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Abstract

The aim of this study is to assess the different metabolic activities characteristic of glioma recurrence and 
radiation necrosis (RN) and to explore the diagnostic accuracy for differentiation of the two conditions us-
ing 11C-methionine (MET), 11C-choline (CHO), and 18F-fl uorodeoxyglucose (FDG)-positron emission tomog-
raphy (PET). Fifty patients with lesions suggestive of recurrent glioma by magnetic resonance imaging (MRI) 
underwent MET, CHO, and FDG-PET. All patients who had previously been treated with radiotherapy for 
malignant glioma were subjected to open surgery and pathological diagnosis (17 recurrent grade 3- gliomas 
(Gr.3s) comprising 7 anaplastic astrocytomas (AAs) and 10 anaplastic oligodendrogliomas (AOs), 17 recur-
rent glioblastomas (Gr.4s), and 16 RNs). We measured the PET/Gd volume ratio, the PET/Gd overlap ratio, 
and the lesion/normal brain uptake ratio (L/N ratio) and determined the optimal index of each PET scan. 
The PET/Gd volume ratio and the PET/Gd overlap ratio for RN were signifi cantly lower than those of glio-
ma recurrence only with MET-PET (P < 0.05). The L/N ratio of RN was signifi cantly lower than that of Gr.4 
with all PET imaging (P < 0.001) and was signifi cantly lower than that of Gr.3, especially for AO, only with 
MET-PET images (P < 0.005). Receiver operating characteristic (ROC) analysis showed that the area under 
the curve of MET, CHO, and FDG was 92.5, 81.4, and 77.4, respectively. MET L/N ratio of greater than 2.51 
provided the best sensitivity and specifi city for establishing glioma recurrence (91.2% and 87.5%, respec-
tively). These results demonstrated that MET-PET was superior to both CHO and FDG-PET for diagnostic 
accuracy in distinguishing glioma recurrence from RN.

Key words: 11C-methionine, positron emission tomography, radiation necrosis, glioma

Introduction

Radiation necrosis (RN) is a serious clinical compli-
cation in the diagnosis and treatment of patients 
with malignant gliomas. Because the imaging 
features of most RN appear similar to those of 
malignant gliomas by computed tomography (CT) 
or magnetic resonance imaging (MRI), it is diffi cult 
to distinguish glioma recurrence from RN. Since 
therapeutic strategies for these pathological entities 
are fundamentally different, their differential diag-

nosis is crucial. Recently, several clinical studies 
using diffusion MRI,1–4) perfusion MRI,3) MR spec-
troscopy,3–5) and 201thallium single photon emission 
computed tomography (SPECT)6) have been under-
taken in attempts to distinguish between the two 
conditions. These modalities have made it possible 
to easily diagnose some cases compared to protocols 
from the previous era in which only conventional 
CT or MRI was used. Furthermore, 11C-methionine 
(MET) and 18F-fl uorodeoxyglucose (FDG)-positron 
emission tomography (PET) have been reported to 
be more useful for differential diagnosis between 
glioma recurrence and RN.6–13) These PET methods Received April 4, 2013; Accepted June 13, 2013

Neurol Med Chir (Tokyo) 54, 280–289, 2014

280

ORIGINAL ARTICLE doi: 10.2176/nmc.oa2013-0117

Online December 5, 2013

04 oa2013-0117_4C.indd   28004 oa2013-0117_4C.indd   280 2014/03/28   15:102014/03/28   15:10
プロセスシアンプロセスシアンプロセスマゼンタプロセスマゼンタプロセスイエロープロセスイエロープロセスブラックプロセスブラック



Diagnostic Accuracy of MET-PET for Radiation Necrosis 281

Neurol Med Chir (Tokyo) 54, April, 2014

were suggested to be superior to other structural 
neuroimaging modalities from the view-point of 
feasibility of quantitative evaluation of MET or 
FDG metabolism in lesions. 11C-choline (CHO) is 
another tracer candidate which has been suggested 
to be useful for diagnosis of brain tumors in recent 
PET studies.14,15)

It is still unclear which PET tracer is best for 
distinguishing glioma recurrence from RN. We 
hypothesized that MET-PET is superior to CHO 
and FDG-PET in this regard, since previous reports 
have shown the prominent high uptake of CHO may 
not differentiate non-neoplastic brain lesions with 
Gd-enhancement from malignant glioma on PET and 
the high background uptake of FDG in the brain 
may make it diffi cult to visually distinguish lesions 
from normal brain tissue. In this study, the three 
PET tracers, MET, CHO, and FDG, were compared 
to determine which PET method was superior for 
differentially diagnosing glioma recurrence from RN.

