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Abstract: This work explored the effects of salinity and temperature on the efficacy of purging
V. parahaemolyticus from eastern oysters (Crassostrea virginica). Oysters were inoculated with a 5-strain
cocktail of V. parahaemolyticus to levels of 104 to 105 MPN (most probable number)/g and depurated
in a controlled re-circulating wet-storage system with artificial seawater (ASW). Both salinity and
temperature remarkably affected the efficacy for the depuration of V. parahaemolyticus from oysters
during wet-storage. The wet-storage process at salinity 20 ppt at 7.5 ◦C or 10 ◦C could achieve a larger
than 3 log (MPN/g) reduction of Vibrio at Day 7, which meets the FDA’s requirement as a post-harvest
process for V. parahaemolyticus control. At the conditions of 10 ◦C and 20 ppt, a pre-chilled system
could achieve a 3.54 log (MPN/g) reduction of Vibrio in oysters on Day 7. There was no significant
difference in the shelf life between inoculated and untreated oysters before the depuration, with a
same survival rate (stored in a 4 ◦C cooler for 15 days) of 93%.

Keywords: eastern oysters (Crassostrea virginica); depuration; wet-storage; V. parahaemolyticus;
seafood safety

1. Introduction

V. parahaemolyticus is a human pathogen that naturally exists in marine environ-
ments [1] and primarily causes seafood-associated gastroenteritis in the U.S., mostly from
the consumption of raw oysters [2]. Based on CDC data, Vibrio infections follow a seasonal
trend mainly from June to September at high temperatures [3]. Oysters can uptake and
accumulate Vibrio from growth environments [4]. Vibrio can also replicate in oysters at
favorable temperatures [5]. Therefore, a naturally higher abundance of V. parahaemolyticus
(<10,000 [most probable number] MPN/g) can be detected in oysters [6]. It is reported that
around 20 million Americans consume raw shellfish [7]. It has been documented that many
outbreaks of V. parahaemolyticus infections were related to eating raw oysters in the U.S.
since 1973 [8,9].

To increase shellfish safety, the seafood industry employs different strategies intended
to reduce or control pathogen levels in oysters [10]. Liu et al. [11] revealed that frozen
storage could achieve around 3.52 log (MPN/g) reductions of V. parahaemolyticus in half-
shell Pacific oysters. Ma et al. [12] identified and validated a high hydrostatic pressure
processing (HPP) method for commercial applications that achieved greater than 3.52-log
reductions of V. parahaemolyticus in Pacific oysters. However, both methods lead to the death
of the oysters; reducing the Vibrio levels in live oysters is still a challenge. Depuration in UV-
sterilized water and electrolyzed oxidizing water was used to solve this problem [13,14].
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Irradiations can also reduce the levels of Vibrio while keeping oysters alive [15]. One
previous study reported that a wet-storage process (7–15 ◦C for 5–7 days) could reduce
lab-inoculated V. parahaemolyticus in Pacific oysters (Crassostrea gigas) greater than 3.0 log
units [16]. However, no information is available on the wet-storage process that is applied
in reducing V. parahaemolyticus in eastern oysters (Crassostrea virginica).

In this work, we investigated the effects of salinity and temperature on the efficacy
of purging V. parahaemolyticus from eastern oysters (Crassostrea virginica). We inoculated
oysters with V. parahaemolyticus to levels of 104 to 105 MPN/g and depurated them in a
controlled re-circulating wet-storage system with artificial seawater (ASW). We explored
the effects of salinity, temperature, and the system design on the reduction of the Vibrio,
as well as the shelf life of the oysters. In this study, we focused on the reduction of
V. parahaemolyticus in eastern oysters and applied a new design of the wet-storage system.
We hope those will give new insight into the depuration of Vibrio in seafood.

2. Results
2.1. Occurrence and Accumulation of V. parahaemolyticus in Oyster

The occurrence of V. parahaemolyticus levels in oysters was significantly different based
on the date of harvest (Table 1). Winter- and early spring-harvested oysters had extremely
low levels of V. parahaemolyticus levels (<1 log MPN/g), while summer-harvested oysters
showed a significant increase in the occurrence of V. parahaemolyticus levels (about 3 log
MPN/g). Based on the results, the inoculation procedure can accumulate V. parahaemolyticus
levels to ~5 log MPN/g. Most importantly, this inoculation procedure is not dependent on
the background level of V. parahaemolyticus in oysters.

Table 1. V. parahaemolyticus levels (log10 MPN/g) in oysters at different dates of harvest.

