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Abstract: Deep learning approaches are widely used to
search molecular structures for a candidate drug/material.
The basic approach in drug/material candidate structure
discovery is to embed a relationship that holds between a
molecular structure and the physical property into a low-
dimensional vector space (chemical space) and search for a
candidate molecular structure in that space based on a
desired physical property value. Deep learning simplifies
the structure search by efficiently modeling the structure of
the chemical space with greater detail and lower dimen-

sions than the original input space. In our research, we
propose an effective method for molecular embedding
learning that combines variational autoencoders (VAEs) and
metric learning using any physical property. Our method
enables molecular structures and physical properties to be
embedded locally and continuously into VAEs’ latent space
while maintaining the consistency of the relationship
between the structural features and the physical properties
of molecules to yield better predictions.
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Molecular design aims to identify molecular structures with
certain desirable properties. However, the search space for
a target molecular structure that is a candidate drug or
useful material is too complicated and it is difficult to
search for desirable molecules. Properties of complex
organic molecules are often represented by a wide range of
descriptors so that the molecules can be embedded into a
multidimensional space called a chemical space.[1] However,
closeness in a descriptor space does not always imply
similarity in molecular structures. Creating a chemical space
that reflects the similarity in the physical properties as well
as molecular structures will drastically improve the effi-
ciency of molecular design. And a wide diversity of
molecular property in the dataset is important to generalize
prediction.[2] In this paper, we introduce a model to embed
molecules into a latent space using deep learning to
reproduce the distance between the properties of chem-
icals based on their molecular structures.

We apply a deep learning model to build an encoder
from a molecular formula in a latent space and trained the
model using a publicly available dataset for the multiple
physical properties of organic molecules named QM9.[3] We
introduce a training scheme based on the metric learning
method to maintain the consistency of neighboring mole-
cules in the latent space, which should show similar
physical properties, such as chemical potential (i. e., internal
energy), potential of the highest orbit, and heat capacity.

Gómez-Bombarelli and others[4] used a variational
autoencoder (VAE)[5] with simplified molecular input line
entry system (SMILES)[6] character strings as input. More-
over, they imposed a constraint on the learning of VAE by
jointly training a physical property linear regression model.
A regression model that predicts a physical property value

from a latent vector with VAE and VAE joint training with
large amounts of labeled data makes VAE latent space
organized based on the physical property. By using a
Bayesian optimization (BO)[7] search on the latent space
based on a physical property value, we can identify
molecular structures that have a certain desirable property
as SMILES sequences using Recurrent neural networks
(RNN). However, because the latent space of the VAE that
has learned the SMILES character string is composed of the
sequential features of SMILES, the learned latent space does
not configure the latent space that properly embeds the
features of the molecular structure.[8] Kajino[9] developed a
hypergraph grammar-based method for molecular structure
generation. In this method (molecular hypergraph grammar
variational autoencoder (MHG-VAE)), a molecular structure
is described as a hypergraph, and Grammar VAE[10] is trained
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by inputting the production rule sequence of the hyper-
graph. MHG-VAE can embed latent features of molecular
structures into the VAE latent vector more precisely than
VAEs that used SMILES and junction tree[11] as molecular
descriptors. The molecular structure design models using
these VAEs commonly have the VAE latent space organized
based on specific physical properties by joint learning with
the physical property linear regression model. However,
existing joint learning with regression (Joint VAE) has a
problem in embedding physical properties from the
perspectives of the loss function and the learning method.

The objective function of VAEs is given as follows:

Ez�q� zð jxÞ
log pq xjzð Þ½ � � DKLðq� zjxð Þ k pðzÞÞ, (1)

where z is a latent vector in which input data x is encoded
by VAEs Encoder q� zjxð Þ. � is a parameter of VAEs Encoder.
pq xjzð Þ is VAEs Decoder. q is a parameter of VAEs Decoder.
VAEs minimize the following loss function of Eq. (2) by
optimizing the parameters � and q to maximize the
objective function of Eq. (1):