Materials and Methods

In this retrospective study from 2002 to 2008, we 
examined PET scans from 50 consecutive patients 
with supratentorial space-occupying lesions following 
radiotherapy for malignant gliomas at the Chubu 
Medical Center for Prolonged Traumatic Brain Dysfunc-
tion, Kizawa Memorial Hospital. All supratentorial 
space-occupying lesions were Gd-enhanced, and 
interpretation of the lesions as glioma recurrence 
or RN was unclear. Presurgical radiologic evalu-
ation was performed with MET, CHO, FDG-PET, 
and MR imaging in all patients. PET scans and MR 
imaging were performed in a single day, and the 
PET images were evaluated using the co-registered 
MR images. All patients underwent open surgical 
procedures within 4 weeks after PET scanning, and 
tumors were classifi ed upon histological examina-
tion using the World Health Organisation (WHO) 
classifi cation system.16) Of the 50 patients, 17 had 
recurrent grade 3- glioma (Gr.3), 17 had recurrent 
glioblastoma (Gr.4), and 16 had RN. The 17 Gr.3s 
were further classifi ed as 7 anaplastic astrocytomas 
(AAs) and 10 anaplastic oligodendrogliomas (AOs). 
RN was pathologically diagnosed in the limited 
cases in which the surgical specimen showed typical 
necrotic tissues including thickness and fi brinoid 
necrosis of the vascular walls, multiple microcysts, 
coagulation necrosis, endothelial proliferation, and 
infl ammatory cells interspersed with or without 
scattered tumor cells. The clinical features of the 
patients are summarized in Table 1. All patients gave 
written informed consent, and the study protocol 
was approved by the research committee of the 

Kizawa Memorial Hospital Foundation.
The PET study was carried out according to 

standardized procedures recommended by the Japan 
Radioisotope Association.17,18) The PET scanner was 
an ADVANCE NXi Imaging System (General Electric 
Yokokawa Medical System, Hino, Tokyo), which 
provided 35 transaxial images at 4.25 mm intervals 
covering a 25.6 cm in-plane fi eld of view (FOV). 
The in-plane spatial resolution (full width at half 
maximum) was 4.8 mm, and the scan mode was 
the standard 2D mode. Before the emission scan 
was performed, a 3 minute transmission scan was 
performed to correct photon attenuation with a ring 
source containing 68Ge. Patients had fasted for at 
least 4 hours before PET studies. A venous cannula 
was inserted into the forearm for injection of radi-
opharmaceuticals. From this cannula, blood samples 
could also be collected if necessary. A dose of 7.0 
MBq/kg of MET, 7.0 MBq/kg of CHO, or 5.0 MBq/kg 
of FDG was injected intravenously, depending on 
the particular examination.17,18) Emission scans were 
acquired as follows: (1) for 30 minutes, beginning 
5 minutes after MET injection, (2) for 7 minutes, 
beginning 2 minutes after CHO injection, and (3) for 
7 minutes, beginning 35 minutes after FDG injec-
tion. During PET data acquisition, head motion was 
continuously monitored using laser beams projected 
onto ink marks drawn on the forehead and was 
corrected manually, as necessary. Scan images were 
reconstructed using the ordered-subsets expectation 
maximization algorithm (2 iterations, 14 subsets).19) 
Images were reconstructed into a 128 × 128 matrix 
with a pixel size of 2 × 2 mm.

MR imaging was performed with a 1.5 T system 
(Signa; GE Medical Systems, Milwaukee, Wisconsin, 
USA). Axial T1-weighted images (TR/TE/NEX = 
350/9/2), T2-weighted images (2300/100/2), and 
fl uid attenuated inversion recovery (FLAIR) images 
(800/110/1, inversion time = 2400 ms) (FOV 24 × 
24 cm, matrix size 512 × 256) were acquired. The 
slice thickness was 6 mm, with a 3-mm slice gap. 
For co-registration of metabolic and anatomic data, 
3D spoiled gradient-echo images were also acquired 
after administration of 0.2 ml/kg of gadopentate 
dimeglumine (Gd-DTPA) (Magnevist; Nihon Shering, 
Osaka) using the following parameters: no gap, 1.0 
mm thickness, TR/TE = 20.0/1.6 ms, fl ip angle = 
15°, NEX = 1, and axial views.