Vibrio Levels
Date

28 November 2017 12 December 2017 10 April 2018 4 June 2018 2 July 2018 31 July 2018

Before inoculation 0.54 ± 0.16 0.45 ± 0.16 0.36 ± 0.00 2.44 ± 0.20 3.04 ± 0.15 3.31 ± 0.31
After inoculation 5.92 ± 0.22 5.41 ± 0.24 5.50 ± 0.28 5.79 ± 0.22 5.17 ± 0.21 5.79 ± 0.22

2.2. Effects of Salinities on the Reduction of Vibrio

We firstly explored the effect of salinity on the reduction of Vibrio, controlling the
temperature at 10 ◦C (Table 2). In all three salinity conditions, levels of V. parahaemolyticus
were significantly different during the first 2 days, reduced up to 1 log MPN/g (salinity
15 ppt, Day 2). From Day 3, the reduction slowed down to around 0.3 log MPN/g per
day. Those results revealed that our wet-storage system had a high deficiency during the
first 2 days of the depuration. Depuration of oysters in ASW at 20 ppt resulted in 3.14 log
MPN/g of reduction of V. parahaemolyticus in oysters after 7 days, while at 15 and 25 ppt
ASW, the reduction only achieved 2.85 and 2.77, respectively.

2.3. Effects of Temperatures on the Reduction of Vibrio

We further explored the effect of temperature on the reduction of Vibrio in 20 ppt ASW,
which we had already confirmed is the best salinity for depuration. We chose 3 temperatures
to test the changes in the V. parahaemolyticus levels during the 7-day wet-storage process
(Table 3). With the temperature decreased, the reduction of the V. parahaemolyticus levels
significantly increased. At a temperature of 7.5 ◦C, the log reduction of the Vibrio achieved
a 3.38 log MPN/g, which was the highest value among all trials. The significant increase in
the depuration efficiency of the wet-storage was attributed to the low temperature. The
levels of V. parahaemolyticus significantly decreased during the first 4 days, which was 2 days
longer than all other trials. Detailed reductions (Log10 MPN/g) of V. parahaemolyticus at
7.5 ◦C, the salinity of 20 ppt is shown in Figure 1.
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Table 2. Changes of V. parahaemolyticus levels (log10 MPN/g) in lab-inoculated oysters during
depuration at salinity of 15, 20, and 25 ppt. (Temperature was controlled at 10 ◦C).

Time (Day)
Salinity (ppt)

15 20 25

0 5.18 ± 0.00 A 5.50 ± 0.28 A 5.41 ± 0.24 A

1 4.86 ± 0.19 B 4.86 ± 0.19 B 4.79 ± 0.22 B

2 3.86 ± 0.19 C 3.99 ± 0.37 C 4.24 ± 0.12 C

3 3.65 ± 0.30 CD 3.75 ± 0.19 CD 3.97 ± 0.00 CD

4 3.30 ± 0.11 D 3.30 ± 0.11 DE 3.66 ± 0.00 DE

5 2.97 ± 0.00 E 2.97 ± 0.00 EF 3.24 ± 0.24 EF

6 2.53 ± 0.18 E 2.63 ± 0.00 FG 2.86 ± 0.19 FG

7 2.32 ± 0.00 F 2.36 ± 0.00 G 2.63 ± 0.00 G

Total log reduction 2.85 ± 0.00 a 3.14 ± 0.00 b 2.77 ± 0.12 a

FDA Requirement
Achieved (3 log reduction) No Yes Yes

Data with the same letter in the same column are not significantly different (p > 0.05).

Table 3. Changes of V. parahaemolyticus levels (log10 MPN/g) in laboratory-inoculated oysters during
depuration at 7.5, 10, and 12.5 ◦C (Salinity was controlled at 20 ppt).

