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Lineage fate decisions of hematopoietic cells depend on intrinsic factors and

extrinsic signals provided by the bone marrow microenvironment, where they reside.

Abnormalities in composition and function of hematopoietic niches have been proposed

as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous

experimental findings strongly suggest that pro-inflammatory cues contribute to

mesenchymal niche abnormalities that result in maintenance of ALL precursor cells

at the expense of normal hematopoiesis. Here, we propose a molecular regulatory

network interconnecting the major communication pathways between hematopoietic

stem and progenitor cells (HSPCs) andmesenchymal stromal cells (MSCs) within the BM.

Dynamical analysis of the network as a Boolean model reveals two stationary states that

can be interpreted as the intercellular contact status. Furthermore, simulations describe

the molecular patterns observed during experimental proliferation and activation.

Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1

interactions following microenvironmental perturbation due by temporal signaling from

Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced

by intrinsic or extrinsic factors may contribute to create a tumor microenvironment

where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular

communication axes allows for the maintenance of malignant cells.

Keywords: cancer systems biology, acute lymphoblastic leukemia, tumor microenvironment, CXCL12,

pro-inflammatory bone marrow, early hematopoiesis, network modeling, dynamical systems

INTRODUCTION

Cancer is currently considered as a global child health priority (Gupta et al., 2014). The
application of effective treatments to decrease overall childhood cancer mortality requires a
comprehensive understanding of its origins and pathobiology, along with accurate diagnosis and
early identification of high-risk groups (reviewed in Vilchis-Ordoñez et al., 2016). Strikingly, the
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clinical, molecular and biological heterogeneity of malignant
diseases indicating an unsuspected multiclonal diversity has
highlighted their complexity and the uncertainty of their
cell population dynamics. Novel theoretical and experimental
integrative strategies have changed our perspective of cancer,
from a hierarchical, deterministic and unidirectional process to a
multi-factorial network where genetics interacts with micro and
macro environmental cues that contribute to the etiology and
maintenance of tumor cells (Notta et al., 2011; Davila-Velderrain
et al., 2015; Tomasetti and Vogelstein, 2015). Furthermore,
stochastic effects associated with the number of stem cell
divisions have been proposed as major contributors, often even
more significant than hereditary or external factors (Tomasetti
and Vogelstein, 2015).

B-cell acute lymphoblastic leukemia (B-ALL) is largely the
result of a growing number of cooperating genetic and epigenetic
aberrations that corrupt hematopoietic developmental pathways
and ultimate lead to uncontrolled production of malignant
B lymphoid precursor cells within the bone marrow (BM)
(Pelayo et al., 2012; Purizaca et al., 2012). Leukemic cell
infiltration and treatment failure worsen the outcome of the
disease and remain the foremost cause of relapse. Recent
advances suggest the ability of leukemia initiating cells to create
abnormal BM microenvironments, promoting high proliferation
and early differentiation arrest at the expense of normal cell
fate decisions (Colmone et al., 2008; Raaijmakers, 2011; Vilchis-
Ordoñez et al., 2015). Intrinsic damage and/or remodeling of cell
compartments that shape the distinct BM niches may account
to microenvironmental regulation of quiescence, proliferation,
differentiation and blastic cell migration. Leukemic cells compete
for niche resources with their normal hematopoietic counterparts
(Wu et al., 2009), culminating in the displacement of the
latter, as observed in xenotransplantation mice models (Colmone
et al., 2008). Moreover, the marrow microenvironment provides
leukemic precursors with dynamic interactions and regulatory
signals that are essential for their maintenance, proliferation
and survival. Although, the underlying molecular mechanisms
are poorly defined, these niches protect tumor cells from
chemotherapy-induced apoptosis, showing a new perspective on
the evolution of chemoresistance (Ayala et al., 2009: Shain et al.,
2015; Tabe and Konopleva, 2015), and emphasizing the need
for new models that theoretically or experimentally replicate the
interplay between tumor and stromal cells under normal and
pathological settings.

As suggested by our previous findings, ALL lymphoid
precursors have the ability of responding to pathogen- or
damage- associated molecular patterns via Toll-like receptor
signaling by secreting soluble factors and altering their
differentiation potentials (Dorantes-Acosta et al., 2013). The
resulting pro-inflammatory microenvironment may expose them
to prolonged proliferation, contributing tumor maintenance
in a self-sustaining way while prompting the NF-κB-associated
proliferation of normal progenitor cells (Vilchis-Ordoñez
et al., 2015, 2016). Some hematopoietic growth factors and
pro-inflammatory cytokines, including granulocyte-colony
stimulating factor (G-CSF), IFNα, IL-1α, IL-1β, IL-7, and TNFα
were highly produced by ALL cells from a conspicuous group of

patients co-expressing myeloid markers (Vilchis-Ordoñez et al.,
2015). Of note, mesenchymal stromal cells (MSCs) from ALL
BM have shown atypical production of pro-inflammatory factors
whereas disruption of the major cell communication pathway
is apparent by detriment of CXCL12 expression and biological
function (Geay et al., 2005; Colmone et al., 2008; van den Berk
et al., 2014).

Considering that the CXCL12/CXCR4 axis constitutes the
most critical component of the perivascular and reticular BM
niches supporting the hematopoietic stem and progenitor cells
(HSPCs) differentiation and maintenance within the BM, as
well as the early steps of B cell development (Ma et al., 1998;
Tokoyoda et al., 2004; Sugiyama et al., 2006; Greenbaum et al.,
2013), an obstruction of the HSPC-MSC interaction may have
substantial implications in the overall stability of these processes.
Whether the inflammation-derived signals provide a mechanism
for leukemic cells to survive, to induce changes in lineage cell fate
decisions, or to prompt niche remodeling in leukemia settings,
are currently topical questions.