Tracer accumulation in the regions of interest 
(ROIs) was analyzed as the standardized uptake 
value (SUV), which is the activity concentration 
in the ROI at a fi xed time point divided by the 
injected dose normalized to the patient’s meas-
ured weight. MET, CHO, and FDG lesion/normal 
brain uptake ratios (L/N ratios) were calculated 
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RN were signifi cantly lower than those of AA, AO, 
and Gr.4, respectively (P < 0.05).

The CHO-PET/Gd volume ratios of RN, AA, AO, 
and Gr.4 were 100.5% ± 20.5%, 110.2% ± 17.3%, 
99.9% ± 15.9%, and 104.1% ± 13.7%, respectively 
(Fig. 1C). The CHO-PET/Gd overlap ratios of RN, AA, 
AO, and Gr.4 were 83.6% ± 15.1%, 97.4% ± 3.9%, 
92.5% ± 10.3%, and 96.1% ± 7.1%, respectively 
(Fig. 1D). There were no signifi cant differences of 
the CHO-PET/Gd volume ratios and the CHO-PET/Gd 
overlap ratios among RN, AA, AO, and Gr.4.

The FDG-PET/Gd volume ratios of RN, AA, AO, 
and Gr.4 were 0.4% ± 1.5%, 0.5% ± 1.3%, 0.0% ± 
0.0%, and 12.1% ± 20.6%, respectively (Fig. 1E). 
The FDG-PET/Gd overlap ratios of RN, AA, AO, 
and Gr.4 were 0.4% ± 1.5%, 0.5% ± 1.3%, 0.0% ± 
0.0%, and 11.7% ± 19.4%, respectively (Fig. 1F). Both 
the FDG-PET/Gd volume ratio and the FDG-PET/Gd 
overlap ratio of Gr.4 were signifi cantly higher than 
those of RN (P < 0.05).

II. Semiquantitative analysis of PET studies
The mean SUVs of MET, CHO, and FDG from the 

contralateral normal frontal cortex were 1.30 ± 0.25, 
0.26 ± 0.94, and 6.31 ± 1.71, respectively. MET L/N 
ratios of RN, Gr.3, and Gr.4 were 1.95 ± 0.60, 3.40 
± 1.04, and 4.29 ± 1.45, respectively. There was a 
signifi cant difference between the MET L/N ratios 
of RN and Gr.3 (P < 0.005) and of RN and Gr.4 
(P < 0.001). However, there was no signifi cant differ-
ence between the MET L/N ratios of Gr.3 and Gr.4 
(Fig. 2A). MET L/N ratios of AA and AO were 2.79 
± 0.68, and 3.83 ± 1.06, respectively. There was a 
signifi cant difference between the MET L/N ratios of 
RN and AO (P < 0.001) and AA and AO (P < 0.05), 
but not of RN and AA (Fig. 2B).

CHO L/N ratios of RN, Gr.3, and Gr.4 were 6.90 ± 
4.30, 11.18 ± 6.75, and 18.09 ± 10.82, respectively. 
There was a signifi cant difference only between the 
CHO L/N ratios of RN and Gr.4 (P < 0.001) and of 
Gr.3 and Gr.4 (P < 0.05) (Fig. 2C). CHO L/N ratios 
of AA and AO were 9.21 ± 4.19, and 12.56 ± 8.01. 
There was no signifi cant difference between CHO 
L/N ratios of RN and any of the Gr.3 histological 
types (Fig. 2D).

FDG L/N ratios of RN, Gr.3, and Gr.4 were 1.15 
± 0.50, 1.26 ± 0.23, and 1.97 ± 0.64, respectively. 
There was a signifi cant difference only between the 
FDG L/N ratios of RN and Gr.4 (P < 0.001) and of 
Gr.3 and Gr.4 (P < 0.001) (Fig. 2E). FDG L/N ratios 
of AA and AO were 1.24 ± 0.33, and 1.27 ± 0.16, 
respectively. There was no signifi cant difference 
between FDG L/N ratios of RN and any of the Gr.3 
histological types (Fig. 2F).