LVAE ¼ LReconstruction þ LKL divergence, (2)

where the LReconstruction term is given by the cross entropy of
the input data vector x to the VAEs Encoder and the
reconstructed vector is given by the VAEs Decoder.
LKL divergence is the KL divergence between the approximate
posterior distribution of latent vectors obtained by the
VAEs Encoder and a prior distribution p zð Þ (Standard normal
distribution). Additionally, Joint VAE minimizes the loss
function given by the Eq. (3) by adding a regression for the
loss Lreg loss term to Eq. (2):

LJoint VAE ¼ LReconstruction þ bLKL divergence þ gLreg loss, (3)

where,

Lreg loss ¼
1
N

XN

i¼0

fð ðziÞ � yiÞ
2,

where f zið Þ denotes the predicted value of the physical
property regression model corresponding to the i-th input
data, and y is the true value. b and g are hyperparameters.
Linear regression f zið Þ predicts a physical property value
from a latent vector zi corresponding to the i-th input data
xi. A linear regression optimizes its parameters to minimize
Lreg loss . Joint VAE encoder maps an input data xi to the
latent vector zi so that Lreg loss becomes small. Therefore,
Joint VAE latent space becomes organized based on a
physical property that is used for regression. However, Joint
VAE may embed linearly a target physical property value
into very few axes of the latent vector z. For example, Joint
VAE latent vector z has D dimensions, and If one of the D
latent variables can sufficiently express the physical prop-

erty, this physical property value would be linearly
embedded in one variable. Such representation of the
latent vector is not preferable because molecules that have
similar physical properties in a few descriptors do not
necessarily have similar structures. Therefore, when we
output molecular structures based on the target property
value embedded from the latent space of Joint VAEs,
structurally highly dissimilar molecules may be output
(Figure 1, Joint VAE). Also, the output molecules most likely

have large variations in other properties other than the
targeted property. Such large variations in some properties
are not suitable for designing a target molecule such as a
ligand molecule in which several physiological/biological
properties (toxicity, water solubility, and binding affinity)
should be carefully adjusted. Conversely, if VAEs with a
molecular descriptor as the input are trained without any
constraint (physical property regression), the specific phys-
ical property values may not be continuously embedded.
Therefore, if molecular structures are continuously selected
from the neighboring points on the VAE latent space, a
target physical property may not change continuously
(Figure 1, VAE only). To address this dilemma, we need to
continuously embed the molecular structure into the VAE
latent space while maintaining the consistency of the
relationship between molecular structure and physical
properties.

To address the problem, we applied metric learning into
a drug/material design model using VAEs. Metric learning is
a learning method that matches a distance similarity in a
label space with a distance similarity in an embedding
space by a neural network. In this study, we propose a
learning method that combines log ratio loss[12] with the
loss function of VAE Eq. (2). Log ratio loss can handle
similarity defined by continuous labels. The model of our
proposed method is shown in Figure 2. The VAE architec-
ture uses the same model as Kajino’s MHG-VAE[9] because
MHG-VAE can embed latent features of molecular structures

Figure 1. Schematic of VAE latent space in the existing methods.
Neighboring molecules in the latent space are not always show
similar structures or similar target properties.
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into the VAE latent vector more precisely than VAEs that
use SMILES and other descriptors. At first, we extract some
molecular hypergraph grammar sequences from a molec-
ular data set using a molecular hypergraph grammar
inference algorithm and convert molecules into the
production rule sequences using the extracted hypergraph
grammar. MHG-VAE is trained with production rule sequen-
ces as input. Our model (Metric VAE) optimizes neural
network parameters by minimizing loss function given in
Eq. (4), and the LReconstruction and LKL divergence are the same
terms as the loss function of MHG-VAE, while the
LReconstruction term is a cross entropy of an input sequence
vector (production rule sequence) to the MHG-VAE encoder
and a reconstructed sequence vector by the MHG-VAE
decoder. LKL divergence is the KL divergence between an
approximate posterior distribution of latent vectors ob-
tained by the MHG-VAE encoder and a prior distribution
(Standard normal distribution). MHG-VAE continuously
embeds a molecular structure into the VAE latent space.
However, it is difficult for MHG-VAE training without any
constraint to continuously embed a targeted physical
property value into the MHG-VAE latent space. Eq. (4)
Llog ratio loss term is a loss term that imposes a constraint so
that a physical property value is embedded locally and
continuously into the MHG-VAE latent space. The b and g

are hyperparameters. The Llog ratio loss term is calculated by
Eq. (5).