Mathematical model strategies have become powerful
approaches to complex biological systems and may contribute
to unravel the hematopoietic-microenvironment interplay
that facilitates tumor cells prevalence (Altrock et al., 2015;
Enciso et al., 2015). Through continuous dynamic modeling
with differential equations we have learned seminal aspects
of multi-compartment and multi-clonal behavior of leukemic
cell populations (Stiehl and Marciniak-Czochra, 2012; Enciso
et al., 2015), leading to novel proposals on disease development
driven by unbalanced competition between normal and pre-
leukemic cells (Swaminathan et al., 2015). Both stochastic and
deterministic models have been useful to simulate cell fate
decisions and predict clonal evolution (reviewed in Enciso et al.,
2015). Certainly, incorporating tumor microenvironment in
cancer modeling is expected to change our vision of biochemical
interactions in niche remodeling-dependent hematopoietic
growth, as recently demonstrated for myeloma disease (Coelho
et al., 2016).

By developing and simulating a dynamic Boolean
system, we now investigate the biological consequences of
microenvironmental perturbation due by temporal TLR
signaling on crucial communication networks between
stem/progenitor cells (HSPCs) and MSCs in ALL. We propose
that NF-κB dependent tumor-associated inflammation co-
participate in malignant progression concomitant to normal
hematopoietic failure through disruption of CXCL12/CXCR4
and VLA4/VCAM-1 communication axes.

MATERIALS AND METHODS

Manual Curation Strategy
Based on the crucial and unique role of the CXCL12/CXCR4
axis in the regulation of maintenance, biological activity, and
niche communication-derived cell fate decisions of seminal cells,
including pluripotent embryonic stem cells and multipotent
hematopoietic stem cells, construction and updating ofmolecular
interactions of relevance involved careful manual curation
of primary hematopoietic cell research. Moreover, of special
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interest was the attention to the hematopoietic malignancies,
which in contrast to solid tumors, display a distinct CXCL12-
mediated microenvironmental behavior. Thus, although the
modeled signaling pathways could be considered generic to all
tissues, the organ, stage of cell differentiation and surrounding
microenvironment may influence the net result of interactions.
Taking into account this considerations, most published work
that has been used for the reconstruction of our proposed
model, include data from molecular interactions in HSPCs.
Some of the interactions have been reported in a number
of different tissues and predicted to be conserved in the
hematopoietic system. Finally, as there is not enough data
to model hematopoietic-microenvironment restricted to Homo
sapiens and some interactions might be crucial for the molecular
connectivity of the model, we have used information from
different species when needed. A detailed referencing of all
reports used for the model reconstruction is provided as
Supplemental Material (Tables S1, S2, and reference list).

Molecular Basis for the Network
Reconstruction
The connectivity among key molecules involved in the
communication between HSPCs and MSCs within the BM
was inferred through the curated experimental literature.
Specifically, we were interested in recovering the network
components, their interactions, and the nature of the interactions
(activation/positive or inactivation/negative). The resulting
general network incorporates transcriptional factors, kinases,
membrane receptors, interleukines, integrins, growth factors, and
chemokines from Homo sapiens and Mus musculus species.
Importantly, to simplify the modeling process, some groups
of molecules were considered as single functional modules,
thus encompassing a series of sequential steps that lead to the
activation or inactivation of a certain node (e.g., PI3K/Akt).
The following paragraphs summarize the principle evidence
used to reconstruct the HSPC-MSC network and infer the
logical rules for computational simulation of the system as a
discrete dynamical model. A detailed referencing is provided as
Supplemental Material (Tables S1, S2, and reference list).

The CXCR4/CXCL12 chemokine pathway was considered as
the central axis for the network construction considering its
essential role in homeostasis maintenance (Sugiyama et al., 2006;
Tzeng et al., 2011) and B lineage support (Ma et al., 1998;
Tokoyoda et al., 2004). Furthermore, recent observations suggest
that this axis is disrupted by up-stream molecular deregulations
both in MSC and leukemic blasts harvested from ALL patients,
affecting the maintenance of hematopoietic cells within their
regulatory niches (Geay et al., 2005; Colmone et al., 2008; van
den Berk et al., 2014). Besides the well-studied CXCR4/CXCL12
chemotactic interaction, CXCR4 activation increases the affinity
between vascular cellular adhesion molecule-1 (VCAM-1)
expressed on the surface of MSC and its receptor VLA-4 on
HSPC. Both pathways, CXCR4/CXCL12 and VLA-4/VCAM-1,
are known to play coordinately a central role in HSPCmigration,
engraftment and retention within the BM (Peled et al., 2000;
Ramirez et al., 2009), converge in triggering the PI3K/Akt and

ERK signals, and share common up-stream regulators involving
molecular factors guiding inflammatory responses.

As mentioned in the Introduction, recent evidence indicates
the secretion of high levels of pro-inflammatory cytokines
by a conspicuous group of ALL patients (Vilchis-Ordoñez
et al., 2015), thereby presumably contributing to remodeling of
the normal hematopoietic microenvironment (Colmone et al.,
2008). Of note, interleukin-1α (IL-1α) and IL-1β, which were
substantially elevated, play an amplification role on inflammation
increasing the expression of other cytokines, like G-CSF
(Majumdar et al., 2000; Allakhverdi et al., 2013), and setting
a positive feedback loop with the PI3K co-activation of NF-
κB (Reddy et al., 1997; Sizemore et al., 1999; Carrero et al.,
2012; Bektas et al., 2014). IL-1 and G-CSF, inhibit directly and
indirectly the CXCR4/CXCL12 axis. G-CSF negatively regulates
CXCL12 transcription and increases the secretion of matrix
metalloproteinase-9, showing the ability to degrade both CXCL12
(Lévesque et al., 2003; Semerad et al., 2005; Christopher et al.,
2009; Day et al., 2015) and CXCR4 (Lévesque et al., 2003).
Moreover, G-CSF promotes up-regulation of Gfi1 that at the
time inhibits the transcription of CXCR4 (Zhuang et al., 2006;
De La Luz Sierra et al., 2007; de la Luz Sierra et al., 2010).
Thus, by considering this information from experimental data,
we have included IL-1 and G-CSF as key elements of the BM
microenvironment in the HSPC-MSC communication network.