Time (Day)
Temperature (◦C)

7.5 10 12.5

0 5.79 ± 0.22 A 5.50 ± 0.28 A 5.47 ± 0.16 A

1 5.31 ± 0.12 B 4.86 ± 0.19 B 4.72 ± 0.29 B

2 4.29 ± 0.11 C 3.99 ± 0.37 C 4.38 ± 0.00 BC

3 3.86 ± 0.19 D 3.75 ± 0.19 CD 3.86 ± 0.28 CD

4 3.01 ± 0.06 EF 3.30 ± 0.11 DE 3.65 ± 0.19 DE

5 2.77 ± 0.12 F 2.97 ± 0.00 EF 3.57 ± 0.30 DEF

6 2.57 ± 0.16 F 2.63 ± 0.00 FG 3.24 ± 0.16 EF

7 2.41 ± 0.05 F 2.36 ± 0.00 G 3.04 ± 0.12 F

Total log reduction 3.38 ± 0.05 a 3.14 ± 0.00 b 2.44 ± 0.12 c

FDA Requirement
Achieved (3 log reduction) Yes Yes No

Data with the same letter in the same column are not significantly different (p > 0.05).
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Figure 1. Reductions (Log10 MPN/g) of V. parahaemolyticus in lab-inoculated oysters during controlled
re-circulating wet-storage process at 7.5 ◦C, salinity of 20 ppt. Data were collected as mean values of
reductions from three trails (sample of each trail from six oysters).
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2.4. Effects of System Pre-Chilling on the Reduction of Vibrio

To get better efficiency of depuration for our wet-storage system, we pre-chilled the
water tank before the wet-storage process. Figure 2 illustrates the temperature reduction
rate of the wet-storage system. It took about 5 h for the system to decrease the tempera-
ture to 10 ◦C. Figure 3 shows the reductions of V. parahaemolyticus in inoculated oysters
during the pre-chilled (black bar) and non-pre-chilled (grey bar) wet-storage processes.
The temperature and salinity of the ASW were controlled at 10 ◦C and 20 ppt. The re-
duction of the V. parahaemolyticus levels in a pre-chilled wet-storage process significantly
increased to 3.54 log MPN/g. This value is 0.82 log MPN/g higher than a non-pre-chilled
depuration system. Furthermore, the pre-chill significantly increased the reduction of the
V. parahaemolyticus levels on each day of depuration and the reduction rate.
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Figure 2. Temperature reduction curve of wet-storage system from room temperature to 10 ◦C.
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Figure 3. Reductions (Log10 MPN/g) of V. parahaemolyticus in lab-inoculated oysters during pre-
chilled (black bar) and non-pre-chilled (grey bar) wet-storage processes at 10 ◦C, salinity of 20 ppt.
Data were collected as mean values of reductions from three trails (sample of each trail from six oysters).
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2.5. Shelf Life of the Oyster

A total of three studies (100 oysters per study) were conducted to evaluate the survival
rate of oysters in the walk-in cooler after the accumulated treatments (Figure 4). All oysters
survived 3 days of refrigerated storage. For oysters after inoculation and without any
treatment, only one oyster died on Day 5. All accumulated and non-treated oysters had
similar survival rates during 15 days of storage at 4 ◦C. The survival rate of inoculated, and
untreated oysters before depuration are both 93%. These results indicate that accumulated
treatments do not affect the shelf life of oysters for depuration.
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15 days.

3. Discussion

To prepare a unified level of Vibrio in original oysters for depuration, we scheduled the
inoculation method for the accumulation of Vibrio in oysters. Even when we could detect
naturally occurring V. parahaemolyticus in oysters harvested in summer, we still needed
inoculation to increase the level to specific levels for our wet-storage depuration test. Our
results are mostly consistent with findings from current studies [1,2,17]. Decreases in the
level of V. parahaemolyticus were detected in all conditions during the 7-day wet-storage
test (Table 2). Depuration of lab-inoculated oysters in ASW for 48 h resulted in a large log
reduction of V. parahaemolyticus in oysters from 2 to 4 log MPN/g, based on the temperature
and salinity. The results indicated that Vibrio purging rates are higher during the first
2 days. Depuration efficiency at a salinity of 20 ppt was significantly different from that of
the other two conditions. The result suggests that appropriate salinity of the ASW during
wet-storage is necessary for depuration of the oysters since ours were harvested from
aquaculture with a salinity of the water of around 10 ppt based on a previous study [2], a
small reduction of Vibrio with a salinity of 10 is likely due to little or no biological activity
of oysters occurring in seawater. A higher salinity (20 ppt) of wet-storage may favor the
depuration of the oysters. However, the behavior of the oysters may be affected when
we increase salinity to 25 ppt. Under this condition, the activity of the oysters may be
inhibited; hence, Vibrio may not be depurated effectively. Chae et al. [17] reported that
increased reductions of V. parahaemolyticus were observed when oysters were depurated at
15 ◦C. At low temperatures, the oyster pumps water at the highest level, hence the uptake
of Vibrio would be retarded. The temperatures we choose for depuration in our study are
all below 15 ◦C. Based on the results, we found that an optimum wet-storage process could
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be achieved at a combination of 7.5 ◦C temperature and 20 ppt salinity, which produced a
3.38 log (MPN/g) reduction after 7 days of depuration (Figure 1). The wet-storage process
at 10 ◦C and salinity 20 ppt could also achieve a larger than 3 log reduction, which meets
the FDA’s requirement of larger than a 3.0 log (MPN/g) reduction as a post-harvest process
for oyster V. parahaemolyticus control [18]. We also found that the pre-chilling treatment
could improve the efficacy of the wet-storage process.

