Deep convolutional neural networks for multiplanar lung nodule detection:
Improvement in small nodule identification
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Purpose: Early detection of lung cancer is of importance since it can increase patients’ chances of
survival. To detect nodules accurately during screening, radiologists would commonly take the axial,
coronal, and sagittal planes into account, rather than solely the axial plane in clinical evaluation.
Inspired by clinical work, the paper aims to develop an accurate deep learning framework for nodule
detection by a combination of multiple planes.

Methods: The nodule detection system is designed in two stages, multiplanar nodule candidate
detection, multiscale false positive (FP) reduction. At the first stage, a deeply supervised encoder—de-
coder network is trained by axial, coronal, and sagittal slices for the candidate detection task. All pos-
sible nodule candidates from the three different planes are merged. To further refine results, a three-
dimensional multiscale dense convolutional neural network that extracts multiscale contextual infor-
mation is applied to remove non-nodules. In the public LIDC-IDRI dataset, 888 computed tomogra-
phy scans with 1186 nodules accepted by at least three of four radiologists are selected to train and
evaluate our proposed system via a tenfold cross-validation scheme. The free-response receiver oper-
ating characteristic curve is used for performance assessment.

Results: The proposed system achieves a sensitivity of 94.2% with 1.0 FP/scan and a sensitivity of
96.0% with 2.0 FPs/scan. Although it is difficult to detect small nodules (i.e., <6 mm), our designed
CAD system reaches a sensitivity of 93.4% (95.0%) of these small nodules at an overall FP rate of
1.0 (2.0) FPs/scan. At the nodule candidate detection stage, results show that the system with a multi-
planar method is capable to detect more nodules compared to using a single plane.

Conclusion: Our approach achieves good performance not only for small nodules but also for large
lesions on this dataset. This demonstrates the effectiveness of our developed CAD system for lung
nodule detection. © 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on
behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14648]
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learning, pulmonary nodule detection

1. INTRODUCTION

Lung cancer is one of the most malignant cancers, and is a
leading cause of death among both men and women.'~ It has
been predicted that around 25% of all cancer deaths in the
United States in 2019 are due to lung cancer.* Early detection

733  Med. Phys. 48 (2), February 2021  0094-2405/2021/48(2)/733/12

of lung cancer can give better treatment alternatives to
patients and increase their survival chances.” To improve
early diagnosis, lung cancer screening trials, such as the
National Lung Screening Trial (NLST),® and the Dutch-Bel-
gian Randomized Lung Cancer Screening Trial (NELSON),’

have been implemented.
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Although the implementation of lung cancer screening
reduces the mortality rate of patients, it results in a heavy
workload for radiologists. Computer-aided detection (CAD)
systems could play an essential role in assisting radiologists
to find nodules efficiently. A CAD system generally consists
of two stages: Suspicious candidate detection and false posi-
tive (FP) reduction. The aim of any CAD system for lung
nodule detection is to reach a high sensitivity with a low FP
rate. However, CAD systems still have not been widely used
in clinical practice for various reasons, including lack of
reimbursement and low sensitivity or high FP rates of the
available systems.®® The challenges of this task are mainly
the large variety in nodule morphology and the detection of
small nodules, which are easily missed.

With the development of artificial intelligence algorithms
and the abundance of computational power, a large number
of deep learning techniques have been successfully used in
image processing fields. For example, Ronneberger et al. pro-
posed the U-net algorithm for biomedical image segmenta-
tion,'” which showed good performance in the IEEE
International Symposium on Biomedical Imaging (ISBI) cell
tracking challenge. The U-net algorithm is widely used for
segmentation tasks throughout the literature ever since.'' ™™
Variations on this architecture were soon proposed, such as
the improved model U-net++ from Zhou et al.,15 which mod-
ifies the skip connections between encoder and decoder path-
ways in the network. This should reduce the semantic gap
between feature maps from the decoder and encoder paths,
which makes training more efficient. Considering network
architectures for image classification, Tan et al. demonstrated
that by scaling depth, width, and resolution,'® Efficient-Net
becomes more accurate for object classification assessed on
the CIFAR-10 dataset. Inspired by dense convolution net-
works,'” Huang et al. developed a more effective architecture
for image classification by adding multiscale blocks.'®

Meanwhile, various authors have reported automatic lung
nodule detection algorithms using deep learning."” In the
effort to minimize false negatives and FPs, Wang et al. pro-
posed a nodule-size-adaptive model that can measure the
nodule sizes, types, and locations from three-dimensional
(3D) images.zo Moreover, Dou et al. used 3D convolutional
neural networks to extract multilevel contextual information
to reduce FPs,21 while Xie et al. utilized two-dimensional
(2D) convolutional neural networks for FP reduction.??
Another approach by Setio et al. combined the predictions
from seven independent nodule detection systems and five
FP reduction systems.”> Some of the detection systems were
developed for specific types of nodules. In addition, Ozdemir
et al.** and Gruetzemacher et al.”> developed end-to-end sys-
tems for nodule detection by utilizing 3D convolutional neu-
ral networks based on V-net and U-net, respectively. Huang
et al.?® proposed amalgamated-convolutional neural networks
with the input in three scales to detect nodules. Furthermore,
Zhang et al. applied constrained multiscale Laplacian of
Gaussian filters to localize potential nodule candidates and a
densely dilated 3D convolutional neural network to reduce
FPs.?’ Besides, a vector quantization algorithm was used by
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Tan et al.”® to detect potential nodules and knowledge of
shape, texture was infused to the FP reduction model. Addi-
tionally, to develop an efficient nodule detection system, a
multicenter study with 39 014 cases was conducted by Cui
et al.*” deep learning techniques.