In concordance, we incorporated as a “positive control
condition” an input node representing the Toll-like receptor
ligand (lTLR) lipopolysaccharide (LPS), that binds TLR4
and triggers the conventional and well-known NF-κB-
dependent pro-inflammatory response, promoting, among
other transcriptional targets, the transcription of pro-IL-1β
(Jones et al., 2001; Tak and Firestein, 2001; Wang et al., 2002;
Khandanpour et al., 2010; Higashikuni et al., 2013).

Downstream NF-κB, the expression of CXCR7 has been
shown to be upregulated (Tarnowski et al., 2010), which in
turn, down-regulates CXCR4 by heterodimerization, promoting
its internalization and further degradation. In parallel, activated
CXCR7 presents a higher affinity for CXCL12 and β-arrestin,
reducing CXCR4 signaling in CXCR7 and CXCR4 expressing
cells (Uto-Konomi et al., 2013; Coggins et al., 2014). However,
CXCR7 is unable to couple with G-protein, transducing through
recruitment of β-arrestin and leading to MAP kinases Akt and
ERK activation (Tarnowski et al., 2010; Uto-Konomi et al.,
2013; Torossian et al., 2014). As with CXCR4, CXCR7, and
VLA-4 activation in HSPC, PI3K/Akt pathway is activated on
HSPC and MSC, via G-CSF receptor signaling (Liu et al., 2007;
Vagima et al., 2009; Ponte et al., 2012; Furmento et al., 2014),
and after LPS stimulation (Guha and Mackman, 2002; Wang
et al., 2009; McGuire et al., 2013). Apparently, PI3K/Akt acts
at overlapping levels on the modulation of inflammation. On
the one hand, it increases the production of IL-1 antagonist
molecules (Williams et al., 2004; Molnarfi et al., 2005; Li and
Smith, 2014) and inhibits secretion of mature IL-1β (Tapia-
Abellán et al., 2014). On the other hand, it promotes nuclear
translocation of the transcriptional factor Foxo3a (Brunet et al.,
1999; Miyamoto et al., 2008; Park et al., 2008), down-regulating
indirectly the transcription of antioxidant enzymes and enabling
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reactive oxygen species (ROS) accumulation, which in turn
promotes maturation of pro-IL-1β and IL-1β secretion (Hsu and
Wen, 2002; Yang et al., 2007; Gabelloni et al., 2013).

At the mesenchymal counterpart, in addition to a number
of molecules participating in the MSC-subsystem sensitivity
to microenvironmental cues, we incorporated an input
node representing Gap-junction conformed by connexin-43
(Cx43) that mediates direct intercellular communication
between mesenchymal cells. Strikingly, its integral activity as
calcium channel conductor has been shown to be a potent
positive regulator of CXCL12 transcription and secretion
(Schajnovitz et al., 2011). Furthermore, Cx43 expression
appears to be critically disregulated in the BM stromal
cells from acute leukemia patients, suggesting an important
role in the hypothetic disregulation of the hematopoietic-
stromal intercellular communication (Liu et al., 2010; Zhang
et al., 2012). The inclusion of GSK3β and β-catenin in both
subsystems was relevant due to their roles as intermediates
of signaling transduction and regulation of the main
intracellular communication elements proposed for our network
reconstruction. The model is available in XML format (GINML)
on GINsim Model Repository page (http://ginsim.org/models_
repository) (Chaouiya et al., 2012), under the title “HSPCs-
MSCs. Communication pathways between Hematopoietic Stem
Progenitor Cells (HSPCs) and MSCs.”

Dynamical Modeling of the HSPC-MSC
Network
For the computational modeling of the HSPC-MSC complex
system, we followed the standard steps to convert it into a discrete
dynamical system, as described by Albert and Wang (2009) and
Assman and Albert (2009). The Boolean approach is useful when
quantitative and detailed kinetic information is lacking. In such
a case, each node of the network is represented as a binary
element, allowed only to have an “active” (ON) or “inactive”
(OFF) state, numerically represented by 1 and 0, respectively.
The activation state of each node is dependent on the activation
state of its regulators, as described by Boolean functions, also
called logical rules. The classical Boolean operators employed
in Boolean functions are AND (&), OR (|) and NOT (!).
The AND operator is used to represent the requirement of
the conjunction of two or more nodes participating in the
regulation of a certain node (e.g., VLA-4 = CXCR4 & VCAM-
1 representing that VLA-4 optimal activation requires its ligand
VCAM-1 and the signaling due to CXCR4 activation). When
there is more than one node able to regulate another, but only
one of them is sufficient to exert the effect, the OR operator
is applied (e.g., PI3K/Akt = GCSF | ROS | TLR representing
that the activation of the G-CSF receptor, the increase of
intracelular ROS concentration or the binding of a TLR ligand
may activate PI3K/Akt signaling). Finally, the NOT operator
represents repression of a node over another (e.g., IL-1 =

(NF-κB & ROS) & !PI3K/Akt meaning that IL-1 requires the
transcriptional activation of pro-IL-1 promoted by NF-κB and
the post-transcriptional maturation mediated by ROS, but its
signaling is inhibited by the presence of PI3K/Akt). Detailed

compiling of reviewed references for the network reconstruction
and the development of the logical rules can be found in Tables
S1, S2.

Given that each node in the network has an activation
state, then the general state of a network at a given time
t can be represented by a vector of n elements, where n
is the number of nodes in the network. For example, the
vector (00000010000000000100001000), represents a network
state where only the 7th, 18th, and 23rd elements are active.
In our model, this particular state represents the pattern of
activation where only GSK3B_H, GSK3B_M, andVCAM1_M are
active. Now, since we are implementing a dynamical system, it is
necessary to specify how the network may evolve from a time t to
t+1.