Representative PET and MRI images from RN, AA, 

by dividing the maximum SUV for the enhanced 
lesion on the MR image by the mean SUV of the 
contralateral normal frontal cortex. The lesion SUVs 
were selected at the highest accumulation, and refer-
ence ROIs on each of the three axial planes were 
drawn with a diameter of 10 mm. Co-registration 
of PET and MR imaging was accomplished with an 
analysis software package (AJS, Tokyo), using the 
method described by Kapouleas et al.20) We used 
the L/N ratio instead of the absolute SUV because 
of the high, unexplained intersubject variability 
of the SUV.21) We used the lesion maximum SUV 
instead of lesion mean SUV to minimize the effect 
of lesion heterogeneity. For each PET tracer, we 
defi ned regions with L/N ratios greater than 1.5 as 
PET abnormal high uptake regions and measured 
the volumes of these regions in each PET image 
and also the volumes of the Gd-enhanced area in 
the MRI using an analysis software package (AJS, 
Tokyo). The volume of the PET abnormal high 
uptake region overlap with the Gd-enhanced area 
was measured by the same method for each case. 
The volume ratio of the PET abnormal high uptake 
area to Gd enhanced MR area (PET/Gd volume ratio) 
was calculated as follows: PET/Gd volume ratio 
(%) = [PET abnormal high uptake area (volume) ÷ 
Gd-enhanced area (volume)] × 100.

The ratio of the PET abnormal high uptake area 
overlapping the Gd-enhanced MR area (PET/Gd overlap 
ratio) was calculated as follows: PET/Gd overlap 
ratio (%) = [PET abnormal high uptake area over-
lapping Gd-enhanced area (volume) ÷ Gd-enhanced 
area (volume)] × 100.

Data are presented as means ± standard devia-
tions (SDs). To compare the L/N ratios of the three 
PET modalities at the best distinction between 
glioma recurrence and RN, statistical analysis was 
performed using analysis of variance and Tukey’s 
test for multiple comparisons. Receiver operating 
characteristic (ROC) curves were calculated to deter-
mine the cut off values for differential diagnosis of 
glioma recurrence and RN. P values less than 0.05 
were considered statistically signifi cant.

Results

I. Volume comparison between MRI and PET studies
The MET-PET/Gd volume ratios of RN, AA, AO, 

and Gr.4 were 21.7% ± 20.9%, 164.3% ± 158.5%, 
185.5% ± 162.6%, and 123.6% ± 66.4%, respec-
tively (Fig. 1A). The MET-PET/Gd overlap ratios 
of RN, AA, AO, and Gr.4 were 20.7% ± 21.4%, 
63.5% ± 40.3%, 74.8% ± 34.0%, and 64.6% ± 
29.4%, respectively (Fig. 1B). Both the MET-PET/Gd 
volume ratio and the MET-PET/Gd overlap ratio of 
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Fig. 1 Graphs showing 11C-methionine (MET)-PET/Gd (A), 11C-choline (CHO)-PET/Gd (C), and 18F-fl uorodeoxy-
glucose (FDG)-PET/Gd (E) volume ratios, and MET-PET/Gd (B), CHO-PET/Gd (D), and FDG-PET/Gd (F) overlap 
ratios of radiation necrosis (RN), anaplastic astrocytoma (AA), anaplastic oligodendroglioma (AO), and recur-
rent glioblastoma (Gr.4). The signifi cant low values (P < 0.05) of both the PET/Gd volume ratio and the PET/
Gd overlap ratio of RN compared with glioma recurrence were shown to be characteristic only for MET-PET. 
*P < 0.05, **P < 0.005, ***P < 0.001.

AO, and Gr.4 cases are shown in Fig. 3.

