependent fashion [44]. Moreover, platelets constitutively 
express the non-signaling TGF-β-docking receptor glyco-
protein A repetitions predominant (GARP) [28]. The role 
of GARP relies on increases of the functional TGFβ activa-
tion in the neighborhood of GARP-expressing cells, which 
encompass regulatory T (Treg) cells. Rachidi et al. [45] 
show that the major source of TGFβ in the circulatory sys-
tem and in the tumor microenvironment are platelets. This is 
achieved by a constitutive expression of GARP rather than 
secretion of TGFβ per se. GARP-TGFβ complex on platelets 
can be formed intracellularly, via the de novo biogenesis, or 
extracellularly where latent TGFβ (LTGFβ) is snatched by 
and bound to GARP in the extracellular matrix from non-
platelet sources [45]. Besides TGFβ, also other soluble fac-
tors released from platelets, mostly lactate, may suppress: T 
cell proliferation, blastogenesis, and IFNγ production [44, 
45].

The discovery of platelet-mediated T cell suppression 
undoubtedly creates perspectives for the combination of 
immunotherapy and anti-platelet agents as a therapeutic 
strategy against cancer [44, 45]. The effectiveness of such 
therapy has been proven recently by Rachidi et al. [45] in 
mouse models.

Platelets in tumor angiogenesis

Neoplastic tumors, bigger than 2 mm in diameter, need 
nutrients and oxygen, as well as suitable cytokines, 
chemokines or enzymes to grow and metastasize. Platelets 
are implicated in the early stages of angiogenesis e.g. in 

the stabilization of newly formed vessels [46]. They stimu-
late the activation of endothelial cells (ECs) and induce 
angiogenesis in vivo. Moreover, platelets store in alpha-
granules several molecules which exhibit proangiogenic 
properties like: VEGF (vascular endothelial growth fac-
tor), PDGF (platelet derived growth factor), bFGF (basic 
fibroblast growth factor), EGF (epidermal growth factor) 
[47]. It is suggested that blood platelets can selectively 
release VEGF via activation of PAR-1 receptors, and that 
at the same time the expression of endostatin inhibiting 
angiogenesis is decreased [48]. The stimulation of the 
PAR-4 receptor triggers the completely opposite process, 
i.e. endostatin secretion [49]. It is believed that over 80% 
of circulating VEGF originates from blood platelets and 
megakaryocytes, which in physiological conditions pro-
mote the repair of damaged tissues and vessels, and its 
action is inhibited by adequate inhibitors [50].

In many cancers (e.g. lung, breast, colon, and kidney) 
the platelet count was found to significantly correlate with 
plasma or serum VEGF concentration [51–53]. High VEGF 
level is associated with shorter overall survival in patients 
with carcinoma [54, 55]. As shown in our earlier report, 
blood platelets form complexes with tumor cells in the blood 
stream. At the site of tumor cell adhesion to ECs, plate-
lets can release their α-granule content, e.g. VEGF, which 
induces permeability of ECs, facilitates extravasation of can-
cer cells, and stimulates new vessel formation at the sites of 
distant metastases. The action of VEGF in neoplastic disease 
leads to enhanced TF expression by endothelial cells and 
increased release of vWF. In consequence, platelets adhere 
to the wall of neoplastic vessels. Moreover, abnormally 
developed vessels within tumors cause turbulent blood flow, 
which in turn is associated with the activation and adhesion 
of platelets and their degranulation [39]. Blood platelets can 
also stimulate proliferation of endothelial cells and affect 
the integrity of newly formed or inflamed endothelial cells. 
This is associated with hemorrhage prevention by releas-
ing substances that affect the adhesion properties of cells 
[46]. In the course of chronic inflammation and in neoplastic 
disease, metalloproteinases, serine proteases and other sub-
stances that damage the vascular basement membrane are 
released, leading to hemorrhages. In this case, the role of 
blood platelets is associated with modulation of the activity 
of inflammatory cells or inhibition of certain substances by 
the secretion of such inhibitors as TIMP-1 or serpin [56].

Moreover blood platelets also synthesize and secrete a 
variety of proteolytic enzymes, such as metalloproteinases 
(MMP-1,-2, -3, -9 and -14) that degrade the vascular base-
ment membrane and cellular matrix of tissues, which may 
play a role in the process of extravasation, i.e. migration of 
cancer cells to the extravascular space [57]. This effect can 
be enhanced by activation and accumulation of inflammatory 
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cells. MMPs can regulate sCD40L shedding from platelets 
and pulmonary recruitment of neutrophils [58].

Enhanced proliferation and survival of transformed cells 
is induced by thrombin, which in turn enhances VEGF 
expression, increases the adhesion properties of cells and 
promotes formation of cancer-platelet aggregates [59]. 
Through the activation of the PAR-1 receptor, thrombin 
stimulates cancer growth and metastases [60]. Thrombin is 
released by active blood platelets but it can also be produced 
by cancer cells.