There are two possible implementations to model the
transition from one state of the network to another. On one
side, the synchronous scheme update the activation state of
all the nodes each time-step, assuming that all the biological
processes involved in the model occur at similar time scales.
And on the other side, asynchronous scheme update only one
of the logical rules per time step, considering a more complex
behavior of biological processes where molecular signaling is
likely to change at different time points depending on the
nature of the interaction (Albert and Wang, 2009). Either one
or another update scheme, take an initial combination of the
nodes (initial state) and update the logical rules successively
through an established number of time steps or until an steady
state or attractor is reached. Attractors may be of a single state
(fixed point attractors) or a set of states (cyclic or complex
attractors depending if they have one or more possible transition
paths among their constituent states). The analysis of the nodes
activation pattern in the attractors give the biological significance
of the computational simulations of the models (Albert and
Wang, 2009; Assman and Albert, 2009).

The dynamical behavior of the network was analyzed
implementing the logical rules into BoolNet (R open-source
package), and obtaining its attractors (stationary states) by
applying asynchronous update strategies (Müssel et al., 2010).
Under the asynchronous updating scheme, the simulation was
performed using 50,000 random initial states, updating the
network until either a fixed point attractor or a complex attractor
was reached. Confidence of the model was tested through
the simulation of all possible mutants (constitutive and null
activation of every node) and the comparison of the resultant
attractors with experimental reports about the biological effects
in vivo or in vitro after the use of antagonists or the generation of
knock-in and knock-out models.

Dynamical Multicellular Approach
Assuming that every simulation beginning at a certain initial
state of the network represents the dynamical profile of a
single cell, Wu and collaborators proposed a “population-like”
analysis for a discrete model (Wu et al., 2009). Similarly, we
asynchronously ran the simulations of the network from 50,000
random initial states, and then updated for 2000 time-steps,
followed by calculation of the average activation value from
50,000 simulations for each node in each time-step. Such data was
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plotted as multi-cellular average activation graphs. Furthermore,
we evaluated the effect of a short (1 time-step) and a sustained
(699 time-steps) temporary induction of lTLR in time-step 700
and 1400, and analyzed the dynamical effects in the wild type
network and in some relevant mutant networks.

RESULTS

Network Reconstruction
The inferred HSPC-MSC network (Figure 1) constitutes
the first attempt to model relevant interaction axes
between undifferentiated hematopoietic cells and the BM
microenvironment, that may approach us to a deeper
understanding of the numerous molecular signals influencing
the hematopoietic system regulation during normal and
malignant processes. Our current ALL network has 26 nodes
and 80 interactions. Among them, twelve nodes correspond

to molecules that are expressed in HSPC and involved in
intracellular signaling (PI3K/Akt, Gfi1, NF-κB, GSK3β, FoxO3a,
ERK, β-catenin, and ROS) or cell-membrane receptors for
communication with the microenvironment (CXCR4, CXCR7,
VLA-4, and TLR). Eleven nodes conform the MSC subsystem,
integrated by intracellular signaling molecules (PI3K/Akt,
NF-κB, GSK3β, FoxO3a, ERK, β-catenin, and ROS), a gap-
junction protein regulating communication among MSC (Cx43),
communication ligands with HSPC (VCAM-1 and CXCL12)
and TLR. Common internal nodes in both HSPC and MSC
systems are representative molecules from the most studied
pathways influencing proliferation, migration, survival, and
-some of them- differentiation. Finally, the microenvironmental
compartment is represented by G-CSF secreted by myeloid
and stromal cells (Majumdar et al., 2000; Allakhverdi et al.,
2013; Tesio et al., 2013; Boettcher et al., 2014), its inductor
IL-1 which is secreted by MSC and HSPC, and lTLR so as

FIGURE 1 | Regulatory HSPC-MSC network. The network is constituted by three compartments represented with different geometric shapes: HSPC, MSC, and

microenvironmental soluble factors. HSPC and MSC have intracellular nodes regulating the response and expression of elements mediating the communication

between them. CXCR4-CXCL12 and VLA-4/VCAM-1 axes are suggested to be the most crucial communicating elements. HSPC and MSC are both susceptible of

TLR stimulation with lTLR input. HSPC, hematopoietic stem and progenitor cell; MSC, mesenchymal stromal cell.

Frontiers in Physiology | www.frontiersin.org 5 August 2016 | Volume 7 | Article 349

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Enciso et al. Modeling CXCR4/CXCL12 Disruption in Acute Leukemia

TABLE 1 | Logical rules used for HSPC-MSC modeling as a Boolean

system on BoolNet.

Node Logical rule

Bcatenin_H !GSK3B_H

CXCR4_H CXCL12_M & !(CXCR7_H | GCSF | Gfi1_H)

CXCR7_H CXCL12_M & NfkB_H

ERK_H ((CXCR4_H & PI3KAkt_H) | CXCR7_H | GCSF | Gfi1_H | ROS_H |

VLA4_H ) & !(FoxO3a_H | GSK3B_H)

FoxO3a_H (Bcatenin_H | ROS_H) & !(ERK_H | PI3KAkt_H)

Gfi1_H (GCSF | TLR_H) & !Gfi1_H

GSK3B_H !PI3KAkt_H

NfkB_H (TLR_H | ROS_H | (IL1 & PI3KAkt_H)) &

!(FoxO3a_H)

PI3KAkt_H ((CXCR4_H & CXCR7_H) | GCSF | ROS_H | TLR_H | VLA4_H) &

!FoxO3a_H

ROS_H IL1 & TLR_H & (!FoxO3a_H)

TLR_H lTLR

VLA4_H VCAM1_M & CXCR4_H

Cx43_M Cx43_M

Bcatenin_M !(FoxO3a_M | GSK3B_M | NfkB_M)

CXCL12_M Cx43_M & !(Bcatenin_M | GCSF | NfkB_M)

ERK_M GCSF | ROS_M | TLR_M

FoxO3a_M (Bcatenin_M | ROS_M) & !(ERK_M | PI3KAkt_M)