III. ROC analysis of PET studies
Fig. 2G shows the ROC curves of the 3 PET 

modalities. The area under the curve of MET, 
CHO, and FDG-PETs were 0.925, 0.814, and 0.774, 
respectively. Table 2 shows the best cutoff values, 
diagnostic sensitivities, and specifi cities of the 3 
PET modalities for recurrent gliomas. The best MET 
L/N ratio cutoff value was 2.51, which provided a 
sensitivity of 91.2% and a specifi city of 87.5% for 
diagnosis of glioma recurrence. These results indicate 
that MET-PET is the most informative method for 
differentiating tumor recurrence from RN.

Discussion

Radiotherapy has been used for the past four decades 

as a standard treatment following surgical mass reduc-
tion in malignant gliomas. More recently, conven-
tional external radiotherapy has been expanded to 
include stereotactic radiotherapy, intensity modulated 
radiotherapy, boron neutron captured therapy, and 
radiotherapy using heavy ions.22–25) The usefulness of 
radiotherapy for malignant gliomas is not in doubt 
as it has been verifi ed by improved patient survival 
and local control. However, identifying RN, which 
deteriorates the clinical condition of patients, is still 
a critical problem.26) Normally, 60 Gy of whole brain 
external irradiation induces necrosis in about 50% 
of patients up to 5 years after irradiation. Although 
the therapeutic strategy for RN is different from that 
for glioma recurrence in most cases of malignant 
gliomas, it has been diffi cult to distinguish these 
pathological entities from each other even using 
conventional neuroradiological modalities.

B
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F
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With advancements in metabolic neuroimaging, 
201thallium-SPECT and FDG-PET have been antici-
pated to be useful for differential diagnosis between 
glioma recurrence and Gómez-Río et al. prospectively 
evaluated 201thallium-SPECT and FDG-PET in 76 
patients with suspicion of glioma recurrence after 
surgical excision and radiotherapy.27) Their results 
showed that although FDG-PET yielded a slightly 
higher specifi city for diagnosis of glioma recurrence, 
the sensitivity was considerably lower than that of 
201thallium-SPECT. This means that FDG-PET does 
not clearly improve upon the diagnostic accuracy 
of 201thallium-SPECT in glioma recurrence.

CHO is another PET tracer recently used for 
neuroradiological evaluation of gliomas, and it was 
reported to be a diagnostic agent which was able to 
differentiate between low-grade gliomas and high-
grade gliomas in PET studies, but had not been 
used for studies of RN.14) Apart from RN, a high 
uptake of CHO is also reported in non-neoplastic 
lesions including brain abscess, inflammatory 
granulomas, tuberculomas, and some demyelinating 
diseases which present Gd-enhancement by MRI.28) 
A study by Ohtani et al. showed that CHO-PET did 

not differentiate, in particular, between low-grade 
gliomas and non-neoplastic lesions.14) Utriainen 
et al. described that an association between CHO 
uptake measured with PET and the concentration of 
choline containing components measured by 1H-MR 
spectroscopy was not statistically signifi cant.29) This 
data suggests that CHO uptake is scarcely related 
to intracellular metabolite pools of phosphocholine 
and glycerophosphocholine.28) In this study, both the 
CHO-PET/Gd volume ratio and the CHO-PET/Gd overlap 
ratio of RN, AA, AO, and Gr.4 were all at levels 
near 100%. This suggests that there is a regional 
correspondence between areas of high CHO uptake 
on PET images and areas with Gd-enhancement on 
the MRI. These results imply that CHO uptake is 
mostly dependent on the enhancement effect, which 
is related to the passive diffusion of materials in 
regions with BBB disruption, rather than tissue 
biological activity, which is related to the active 
transport of materials.

One of the most promising modern neuroimaging 
protocols in this regard is MET-PET, a popular 
amino acid imaging modality in oncology indica-
tions. MET-PET has been a useful and reliable 