LMetric VAE ¼ LReconstruction þ bLKL divergence þ gLlog ratio loss, (4)

where,

Llog ratio loss ¼ log
Dðf xa; f xnÞ
Dðf xa; f xpÞ

� log
Dðya; ynÞ
Dðya; ypÞ

� �2

, (5)

where f x is a latent vector corresponding to an input
molecular graph x, y is a physical property, and D(*) denotes
squared Euclidean distance. a, p, and n represent anchor,
positive, and negative samples, respectively. Positive and
negative samples are selected by distance to the anchor
sample in the target physical property. The triplet-based
metric learning calculates a loss value using a sampling
method called triplet sampling based on the label distance
from such a data sample.[13] By approximating the ratios
between label distances instead of the distances them-
selves, the proposed loss enables the learning of a metric
space more flexibly regardless of the scale of the physical
property values. We extract three samples required for the
calculation of Llog ratio loss from batch data sample by triplet
sampling based on any physical property value and
calculate the log ratio loss for each batch of data samples.
However, calculating Llog ratio loss for all samples in a batch
tensor during batch training requires huge computational
cost, and metric loss by triplet sampling focusing only on a
physical property value used for learning may compete

Figure 2. Model schematic. To calculate metric loss, we label molecules with anchor, positive, and negative in molecules data set. In this
figure, a, p, and n represent anchor, positive, and negative samples, respectively. f x is a latent vector corresponding to the input molecular
graph x. The VAE architecture uses the same model as Kajino’s MHG-VAE composed of encoder using Bi-directional RNN and decoder using
RNN. By optimizing the positions of the anchor, positive, and negative latent vectors, VAE latent space M becomes closer to the Chemical
space P. DðX; YÞ represents the distance between X and Y.
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with the MHG-VAE training. To carefully handle the close-
ness of structural features of molecules and the closeness of
the physical property values used for metric learning, our
method does not treat samples that are too far apart in the
MHG-VAE latent space as positive and negative samples for
calculation of the Llog ratio loss term. We show an illustrative
example of our proposed triplet sampling for the continu-
ous embedding of molecular structure in Figure 3. At first,

we select a sample to be set as an anchor in a batch tensor
and sort the batch samples based on MHG-VAE latent space
distance (Euclidean distance). Second, we sort 25% of the
samples based on a specific physical property distance
(Euclidean distance). Lastly, we select positive and negative
samples in turn from sorted samples based on physical
properties. We repeat steps 1 to 3 while changing the index
of the anchor selected in step 0 (Figure 3).

Metric learning based on log ratio loss can be integrated
by the training of normal VAEs. In addition, our proposed
method can circumvent the problem that the variation of a
property is limited to only a few dimensions in the latent
space because it is necessary to adjust all the variables of a
latent vector and to embed the property locally and
continuously in the MHG-VAE latent space to reduce the
Llog ratio loss term. Therefore, we can embed molecular
structures and physical properties locally and continuously
in the VAE latent space while maintaining the consistency
of the relationship between the structural features and the
physical properties of molecules (Figure 4).

Moreover, when we output molecular structures based
on the targeted physical property embedded from the

MHG-VAE latent space of our proposed model, structurally
similar molecules will be determined (Figure 4).

All deep neural network architectures build a represen-
tation of the input data in the middle layer. Our model can
save the middle layer activation of Metric VAE as a fixed
dimension continuous local embedding of physical proper-
ties. Using the embedding technique for a low-dimensional
vector by deep learning results in the higher quality of the
vector expression, and it works more effectively for a
specific task.[14] For instance, ImageNet embeddings are
often used as-is to make predictions on unrelated image
tasks.[15] In recent years, such an embedding learning
method has been applied not only in the field of natural
language processing and image analysis, but also in the
field of computational chemistry.[16]