GSK3B_M !PI3KAkt_M

NfkB_M (IL1 & PI3KAkt_M) | (ROS_M & ERK_M) | TLR_M

ROS_M IL1 & TLR_M & (!FoxO3a_M)

PI3KAkt_M GCSF | ROS_M | TLR_M

TLR_M lTLR

VCAM1_M !Bcatenin_M | NfkB_M | PI3KAkt_M

lTLR lTLR

IL1 ((ROS_M | NfkB_M) & !PI3KAkt_M) | ((ROS_H | NfkB_H) &

!PI3KAkt_H)

GCSF IL1

Nodes representing molecules in HSPC are denoted with “_H” at the end of the node

name, while nodes representing molecules in MSC are denoted with “_M.” Logical rules

were constructed using the logical operators AND ( & ), OR ( | ) and NOT ( ! ). The

corresponding common names and genes ID are found in Table S3.

to model a homeostasis disruption that is known to drive a
pro-inflammatory signaling. Model inputs are Cx43 and lTLR,
while the activation value of the other 24 nodes is dependent on
the network topology and the initial state of the input nodes. All
logical rules used for the computational simulation with BoolNet
are shown in Table 1. Note that the logical rules for the input
nodes include self-regulations, but these are for computational
purposes to represent their sustained activation, rather than a
biological reality.

Attractors of the Wild-Type Network:
Searching for the Relevance of TLR in the
Biology of CXCL12
The asynchronous simulation of the Boolean model returned
4 attractors: 2 fixed points and 2 complex attractors
(Figure 2). The first two attractors, fixed point attractor
1 and 2, were identified with the physiological detached

and attached state of the HSPC with its MSC counterpart,
respectively.

Both fixed point attractors will depend on the initial states of
both, TLR and Cx43. Thus, in the absence of lTLR, the final fates
will depend on the initial activation state of Cx43. However, once
TLR is activated, final fates are not contributed anymore from the
activation state of Cx43.

Loss of HSPC-MSC communication corresponding to a
detachment state, is due to the absence of Cx43 and the
consequent inactivation of CXCL12. In the activation pattern of
this attractor, only VCAM-1 accompanied by GSK3β in both sub
systems remained active (Tabe et al., 2007). On the contrary,
when Cx43 is active (as in fixed point attractor 2), CXL12
is expressed by the MSC, which in turn positively regulates
the CXCR4 receptor required for the activation of the VLA-
4/VCAM-1 axis. The pattern in HSPC, correspond to ERK
and PI3K/Akt activation, well-described elements downstream
CXCR4 and VLA-4 (Tabe et al., 2007). β-catenin, a subject of
debate about its function on stem cell maintenance, is turned
on as a consequence of the GSK3β inhibition by PI3K/Akt (Dao
et al., 2007).

Complex attractors 1 and 2 share the same activation values
in all nodes, except for the initial state of Cx43 which is an
input and therefore may be consistently either active or inactive
through simulation. Importantly, these two attractors have the
node for ITLR active, so that under induced pro-inflammatory
conditions the resultant perturbation of CXCR4/CXCL12 and
VLA-4/VCAM-1 is exclusively dependent on CXCL12 down
regulation in MSC by NF-κB. The network attractors are
concordant with experimental observations (Ueda et al., 2004;
Wang et al., 2012; Yi et al., 2012) with the exception of IL1
and GCSF inactivation although lTLR-induced NF-κB signaling
in hematopoietic and mesenchymal compartments. In order
to explain this discrepancy we may remark that an attractor
is a stable network state or set of states, reached after the
network went through a sequence of transient states where, in
most biological systems, there is cross-pathway communication
for modulating cellular response (Williams et al., 2004; Tapia-
Abellán et al., 2014), so IL1 and GCSF could be activated in
some transient states but down-regulated by other pathways
responding to lTLR activation. Due to the existence of regulatory
circuits among pathways, in the presence of ITLR there is an
oscillatory behavior of ERK and Gfi1. Therefore, we applied
the dynamic multicellular approach described by Wu et al.
(2009) in order to have a deeper understanding of the HSPC-
MSC model upon perturbations. The average activation value of
50,000 simulations for all nodes within the HSPC-MSC network
was plotted and presented in Figure 3. The plots represent a
qualitative approach for the analysis of the cell population trend
under specific conditions. Considering that the initial activation
values are randomly chosen, with exception of lTLR, TLR_M,
and TLR_H which activation value was set to 0, the average
initial activation value for the rest of the nodes correspond to 0.5.
From time-step 0 to time-step 499 correspond to the stabilization
of the dynamics. Of note, the plateau obtained around time-
steps 500-699 corresponds to the average of the two fixed point
attractors.
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FIGURE 2 | Asynchronous attractors from the wild type network. Dark color denotes an activation value of 1, while light color represents an activation value =

0. The blue, orange, and yellow colors distinguish the nodes in the three compartments in the HSPC-MSC network corresponding to HSPC, MSC, and

microenvironmental factors, respectively. The last two attractors obtained when the initial states for the asynchronous simulation had lTLR value = 1, have two nodes

(ERK_H and Gfi1_H) whose activation values oscillate and are responsible of the complex attractor. Oscillatory values are represented by intermediate blue color.

Nodes representing molecules in HSPC are denoted with “_H” at the end of the node name, while nodes representing molecules in MSC are denoted with “_M.”

Analysis of Transitory States Applied to a
Multicellular Approach: from
Pro-inflammatory Signals to CXCL12
Downregulation
The short lTLR stimulation at time-step 700 and 1400
(Figures 3A–C) induces up-regulation of Gfi1 in HSPC
(Figure 3A), and of NF-κB and PI3K/Akt in bothHSPC andMSC
compartments (Figures 3A,B). These nodes maintain a sustained
activation as long as the lTLR is present (Figures 3D–F). In
contrast, ERK, ROS and FoxO3a showed an increase but are
regulated by other nodes, providing a feedback to basal values.
Accompanying the cross-regulation of intracellular pathways, a
decrease on CXCR4, CXCL12, VLA-4, and VCAM-1 activation
is observed. As expected, there is positive signaling of the pro-
inflammatory cytokines with a parallel co-increase of CXCR7,
signals damped by PI3K/Akt and CXCL12 down-regulation,
respectively.