Fig. 2 Graphs showing 11C-methionine (MET) (A), 11C-choline (CHO) (C), and 18F-fl uorodeoxyglucose (FDG) (E) 
lesion/normal brain uptake ratios (L/N ratios) of radiation necrosis (RN), recurrent grade 3- glioma (Gr.3), and 
recurrent glioblastoma (Gr.4), and MET (B), CHO (D), and FDG (F) L/N ratios of RN, anaplastic astrocytoma 
(AA), and anaplastic oligodendroglioma (AO). The signifi cant differences of tracer uptake intensity between Gr.4 
glioma recurrence and RN were shown in MET (P < 0.001), CHO (P < 0.001), and FDG (P < 0.001)-PETs. Gr. 3 
glioma recurrence, especially for AO, could be distinguished from RN only in MET-PET (P < 0.005). Graph (G) 
shows receiver operating characteristic (ROC) curves for the three PET tracers for distinguishing glioma recur-
rence from RN. The areas under the curve of MET, CHO, and FDG are 0.926, 0.822, and 0.755, respectively. 
*P < 0.05, **P < 0.005, ***P < 0.001.
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Fig. 3 Representative PET and MRI images of radiation necrosis (RN), anaplastic astrocytoma (AA), anaplastic 
oligodendroglioma (AO), and glioblastoma (GBM) are shown. RN: A 45-year-old man. 11C-methionine (MET)-PET/
Gd volume ratio = 57.0%, MET-PET/Gd overlap ratio = 57.0%, 11C-choline (CHO)-PET/Gd volume ratio = 81.5%, 
CHO-PET/Gd overlap ratio = 81.5%, 18F-fl uorodeoxyglucose (FDG)-PET/Gd volume ratio = 0%, FDG-PET/Gd overlap 
ratio = 0%, MET lesion/normal brain uptake ratio (L/N ratio) = 3.34, CHO L/N ratio = 2.03, and FDG L/N ratio = 
1.57. AA: A 67-year-old man. MET-PET/Gd volume ratio = 189.4%, MET-PET/Gd overlap ratio = 100%, CHO-PET/
Gd volume ratio = 121.3%, CHO-PET/Gd overlap ratio = 100%, FDG-PET/Gd volume ratio = 0%, FDG-PET/Gd 
overlap ratio = 0%, MET L/N ratio = 3.39, CHO L/N ratio = 7.7, and FDG L/N ratio = 1.65. AO: A 51-year-old 
man. MET-PET/Gd volume ratio = 172.7%, MET-PET/Gd overlap ratio = 100%, CHO-PET/Gd volume ratio = 107.8%, 
CHO-PET/Gd overlap ratio = 95.3%, FDG-PET/Gd volume ratio = 0%, FDG-PET/Gd overlap ratio = 0%, MET L/N 
ratio = 5.03, CHO L/N ratio = 14.41, and FDG L/N ratio = 1.31. GBM: A 35-year-old man. MET-PET/Gd volume 
ratio = 164.9%, MET-PET/Gd overlap ratio = 100%, CHO-PET/Gd volume ratio = 109.2%, CHO-PET/Gd overlap ratio 
= 98.7%, FDG-PET/Gd volume ratio = 74.3%, FDG-PET/Gd overlap ratio = 67.5%, MET L/N ratio = 5.21, CHO L/N 
ratio = 17.94, and FDG L/N ratio = 2.33. MRI: magnetic resonance imaging, PET: positron emission tomography.

04 oa2013-0117_4C.indd   28604 oa2013-0117_4C.indd   286 2014/03/28   15:102014/03/28   15:10
プロセスシアンプロセスシアンプロセスマゼンタプロセスマゼンタプロセスイエロープロセスイエロープロセスブラックプロセスブラック



Diagnostic Accuracy of MET-PET for Radiation Necrosis 287

Neurol Med Chir (Tokyo) 54, April, 2014

neuroimaging modality for diagnosis of gliomas 
because of the correlation of MET-uptake with 
malignancy and proliferative activity in gliomas 
and its accumulation during glioma cell inva-
sion.30,31) Normally, MET uptake is reported to be 
lower in RN than in glioma recurrence. Tsuyuguchi 
et al. reported that the mean L/N ratios for RN 
and glioma recurrence were 1.31 and 1.87.11) In 
a comparative study, Sonoda et al. showed that 
MET-PET was superior to 201tallium-SPECT for the 
differentiation of tumor recurrence from RN.6) In 
a comparative study of FDG and MET-PET, van 
Laere et al. reported that MET was superior to 
FDG as a diagnostic agent for the evaluation of 
glioma recurrence because of its higher sensitivity 
for differentiation from RN.31)