Platelets in cancer metastasis

Metastasis formation is a most important stage of tumor 
progression. Transformed cells leave the tumor microenvi-
ronment and migrate in the blood to even the most distant 
organs and their survival before extravasation is a crucial 
step in metastasis [34]. Therefore, cancer cells activate blood 
platelets by stimulating various mediators such as cathepsin 
G or thrombin and by constant expression of tissue factor 
on their surface. The activated platelets quickly bind to the 
surface of cancer cells and create their coating [61]. TCIPA 
is considered crucial for cancer dissemination and resem-
bles the formation of the platelet-monocytes complexes 
(MPAs). Thus, it can be said that TCIPA increases survival 
of circulating tumor cells due to the presence of integrins 
and the GP IIb/IIIa receptor on the platelet surface, which 
via fibrinogen or vWF interact with tumor integrins. The 
interaction of platelets with cancer cells is also mediated by 
P-selectin, which binds to appropriate ligands, e.g. CD24 
and CD44 on cancers [62]. Platelet-covered tumor cells can 
migrate freely, avoiding the immune response of the host, 
and above all the uptake and damage by NK cells [63]. So it 
can indicate that platelets may provide some physical barrier 
to NK cells contact.

Some antiplatelet drugs can have an antimetastatic effect 
by TCIPA inhibition, e.g. ADP-scavenging agents, apyrase 
and creatine phosphokinase and also GP IIb/IIA inhibitors 
[64].

An experimental study, in several mouse models, indi-
cate that antibody-induced or genetic depletion of platelet 
inhibits metastasis, whereas platelet reconstitution restores 
metastatic activity [65–67]. What’s more, platelets arrest 
cancer cells in capillaries at the vascular wall via P-selectin 
and its ligand and facilitate tumor cell extravasation to the 
subendothelial matrix of the distant organs by activation of 
the endothelial P2Y2 receptor [68, 69]. Platelet dense gran-
ules secrete ATP, which in turn bind to activated endothelial 
receptors. It leads to the opening of the endothelial barrier 
and tumor cells can transmigrate and extravasate to form 
metastasis loci [70], and provide a survival signal, which 
in turn allows a chemotactic gradient of CCL2 chemokine, 
which is crucial for monocytes recruitment [71, 72]. The 

monocytes then differentiate into metastasis-associated mac-
rophages (MAMs) that promote extravasation [73]. Platelets 
together with leukocytes and tumor cells, induced another 
chemokine—CCL5/RANTES from EC in an experimental 
model of colorectal cancer, which enhanced metastatic seed-
ing due to recruitment of monocytes [74].

Besides VEGF, platelets release growth factors to the 
tumor microenvironment, like TGF-β1 and PDGF, enhanc-
ing tumor metastatic potential [38] and instigate tumor cell 
proliferation, vessel formation and invasiveness [27, 68]. 
TGF-β1 derived from platelets diminishes NK granule mobi-
lization, cytotoxicity and INF-γ secretion [75] and induced 
an EMT (epithelial to mesenchymal transition) in carcinoma 
cells [68] TGF-β1 activity is associated with cancer stages, 
and microenvironment, and can have the opposite effect. In 
early stages, it can act as a tumor suppressor and potentially 
inhibit cancer cell proliferation and tumor growth [76, 77]. 
However, TGF-β1 released by platelets into the microenvi-
ronment can support tumor growth and metastasis formation 
[76]. In many cancers inhibition of TGF-β signaling in can-
cer cells strongly reduced intravasation and metastasis [78]. 
PDGF is involved in the regulation of proteolytic enzyme 
activity and its elevated concentration in breast cancer 
reflects a more aggressive and advanced tumor phenotype 
[79]. Its expression has been identified in various types of 
tumors, e.g. prostate [66] and colorectal cancer in which it 
has been proposed as a prognostic marker [80].

As shown in the latest reports, blood platelets are also 
involved in the formation of the tumor microenvironment 
during metastasizing [81]. It is believed that the platelet-
tumor aggregates are already responsible for neutrophil 
recruitment within the first two hours after cancer cells have 
colonized a new site. In this early phase of metastatic forma-
tion, no inflow of monocytes, lymphocytes, dendritic cells 
or NK cells is observed. It appears that the attraction of neu-
trophils to the tumor microenvironment depends on plate-
let activation. When functioning of these cells is impaired 
or in thrombocytopenia this process does not occur. The 
chemokine CXCL5/7 which is released from blood platelets 
and then binds to CXCR2 on the surface of neutrophils, is 
responsible for the activation and migration of granulocytes 
[82].

It seems that the ability of platelets to form aggregates 
between tumor cells, platelets and leukocytes may be a cru-
cial step in determining tumor cell survival within the micro-
vasculature of the target organs of metastasis [71].

Platelets count in malignancy

The development of neoplastic disease affects not only 
platelet activation but also their morphological parameters, 
i.e. platelet count (PLT) and mean platelet volume (MPV) 
[83]. A significant drop in PLT—thrombocytopenia—can be 
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associated with intensive chemotherapy and the presence of 
metastases in bone marrow exerting a suppressive effect on 
the precursor cells. Cancer patients show increased platelet 
turnover [84] which improves after anticancer treatment [85, 
86].