Model Validation by Mutant Analysis
Listed in Table 2 are the observations from comparisons
between the resultant attractors of simulations with null
(“loss of function”) and constitutive expression mutants (“gain
of function”), against the wild-type model. We focused on
the activation value changes in the two axes of interest –
CXCR4/CXCL12 and VCAM-1/VLA-4. Even though the nodes
included in the reconstruction of the present model are
well-studied elements of cell fate related-pathways, there is
a lack of experiments correlating their perturbation with
microenvironment modifications that impact HSPC behavior
(Table 2, Table S4). Due to this missing data, and in order to
validate the model, we now used available information of general
alterations in hematopoiesis in the presence of lTLR.

MSC ERK, FoxO3a, and PI3K/Akt nodes participating in
CXCR4/CXCL12 and VCAM-1 VLA-4 axes regulation were not
found in the revised literature. β-catenin in MSC has a role
on osteoblastogenesis and its constitutive induced expression in

osteoblasts in a mice model results in acute myeloid leukemia
(AML) induction (Kode et al., 2014). The constitutive expression
of β-catenin showed an outcome where, under non-induced
inflammation, the CXCR4/CXCL12 axis is disrupted. This gives
support to our hypothesis that CXCR4/CXCL12 is probably
involved in the maintenance of leukemic cells. Furthermore, the
dynamic multicellular approach in the gain of function of β-
catenin in MSC, reproduced the recovery of VCAM-1 expression
upon stimulation of lTLR as reported by Kincade in OP9 cells
(Figure S1; Malhotra and Kincade, 2009).

GSK3β inhibition in MSC has been known to function in the
regulation of osteoblast and adipocyte differentiation. Besides,
experimental effect of a GSK3β-inhibitor on osteoblastogenesis
has shown that the decrease of this kinase induces down-
regulation of CXCL12 expression (Satija et al., 2013). The model
is consistent with the unsteadiness of CXCL12 activation in the
simulation of the mutant (Figures S2A,B).

According to our hypothesis, a pro-inflammatory-induced
CXCR4/CXCL12 disruption results in leukemic progression
support. In the proposed model, overexpression of NF-κB
disrupts the HSPC-MSC communication (Figure S2C). This is
in agreement with the reported leukocytosis associated to up-
regulation of NF-κB within BM MSCs from a mice model of
high-fat diet (Cortez et al., 2013). Finally, modeling of a gain of
function mutation in ROS resulted in the blocking of CXCL12
activation (Figure S2D). This is also in accordance of the recent
report of oxidative damage induced by iron in MSC, resulting
in down-regulation of CXCL12 expression and reduction of
their hematopoietic supporting function (Zhang et al., 2015).
Moreover, the iron-induced hematopoietic alterations previously
observed by other groups, are attenuated by the treatment with
ROS inhibitors (Lu et al., 2013).

Nodes in HSPC which have been experimentally reported
as dispensable for hematopoiesis, which did not show any
alterations in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes on
the mutant simulations, are β-catenin (Figures S3A–D; Cobas
et al., 2004; Jeannet et al., 2008) and CXCR7 (Figures S3E,F).
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FIGURE 3 | Average activation value for intracellular HSPC nodes (A,D), intracellular MSC nodes (B,E) and communication axes among HSPC, MSC,

and microenvironment (C,F). (A–C) Correspond to simulations with a short (1 time-step) stimulation of lTLR at time-steps 700 and 1400. (D–F) Correspond to

simulations with lTLR stimulation at time-step 700 with a length of 699 time-steps. Nodes representing molecules in HSPC are denoted with “_H” at the end of the

node name, and nodes representing molecules in MSC are denoted with “_M.” Gray area covers the stabilization time steps until attractors are reached.

However, even though in vivo β-catenin null mutant HSPC does

not lose long-term reconstitution capacity or multipotentiallity,

its overexpression produces lose of stemness and differentiation

blockage to erythroid and lymphoid lineages (Kirstetter et al.,
2006; Scheller et al., 2006). Simulations of the gain of function

of β-catenin resulted in the appearance of additional attractors
where FoxO3a and GSK3β are increased (Figures S4A,B,
S5B), suggesting a reduction in proliferation and/or apoptosis
induction (Maurer et al., 2006; Yamazaki et al., 2006). In turn,
the simulation of overexpression of FoxO3a showed a down-
regulation of ERK and PI3K (Figures S4C, S5C). Also reported
as proliferative repressors in HSPC (Hock et al., 2004; Zeng
et al., 2004; Holmes et al., 2008), Gfi1 and GSK3β overexpression
mutants inhibited ERK activation, and additionally Gfi1 induce
the downregulation of PI3K/Akt node, CXCR4/CXCL12 and
VLA-4/VCAM-1 axes (Figures S4 and S5). Disagreeing with
experimental data (Holmes et al., 2008), GSK3β null mutant
outcome result in an additional attractor where PI3K/Akt and

ERK are inactive, notwithstanding CXCR4 and VLA4 activation
(Figure S6).

Of interest, NF-κB (Figure 4) and ROS (Figures S4F,
S5F) constitutive expression in HSPC induce additional
attractors with activation of IL-1 and G-CSF, and inhibition
of axes regulating HSPC-MSC contact. A number of
investigations on cancer cells report a correlation of NF-
κB increased levels and CXCR4 (Richmond, 2002; Ayala
et al., 2009; Shin et al., 2014). Nonetheless, a recent
study in human leukemic cell lines has shown that LPS
treatment increases MMP-9 activity, a metalloproteinase
known to efficiently degrade CXCR4 and CXCL12
(Hajighasemi and Gheini, 2015).

NF-κB Gain of Function Mutant as ALL
Simplified Model
How common alterations in ALL cells may induce BM
microenvironment remodeling, regardless of the underlying
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TABLE 2 | Results from the model outcome for single node mutations.