This is the fi rst study directly comparing the 
three PET tracers, MET, CHO, and FDG evaluating 
the diagnostic accuracy in distinguishing glioma 
recurrence from RN in the same clinical setting. 
From the ROC analysis of this study, MET-PET was 
found to be the best of the three tracers in differen-
tiating glioma recurrence from RN with a sensitivity 
of 91.2% and a specifi city of 87.5% with a MET 
max L/N ratio cutoff value of 2.51. Additionally, 
only MET-PET could signifi cantly differentiate Gr.3, 
especially AO, as well as Gr.4 from RN, while FDG 
and CHO-PET could differentiate only Gr.4 from 
RN. The L/N ratio cutoff values in this study were 
relatively higher than that of the previous studies, 
because L/N ratios were calculated by dividing 
the maximum SUV for the enhanced lesion on 
MR imaging by the mean SUV of the contralateral 
normal frontal cortex. We used the maximum SUV 
instead of lesion mean SUV to minimize the effect 
of lesion heterogeneity.

This study showed the superiority of MET-PET for 
distinguishing glioma recurrence from RN based on 
evaluation of intensity of tracer uptake in agreement 
with previous reports. The signifi cant low values 
of both the PET/Gd volume ratio and the PET/Gd 
overlap ratio of RN compared with glioma recur-

rence were characteristic only with the MET-PET 
and provide additional evidence for distinguishing 
glioma recurrence from RN.

The main mechanism for MET accumulation in 
RN; BBB disruption-related passive diffusion, is 
presumed to differ from that in tumor recurrence 
which is active transport affected by cell prolifera-
tion. The different mechanisms of MET accumulation 
for the two pathological processes are the means of 
potentially distinguishing glioma recurrence from RN 
by MET-PET. However, because of the substantial 
tissue biological activity in RN due to cells related 
to immunological and infl ammation reactions and 
reactive glia cells with a high proliferation poten-
tial, some degree of active transport for MET may 
increase the MET uptake in RN. Additionally, there 
should be mixed tissues with both RN and residual/
recurrent tumor cells around the irradiated region, 
because it is not feasible to completely kill the 
malignant glioma cells by clinical irradiation doses. 
These factors contribute to the continuing diffi culty 
of distinguishing glioma recurrence from RN even 
using MET-PET in some cases, and further studies 
for a resolution of this problem are needed.

Recently, 3,4-dihydroxy-6-18F-fl uoro-L-phenylalanine 
(FDOPA) has been utilized as another promising 
amino acid PET tracer for distinguishing tumor 
recurrence from RN. Chen et al. reported 98% 
sensitivity and 86% specifi city for the detection of 
glioma recurrence using FDOPA-PET.32) 3’-Deoxy-3’-18F-
fl uorothymicine (FLT) is another recently developed 
PET tracer for imaging tumor cell proliferation that 
correlated with Ki-67 values.33) These tracers appear 
to be powerful predictors of tumor progression and 
survival, and comparative studies to evaluate which 
of the tracers, MET, FDOPA, and FLT, is the most 
accurate for distinguishing glioma recurrence from 
RN is needed.

In this study, three PET scans were taken on a 
single day. This introduced an increase of radia-
tion exposure to patients compared with a single 
PET scan. “Cross-talk” between PET tracers during 
subsequent imaging was considered to be minimal, 
because 11C-labeled tracers such as MET and 
CHO have short half-lives and suffi cient time was 
allowed between PET scans. However, from this 
minimal “cross-talk”, the order of PET scans (MET, 
CHO, FDG) could have slightly contributed to our 
observed result.

MET-PET appears to be superior to both CHO and 
FDG-PET in diagnostic accuracy for distinguishing 
glioma recurrence from RN on the basis of intensity 
as well as extent of tracer uptake volume, and it 
could play an important role in monitoring newly 
appearing Gd-enhanced lesions on MRI following 

Table 2 The best cutoff values and diagnostic accuracy 
for distinguishing glioma recurrence from RN

Index Cutoff value Sensitivity 
(%)

Specifi city 
(%)

MET L/N > 2.51 91.2 87.5
CHO L/N > 8.92 73.5 87.5
FDG L/N > 1.26 76.5 75.0

CHO: 11C-choline, FDG: 18F-fl uorodeoxyglucose, MET: 11C-me-
thionine, L/N: lesion/normal brain uptake, RN: radiation ne-
crosis.
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radiotherapy in patients with malignant gliomas.
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