From approximately 130 K data (QM9), we randomly
selected 80% as training and 20% as test data sets. We
evaluated the embedding space extracted by the existing
method (Joint VAE) and our proposed method as a physical
property regression problem using neighbor points in VAE
latent space. We started by constructing two VAE models,
VAE that was jointly learned with a regression model and
VAE with Log ratio loss (our proposed model), to encode a
molecular structure into a continuous latent vector repre-
sentation. We propose an evaluation method using neigh-
boring points on the embedding space to quantitatively
evaluate the representation of the VAEs embedding space
(Figure 5). First, we extracted embedding vectors from each
of the 1,000 molecular data randomly selected from hold
out which is not included test data using a VAE encoder.
Second, we extracted neighbor points that correspond to
the training data embedded by the same procedure as the
first procedure in the MHG-VAE embedding space. Finally,
we constructed a physical property linear regression model
using only ten neighbor points, and we calculated the

Figure 3. Triplet sampling for calculating log ratio loss. This is an
example overview of the triplet sampling method when the VAE
latent vector is two-dimensional.

Figure 4. Schematic of VAE latent space in our proposed method.
The correspondence between structural features and property
value is consistently aligned in latent space.
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mean absolute error (MAE) when predicting the physical
property value of the molecule (located at the center) of
validation data. Lower MAE scores for the physical proper-
ties not used for embedding learning, as well as the scores
which were used in the learning, imply that the structural
features and the physical properties of molecules are
embedded in the MHG-VAE space locally and continuously.
We reported MAE scores when performing embedding
learning with three different physical property values using
the existing method (Joint VAE) and our proposed method
(Metric VAE) in Figure 5. The U0 (internal energy at 0 K), U
(internal energy at 298.15 K), G (free energy), and H
(enthalpy) have strong linear correlations; thus, we summar-
ized the four physical properties in the U0 descriptor. As
shown in Table 1, Metric VAE outperforms Joint VAE on
nearly all QM9 descriptors when selecting each of the three

physical property values (U0, Cv, and Highest occupied
molecular orbital (HOMO)) as the embedding learning label.
The properties of each symbol are shown in Table 2. We
selected the three properties which have high variances as
the label of embedding learning.

To compare Joint and Metric VAEs, we calculated the
accuracies of two models in regression using the 203
RDKit[17] descriptors (Figure 6). We extracted physical prop-
erty descriptors having continuous values and nonzero
variance. Consequently, we evaluated the models using 83
physical property values (The list of all 83 properties of
RDKit descriptors are shown in the section S1 of the
Supplemental information). We plotted the MAE scores
according to the models used for embedding learning and
the three physical property values. The y-axis represents
MAE calculated by Joint VAE, and the x-axis represents MAE

Figure 5. An overview of the evaluation method. The outputs from the middle layer of VAE is reduced to a vector, which is used for
predicting physical properties. The number zi described in the embedding space represents a neighboring point in the embedding space for
the embedding vector and represents the order of proximity.

Table 1. Comparison of MAE with the models for QM9 data sets. The numbers highlighted in bold show that the model is better. The label
indicates the physical property used for embedding learning. Joint and Metric represent the existing and proposed methods, respectively. In
our method (Metric), the improvement of the prediction of target property does not have much influence on the prediction of other
physical properties.
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calculated by Metric VAE. Figure 6 shows that Metric VAE
shows overall lower MAE scores than Joint VAE. Metric VAE
outperforms Joint VAE on 165 out of 249 evaluation points
(60 (72.2%) for U0, 53 (63.3%) for Cv, and 52 (62.6%) for
HOMO respectively). This result implies that our approach
can be extended to a wide range of chemical descriptors
related with basic physical properties. However, note that
this approach is difficult to apply for descriptors and
properties which are not correlated with the molecular
features embedded as target properties.

Moreover, Metric VAE underperforms Joint VAE for some
descriptors; however, the difference is small and for some

descriptors, it improves the prediction significantly com-
pared to Joint VAE. Therefore, we successfully extracted the
latent vector representation in which physical property
values and structural features of a molecule are smoothly
embedded from the molecular structure compared with the
conventional methods. When we optimize molecular
structure based on a target property by Metric VAE, we can
avoid the problem which other properties will be seconda-
rily greatly changed. The advantage of metric learning is
based on local consistency of the embedded chemical
space, so this approach would be applicable for other
datasets of natural metabolic compounds. Since these
results also suggest that our proposed method can model a
chemical space in which more physical property values are
smoothly embedded as the number of types of physical
property values used for embedding learning increases, a
future research direction is to model an ideal chemical
space for drug design by transforming the MHG-VAE latent
space using our proposed method as transfer learning.