Loss of function

Node Model outcome Experimental evidence

Bcatenin_H, CXCR7_H, ERK_H, FoxO3a_H, NfkB_H,

ROS_H, Bcatenin_M, ERK_M, FoxO3a_M, NfkB_M,

ROS_M, IL1, GCSF

No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes

with respect to the attractors from the wild-type model.

Cobas et al., 2004; Jeannet et al., 2008; Sierro

et al., 2007

CXCL12_M, CXCR4_H Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M.

Greenbaum et al., 2013; Sugiyama et al., 2006;

Tzeng et al., 2011

Gfi1_H No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes.

Stabilization of lTLR-dependent complex attractors with no

activation of ERK_H .

Hock et al., 2004; Zeng et al., 2004

GSK3B_H Additional fixed point attractor when Cx43 is active, where

FoxO3a_H is up-regulated and repressing PI3K_H and ERK_H.

Also, are additional complex attractor in the presence of lTLR

where FoxO3a_H inhibits PI3KAkt_H, ERK_H and NfkB_H

activation.

Holmes et al., 2008

PI3KAkt_H, PI3KAkt_M No changes in CXCR4/CXCL12 and VLA-4/VCAM-1 axes with

respect to the attractors from the wild-type model. Under lTLR

stimulation, pro-inflammatory cytokines turned on and in

consequence ROS_H. In PI3KAkt_H null mutant, ERK_H is

inhibited in every condition and FoxO3a_H is intermittently

activated under lTLR stimulation.

Williams et al., 2004; Champelovier et al.,

2008; Xu et al., 2012

VLA-4, VCAM1_M PI3KAkt_H and ERK_H are turned off even if CXCR4/CXCL12

axis is active.

Wang et al., 1998; Scott et al., 2003

GSK3B_M Fixed point attractors are lost and became complex attractors.

Activation of Cx43, leads to two complex attractors of which one

activates CXCR4/CXCL12 and VLA-4/VCAM-1 axes

intermittently. In the absence of Cx43, two complex attractors are

generated, and one of them unsteadily activate IL1 and GCSF.

Satija et al., 2013

Gain of function

Node Model outcome

GSK3B_M, ERK_M, VCAM1_M, FoxO3a_M No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes

with respect to the attractors from the wild-type model.

NE (Not experimental evidence found)

CXCR7_H, NfkB_H, Bcatenin_M, NfkB_M, PI3KAkt_M,

GCSF, IL1

Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M.

Cortez et al., 2013; Kode et al., 2014

Bcatenin_H Under the activation of Cx43_M, an alternative steady state is

reached where PI3KAkt_H and ERK_H are not expressed and

instead, FoxO3a_H and GSK3B_H are active despite the

activation of CXCR4_H and VLA4_H.

Kirstetter et al., 2006; Champelovier et al.,

2008

CXCL12_M Under lTLR stimulation, the complex attractors show a sustained

activation of CXCR7_H.

NE

FoxO3a_H Bcatenin_H, ERK_H and PI3KAkt_H inactivation under any

condition.

Yamazaki et al., 2006

Gfi1_H Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M. Stabilization of lTLR-dependent

complex attractors.

Hock et al., 2004; Khandanpour et al., 2013

GSK3B_H Inhibition of ERK_H and Bcatenin_H when CXCR4_H or lTLR are

active.

NE

PI3KAkt_H Bcatenin_H remains active in the absence of Cx43 and lTLR. Wang et al., 2013

ROS_H, ROS_M Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M. ROS_M overexpression mutant,

activates PI3K_M, which in consequence inhibits FoxO3a_M.

Lu et al., 2013; Zhang et al., 2015

VLA-4 Constitutive activation of PI3KAkt_H, ERK_H and Bcatenin_H. Schofield et al., 1998; Shalapour et al., 2011

genetic aberration, was investigated by running a dynamic
multicellular simulation using the mutant network for NF-
κB gain of function within the HSPC sub-system. The results

shown in Figure 4 confirm that NF-κB mutation in HSPC
may perturb HSPC-MSC communication in parallel with
the induction of other alterations previously reported in
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FIGURE 4 | Dynamic multicellular simulation for a ALL simplified model

addressed by NF-κB gain of function in HSPC. Average activation for

intracellular HSPC nodes (A), intracellular MSC nodes (B) and communication

axes among HSPC, MSC, and microenvironment (C). Nodes representing

molecules in HSPC are denoted with “_H” at the end of the node name, while

nodes representing molecules in MSC are denoted with “_M.” Gray area

covers the stabilization time steps until attractors are reached.

ALL cells, such as the increase of Gfi1 expression (Purizaca
et al., 2013) and a pro-inflammatory milieu (Vilchis-Ordoñez
et al., 2015). IL1 and G-CSF activation by HSPC up-
regulate ERK, NF-κB and PI3K/Akt in MSC. As consequence
of PI3K/Akt increase in MSC, β-catenin is up-regulated
through the inhibition of GSK3β. Strikingly, the sustained
activation of CXCR7 resulted as a consequence of NF-
κB constitutive expression in HSPC and CXCL12 residual
expression from MSC. CXCR7/CXCL12 axis was recently

reported to be increased in ALL cells and a possible participation
in abnormal cell migration was suggested (Melo et al.,
2014).