Depuration has been treated as a post-harvest process for decreasing sewage-associated
bacteria (such as coliforms, Esherichia coli and Salmonella). It has been widely applied in
many countries to remove sewage-associated bacterial contaminants in different shellfish
species sold alive [19,20]. However, based on the little effect on reducing V. parahaemolyticus
in shellfish, depuration has not yet been practiced in the shellfish industry as a post-harvest
treatment for controlling the natural flora of shellfish [14,21–23]. Several studies reported
the efficacy of depuration in reducing V. parahaemolyticus in Pacific oysters [16–19]. One
study detailed the efficacy of V. parahaemolyticus depuration in oysters [19]. However,
there are several differences between our results and this study, especially in the effects
of salinity on the first two days. In this study, the log reduction of V. parahaemolyticus in
oysters after 1 day reached up to 2.83. In another study [2], their results show a 1.71 and
1.76 log reduction of V. parahaemolyticus in oysters after storage of 1 day at salinities of 20
and 25 ppt, respectively. In a third study [1], the log reduction of V. parahaemolyticus in
oysters also reach up to 2.57 at a salinity of 30 ppt. Those results show better efficiency
of depuration than our system. The reasons may be as follows: (1) oyster species—the
previous studies used Pacific oysters while we used Eastern oysters for the experiments;
(2) original environment—there could be differences in the growing water temperature
and salinity ranges for the oysters in different studies, which may affect the activation of
oysters during wet-storage; (3) upwelling design of the depuration systems—we notice
that downwelling system was applied in previous studies, while in our study, we used
an upwelling system. In a downwelling system, the purified water was introduced to the
system from the upside and may avoid the resuspension of detritus. This may increase
the efficiency of the depuration of the system. Future work will investigate in detail the
effects of the design of the systems on depuration. We found many factors that affect
the efficiency of wet-storage systems, other than on-site salinity, temperature, etc. In this
study, we notice a significant difference in depuration efficiency between pre-chilled and
non-pre-chilled tank water for Vibrio in oysters. Furthermore, we assume the source of the
oysters (farm-raised or wild-caught) and accumulation method (laboratory inoculation or
natural accumulation through temperature abuse) may affect the reduction of the Vibrio
during wet-storage procedures. In addition, the shelf life of the oysters during and after
depuration is another concern of the wet-storage process. Further large-scale research is
needed to confirm these findings.

4. Materials and Methods
4.1. V. parahaemolyticus Cultures Preparation

Pathogenic (tlh+, tdh+, and trh+) and non-pathogenic (tlh+, tdh−, and trh−) V. para-
haemolyticus strains isolated from clams and oysters were used in this study [24]. Each
culture was individually grown in 10 mL tryptic soy broth (TSB, Difco, Becton) supple-
mented with 1% NaCl (TSB-Salt) at 37 ◦C for 18 to 24 h. The enriched cultures were streaked
to individual tryptic soy agar (TSA, Difco, Becton Dickinson) supplemented with 1% NaCl
(TSA-Salt) and incubated at 37 ◦C for 18 to 24 h. A single colony from a TSA-Salt plate
was picked and enriched in 10 mL TSB-Salt at 37 ◦C for 4 h. The enriched cultures of
V. parahaemolyticus were pooled into a 30 mL sterile centrifuge tube and centrifuged at
3000× g (To be checked) for 15 min. Pelleted cells were resuspended in 30 mL of sterile salt
solution (1%) to produce a culture cocktail of approximately 4 × 108 CFU/mL.
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4.2. Oyster Preparation

Oysters were natural diploid adult eastern oysters sourced from an oyster farm in the
Choptank River, MD. Oysters were transported on ice in a cooler to the lab within about
2 h. The oysters, after a brief washing with tap water to remove the mud on the shell, were
ready to be inoculated with Vibrio spp. The ASW was prepared by dissolving Instant Ocean
Salt (Instant Ocean, United Pet Group, Inc., Cincinnati, OH 45455, USA) in deionized water
according to the manufacturer’s instructions.