Computational Methods

To show that our method is effective for molecular structure
design using molecular data analysis, we applied the
models (Joint and Metric VAEs) to a public chemical dataset.
Since we are interested in comparison of multiple physical
properties, we chose QM9 dataset. The QM9 data set
contains approximately 130 K examples of stable small
organic molecules with up to nine heavy atoms (C, O, N,
and F). The 12 target properties for each example are
shown in Table 2. All properties are calculated at the B3LYP/
6-31G (2df, p) level of quantum chemistry. We extracted
807 molecular hypergraph grammar sequences from the
QM9 data set using molecular hypergraph grammar and
converted approximately 130 K molecules into production
sequences with a maximum length of 12. Both the VAE
encoder and decoder use three-layer GRU[18] with 384
hidden sizes (encoder is bidirectional), handling a sequence
of production rules embedded in 900-dimensional space. In
the encoder, the output of the GRU is fed into a linear layer
to compute the mean and log variance of a 50-dimensional
Gaussian distribution, and the latent vector z 2 R50 is
sampled from it as the output of VAE encoder. The VAE
objective is optimized with Adam,[19] and the learning rate is
0.001.

To prevent the problem of not reducing the reconstruc-
tion error due to the influence of all parameters of the
latent variable on the embedded properties during the
early steps of learning, we employ β-TCVAE.[20] The loss
function of β-TCVAE is given as follows:

Table 2. Target properties of the QM9 data set.

Figure 6. MAE score comparison of Joint and Metric VAEs (our
proposed model) broken down by RDKit descriptors and embed-
ding labels. Each dot represents RDKit descriptors, while each
marker color represents a physical property value used in the
embedding learning model.
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Lbeta� TCVAE ¼ LReconstruction þ a1DKL q� z; nð Þ k q� zð Þp zð Þ
� �

þ a2DKL q�
� �

zÞ k
Y

j

q� zj
� �
Þ þ a3DKL

X

j

ððq� zj
� �
k p zj
� �
Þ,

where n is a uniform random variable on {1, 2, …, N} with
which we relate to data points, the α1, α2, and α3 are
hyperparameters. LReconstruction is the same as the LReconstruction

term in Eq. (4). p zð Þ is a prior distribution (Standard normal
distribution). q� zð Þ was calculated by Minibatch stratified
sampling.[20] And j indicates a dimensional index of the
latent vector z. The large scale of α2 makes VAE latent
variables independent. We empirically selected α1=0.75 an
α3=0.75 as the best parameters at the presented loss
function. Additionally, we decrease the scale of α2 from 1.25
to 0.75 by 0.1 per an epoch. β at Eq. (4) indicates α1, α2, and
α3, and they were determined using the presented formula.
Although β-TCVAE increases the independence between
latent variables, it may linearly embed the property that is
used for metric learning into one latent variable with high
variance and scale at the early steps of learning. Therefore,
we set g in Eq. (4) to the following values as a penalty
coefficient.

g ¼ 0:1ð1:0 � ðmax
i

Pcj ðzi; yÞjÞ,

where zi are latent vectors that are calculated by the VAE
encoder q� zjxð Þ with a minibatch sample, and i indicates a
dimensional index of the latent vector. y is a physical
property value that is used for metric learning. Pc(zi; yÞ
represents the Pearson correlation coefficient between the
two variables. This penalty term prevents the presented
problem. The other VAE parameters are set to the same
values as Kajino’s MHG-VAE. As a Joint VAE model f :
R50 ! R, we employ a 2-layer linear regression. The detail
list of the setup and benchmark times are listed in the
section S3 of the Supplementary Information. The Kajino’s
MHG-VAE model can be downloaded from the GitHub page
at https://github.com/ibm-research-tokyo/graph_grammar.
Our model is also available at https://github.com/daiki-ko/
Metric_MHG-VAE .
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