A systematic drop in platelet count leads to slight bleed-
ing from tiny vessels, whereas considerable thrombocytope-
nia triggers massive hemorrhages from large blood vessels 
[81]. Thrombocytopenia experimentally induced by a variety 
of mechanisms is associated with a reduction in the number 
of cancer metastases [87].

During the course of cancer, reactive thrombocyto-
sis (more than 400 × 109/L) is much more common and 
observed in 10–57% of patients, depending on the tumor 
type [39]. It has long been known that the increased platelet 
count is associated with more advanced neoplastic disease 
and is an unfavorable prognostic factor in various cancers 
[71, 43]. Thrombocytosis is also positively correlated with 
shortened survival and poor prognosis [88]. However, the 
underlying mechanisms of thrombocytosis are not com-
pletely clear. It is suggested that enhanced production of 
blood platelets is stimulated by cytokines IL-1, IL-6, and 
growth factors: GM-CSF and G-CSF released from leuko-
cytes during inflammation and by cancer cells themselves 
[89]. It is well documented that several tumor cells can pro-
duce TPO (thrombopoietin), a main cytokine directly and 
indirectly regulating megakaryopoiesis and thrombocy-
topoiesis [90]. These factors stimulate thrombocytopoiesis 
through binding to the receptors present on megakaryocytes 
Mpl (TPO-R) [77]. They act synergistically with TPO. In 
turn, the action of IL-6 is associated with enhanced produc-
tion of TPO in the liver and a direct effect on megakaryo-
cytes via the membrane receptor IL-6R. This means that 
platelet count may be markedly increased in the course of 
inflammation and neoplastic disease. It should also be men-
tioned that megakaryocytes are able to produce proinflam-
matory cytokines, e.g. IL-1, -3, -6, GM-CSF, stimulating 
endothelial cells of bone marrow vessels to produce factors 
that maintain maturation and differentiation of precursor 
cells and in consequence platelet production [91]. Moreover, 
it is known that bone marrow endothelial cells (BMECs) can 
support megakaryocytopoiesis. BMECs support prolifera-
tion and differentiation of megakaryocytic progenitor cells 
in vitro as well as facilitating the growth and maturation of 
megakaryocytes in vivo, and release some cytokines, such 
as IL-6 and TPO [77].

The increased platelet count in the course of neoplas-
tic disease is detrimental and favors the risk of thrombosis 
which can be the first manifestation of neoplastic disease 
[92]. Hypercoagulability and excessive thrombin generation, 
which are commonly observed in the course of malignancy, 
may contribute to thrombosis in cancer patients, which in 
fact can be the first symptoms among cancer patients [93].Ta
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Targeting platelets in cancer treatment

A wealth of data in the available literature provides infor-
mation that targeting platelets in cancer treatment would be 
beneficial [94–98]. Only single studies indicate contrary 
properties to such an approach [99, 100]. The multitude of 
reports on this topic highlights the fact that this issue could 
benefit from being subjected to a separate review. However, 
Table 1, specially prepared for the purposes of this review, 
summarizes the main targets of antiplatelet therapy, their 
best known inhibitors, along with their mechanisms of action 
and the effect they have on cancer (Table 1). In the clinic, the 
targeting of only cyclooxygenase molecules is well-charac-
terized [94–96, 101–103]. Studies concerning other platelet 
targets (P2Y12, glycoproteins, integrins, L-, P-selectins, 
PAR-1,-4, thrombin activity, podoplanin-CLEC-2) have 
so far been utilized mainly on cell lines or animal models 
[64, 104–109]. The targeting of cancer cell-platelet interac-
tion reduces both metastasis and thrombosis [97, 110–113]. 
However, this interaction is still not completely understood, 
thus future studies are required to explicitly explain the role 
of anti-platelet therapy in cancer prevention and treatment.

Conclusions

There is growing evidence for a close relationship between 
platelets and cancer development. This specific cross-talk 
between tumor cells and platelets has been noticed by many 
authors. Taking into the account the role of platelets in the 
development of cancer, we have decided to introduce a new 
term: tumor associated platelets—TAPs. To the best of our 
knowledge, so far nobody has used this term. Platelets are 
indirectly activated by tumor cells via coagulation activa-
tion induced mainly by TF present on tumor cells. Activated 
platelets protect tumor cells against cytotoxic activity of NK 
cells, surrounding them and forming tumor cell-platelet 
aggregates. Activated platelets also release a number of fac-
tors from their granules that can enhance the development of 
the tumor microenvironment, vascular neoangiogenesis and 
in consequence metastasis formation. On the other hand, it 
also has been indicated that factors released from platelets 
can induce a cytotoxic effect on the proliferating neoplastic 
cells, and even enhance apoptosis. In respect to the above 
mentioned information it should be noted that TAPs’ role 
seems to be more complex as compared to tumor associated 
neutrophils and macrophages, which does not allow for the 
easy division of TAPs into TAP P1 and TAP P2. Neverthe-
less, better exploring the interactions between platelets and 
tumor cells could help to propose new therapeutic goals that 
support or improve the effectiveness of cancer treatment.
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