DISCUSSION

According to the classical model of hematopoiesis, normal
blood cells are replenished throughout life by stem and early
progenitor populations undergoing stepwise differentiation
processes in the context of intersinusoidal specialized niches
(Purizaca et al., 2012; Vadillo et al., 2013). Cell cycle status,
self-renewing capability and the central cell fate decisions
depend, in great part, on the microanatomic organization and
signals from the BM environment. Endosteal, perivascular and
reticular niches provide support by cell-cell interactions and
growth/differentiation factors that control the expression of
lineage-specific transcription factors, among other elements.
Within the reticular niche, mainly composed by CXCL12-
abundant reticular cells (CARs), a special category of MSCs,
the chemokine CXCL12 and its receptor CXCR4 play a pivotal
role in the regulation of lymphopoiesis from the earliest
stages of the pathway (Tokoyoda et al., 2004; Nagasawa,
2015). The transcription factor Foxc1 governs CXCL12
and stem cell factor expression, allowing the CAR niche
formation for maintenance of HSC, common lymphoid
progenitors, B cells, NK and plasmacytoid dendritic cells
(Omatsu et al., 2014). The net balance of its disruption is
instability of adaptive and innate immune cell production.
Recent findings suggest that elevation of cytokines and growth
factors, including G-CSF and TNFα, due to infectious stress,
substantially reduce the expression of CXCL12, SCF and
VCAM-1, further impairing primitive cell maintenance and
prompting their proliferation and migration (Kobayashi et al.,
2015, 2016).

Much remains to be unraveled about CXCL12-related
mechanisms of intercommunication damage that may
favor growth of cancer cells at the expense of healthy
hematopoiesis during biological contingencies such as
hematological malignancies and biological stress. Although,
genetic heterogeneity may be co-responsible for differences in
ALL overall survival, response to treatment, differentiation-stage
arrest or even predisposition to metastasis, a common need
might be the development of biological features that provide
pre-malignant cells decisive advantage over normal cells to
compete for the same ecological niche. Given the importance
of CXCR4/CXCL12 axis for homeostatic hematopoiesis
and of its presumptive disruption in ALL BM, we now
propose a Boolean model reconstructed with some of the
most studied elements upstream and downstream this key
communication axis. Our model shows its capacity to simulate
several phenotypes relevant to ALL. According to previous
experimental research, the major assumption made from
this model is that the integrity of CXCR4/CXCL12 signaling,
promoting the required activation of the VLA-4/VCAM-1
integrins interaction, is absolutely necessary for HSPC retention
in the mesenchymal niche and in consequence, indispensable
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for optimal hematopoiesis regulation (Lévesque et al., 2003;
Lua et al., 2012; Greenbaum et al., 2013; Park et al., 2013).
The HSPC-MSC model asynchronous simulation in the
absence of lTLR returned two attractors corresponding to
HSPC attachment and detachment to MSC. The ‘attachment’
status, represented by the induction of CXCR4/CXCL12
and/or VLA-4/VCAM-1 axes, also exhibited PI3K/Akt and
β-catenin activation within the HSPC compartment. Although
there is some controversy about the β-catenin role in HSC
regulation (Kirstetter et al., 2006; Duinhouwer et al., 2015),
the co-activation of PI3K/Akt and β-catenin is known to
promote self-renewal and HSC expansion (Perry et al.,
2011). Two core pathways downstream CXCR4/CXCL12
binding are PI3K/Akt and ERK, both promoters of cell
survival and regulators of proliferation. Considering that
the mesenchymal stromal niche has being identified as the
interface between the quiescence promoting osteoblastic niche
and the vascular niche regulating final lineage commitment
and cell migration, the signals provided by mesenchymal
cells should tightly regulate proliferation/expansion in
order to further allow differentiation. According to this
statement, the attractor representing the detached state
conducts to pro-apoptosis signaling in the absence of aberrant
expression of NF-κB, that relies on cytochrome C release-
associated normal functions of GSK3β in HSPC (Maurer et al.,
2006).

By using elegant mice disease models and controlled culture
systems, a wealth body of studies has recently highlighted the co-
participation of inflammation and infectious stress in the HSPC
exit from quiescence status, as well as in cancer etiology and
progression (Baldridge et al., 2011; Vilchis-Ordoñez et al., 2015).
Chronic inflammation and carcinogenesis have been closely
connected via either a oncogenes-derived intrinsic pathway or
through an extrinsic pathway from external factors that promote
latent inflammatory responses involving signaling pathways such
as MyD88, NF-κB, and STAT3 (Mantovani et al., 2008; Krawczyk
et al., 2014).

Interestingly, pattern recognition receptors (PRRs), including
Toll-like receptors (TLRs) are functionally expressed from
the most primitive stages of hematopoiesis and contribute to
emergent cell replenishment in response to life-threatening
infections or disease-associated cell damage (Nagai et al., 2006;
Welner et al., 2008; Dorantes-Acosta et al., 2013; Vadillo et al.,
2014). This phenomenon is called emergency hematopoiesis and
is regulated at themost primitive cell level (Kobayashi et al., 2015,
2016).

The potential relevance of this mechanism in leukemogenesis
was the focus of this investigation, and our model allowed for the
analysis of most behaviors observed under experimental settings.
The discrete simulation of NF-κB constitutive expression mutant
on HSPC, gave further support to our hypothesis on the
perturbation of CXCR4/CXCL12 communication axis induced
by pro-inflammatory microenvironment. The single mutation
of NF-κB was sufficient to remodel the dynamical behavior of
the three sub-systems represented, which was an unexpected

behavior of the model. The dynamic analysis of the ALL-
like network, also suggested the activation of an alternative
communication pathway mediated by CXCR7 binding CXCL12.
Inhibition of CXCL12 within the mesenchymal niche, may
be fundamental for cell migration to adjacent BM structures
unable to sustain proper differentiation or even to extramedullar
tissues, accounting for a predictable role of this axis in
metastasis.

CONCLUDING REMARKS

The proposed HSPC-MSC model is the first systemic
approximation to understand the intercommunication
pathways underlying primitive cell retention/proliferation
in the mesenchymal niche as a determinant factor for
progression of hematological hyperproliferative diseases.
We applied conventional discrete dynamical modeling and
non-conventional population-like approaches as an average
behavior of the network model. Future improvement of discrete
dynamical modeling for ALL system will provide a powerful tool
for investigation of unbalanced competitions between leukemic
and normal hematopoietic cells within the BM. Overall, systems
biology will advance our comprehensive view of the mechanisms
involved in the pathogenesis of leukemic niches that may
illuminate therapeutic strategies based on cell-to-cell crosstalk
manipulation.
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