4.3. Accumulation of V. parahaemolyticus in Oysters

Accumulation of V. parahaemolyticus in oysters was conducted according to previous
studies [16,17]. For each depuration study, 150 aquaculture oysters or 75 commercial
oysters were transferred to an identical HDPE tank containing 30 L of freshly prepared
ASW containing a V. parahaemolyticus culture cocktail at a level of approximately 104 to 105

CFU/mL. The oysters were held in the tank at room temperature overnight (18 h). The
salinity during the inoculation was controlled the same as that in the depuration process.
Air was pumped into the water to keep dissolved oxygen (DO) levels favorable for oyster
pumping and uptake of Vibrio. Levels of aquaculture oysters were analyzed with a 3-tube
most probable-number (MPN) method before and after inoculation.

4.4. Oyster Depuration

After inoculation, the oysters were transferred to a laboratory-scale recirculating tank
with 150 L of ASW. The system was equipped with an ultraviolet (UV) Lite (Emperor
Aquatic smarts, Aqua Logic, Inc, San Diego, CA, USA), a water chiller (Delta Star, Aqua
Logic Inc., San Diego, CA, USA), a thermometer, and a flow rate meter (1500 L/h). The
temperature of the process was set at 7.5, 10, and 12.5 ◦C, while salinity was fixed at 15,
20, and 25 ppt. The levels of V. parahaemolyticus in oysters were analyzed every day for
7 days during the depuration process. A total of three studies (100 oysters per study) were
conducted to assess the ability of oysters to survive in the refrigerated walk-in cooler (4 ◦C)
after the accumulated treatments.

4.5. Microbiological Analysis

Levels of V. parahaemolyticus in oysters were analyzed with a 3-tube MPN method de-
scribed in the U.S. Food and Drug Administration’s BAM [25], using thiosulfatecitrate-bile
salts-sucrose agar (TCBS) and Chrom-agar for V. parahaemolyticus isolation and confirmation.
The accuracy of using CHROM to determine the MPN values was confirmed by BAX PCR.
In a preliminary study, we applied BAX PCR in a few cases to confirm isolates recovered
from CHROM agar plates. We did not observe any significant differences between the two
methods (using Chrom-agar or BAX PCR to confirm presumptive isolates taken in TCBS
plates). Therefore, Chrom-agar was used in all tests of V. parahaemolyticus levels.

For each test, 6 oysters were shucked using a sterile knife on a sterile cutting board
and blended in a sterile blender jar with an equal weight of sterile phosphate-buffered
saline (PBS) at high speed for 90 s to produce a 1:1 shellfish diluent homogenate. To
prepare a 1:10 dilution, 1 g of oyster homogenate (1:1) was mixed with 9 mL of PBS.
Additional 10-fold dilutions were prepared using PBS (i.e., 1 mL of 1:10 to 9.0 mL of PBS
for a 1:100 dilution). One-milliliter portions of all dilutions were individually inoculated
into 3 tubes of 10 mL Alkaline Peptone Water (APW). APW tubes were incubated at 37 ◦C
for 16–18 h and the positive (turbid) tubes were recorded. A loopful of each positive APW
tube was streaked onto Thiosulfate-Citrate Bile Salt-Sucrose (TCBS) plates and incubated at
37 ◦C for 18–24 h. All plates that had green colonies were considered presumptive positive
for V. parahaemolyticus. Then, three different suspicious colonies in each plate were looped
to strike on Chromagar plates [26] and incubated at 37 ◦C for 18–24 h. All plates that had
purple colonies were considered to be Vp positive.
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4.6. Statistical Analysis

Results of microbiological tests were analyzed by using SPSS 19.0 software (Chicago,
IL, USA). Significant differences among means of each treatment over time were established
at a level of p < 0.05. All statistical analyses were based on 3 trials. Samples of each trial
were collected from six oysters.

5. Conclusions

The wet-storage process at a combination of 7.5 ◦C temperature and 20 ppt salinity
can achieve a 3.38 log (MPN/g) reduction at Day 7. A pre-chilled system, at the conditions
of 10 ◦C and 20 ppt, can achieve a 3.54 log (MPN/g) reduction of V. parahaemolyticus in
oysters at Day 7. There was no significant difference in the shelf life between inoculated
and untreated oysters before the depuration, with the same survival rate (stored in a 4 ◦C
cooler for 15 days) of 93%.
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