In our previous work, we followed one of the clinical pro-
cedures: Maximum intensity projection. With projected
images as input, convolutional neural networks (CNNs) were
employed to identify nodule candidates.*® Nodule cubes with
various sizes were extracted for reduction of FPs. The results
showed that using maximum intensity projection can improve
the performance of deep learning-based CAD for lung nodule
detection. In this work, we again attempted to learn from the
clinical procedures, and tried to identify those aspects that
could be mimicked in algorithm design. In particular, for clin-
ical evaluation of a scan, radiologists would commonly take
the axial, coronal and sagittal planes into account, rather than
solely the axial plane. However, previous work on nodule
detection is mostly based on the axial plane alone.?’-**"2¢
The influence of using orthogonal planes including axial,
coronal, and sagittal views for nodule detection in a deep
learning-based CAD system has not been explored. Addition-
ally, radiologists’ sensitivity on small nodules is not high on
CT scans in clinical practice.”’ > The system aims to provide
better small nodule detection by combining multiple planes.

The key contributions of this paper are as follows. (a) Con-
sidering the axial plane, the coronal plane, and the sagittal
plane, we developed an automatic nodule identification sys-
tem based on multiplanar convolutional neural networks
using transfer learning. (b) We also explored the performance
and influence of each plane for nodule detection in a CAD
system. Combined results from three planes on the detection
performance were reported. To further boost the performance,
results of the proposed system on 10 mm axial maximum
intensity projection-based slices were merged since the 10
mm slices had the highest detection rate and a relatively low
FP rate found in the previous work.>* (c) Based on convolu-
tional neural networks, a multiscale dense architecture was
applied to exclude suspicious candidates. Features at low or
high levels can be extracted and concatenated for prediction.
(d) In the FP reduction stage, we evaluated the effect of two
factors: Segmentation of lung parenchyma and the region of
interests of input data. (e) Although it is difficult to detect
small nodules (i.e., nodules with a diameter <6 mm), our
designed CAD system achieved good performance on these
small nodules.

2. MATERIALS AND METHODS

The designed method contained two stages, namely, multi-
planar nodule candidate detection and FP reduction. We used
a convolutional neural network model, U-net++, to detect
potential nodule candidates on axial, coronal, and sagittal
planes. The backbone of the U-net++ was the Efficient-Net
classification model, pretrained on ImageNet, which extracts
various basic features. The predictions from the three planes
were merged to acquire a higher sensitivity. For FP exclusion,
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we applied multiscale dense convolutional neural networks to
remove FP candidates. The following sections provided more
details of the dataset, architectures, training progress, and
evaluation methodology.

2.A. Dataset

The public dataset named Lung Image Database Consor-
tium and Image Database Resource Initiative (LIDC-IDRI)
was established by seven academic centers and eight medical
imaging companies.® The database had 1018 CT scans and
the range of the slice thickness is from 0.6 to 5.0 mm. These
scans were reviewed by four radiologists in two reading
phases. In the first round, radiologists independently detected
suspicious lesions and categorized them into three groups
(nodules >3 mm, nodules <3 mm, and non-nodules).
Then, findings of each scan from four radiologists were col-
lected together and individual radiologist checked every
annotation again in an unblinded way.

In clinical practice, scans with low slice thickness are
recommended for pulmonary nodule detection.>® Hence, we
excluded scans with slice thickness above 2.5 mm. After
discarding scans without consistent slice spacing, there
were 888 scans included in our study. Nodules larger than
3 mm were considered as relevant lesions according to
NLST screening protocols.® Since no consensus among
four radiologists was provided, suspicious nodules detected
by the minority of radiologists could be FPs. Thus, we
selected 1186 nodules which were accepted by at least three
radiologists as the reference standard. Nodules > 3 mm
identified by the minority of radiologists, nodules <3 mm,
and non-nodules were referred as unrelated findings. In the
LIDC-IDRI database, radiologists gave S5 scores (1 =
ground-glass, 2—4 = part-solid, 5 = solid) for nodule types.
If the majority of votes are 1 and 5, the nodule type is
ground-glass and solid, respectively. Otherwise, the nodule
type is part-solid. Consequently, there were 64 ground-
glass, 189 part-solid, 933 solid nodules in the study. Nod-
ule size also was provided in the database. When the nod-
ules were stratified by size as suggested by the lung CT
screening reporting and the data system,’’ the study had
502 nodules (3—6 mm), 276 nodules (6—8 mm), 281 nod-
ules (8—15 mm), 127 nodules (> 15 mm).

2.B. Data preparation

We applied the window setting of (—1000 HU, 400 HU)
and converted DICOM to images in an 8-bit PNG format
since it is convenient for our developers to make visual com-
parisons between inputs and outputs (preprocessed images,
predictions) of our model during processing. Images were
normalized to the range between O and 1 during the model
training. Scans in the LIDC-IDRI database have various spac-
ing in different planes, which results in misshapen images for
nodule detection. Original examples are shown in the first
row of Fig. 1. To unify the data, we adopted 1 mm as the
spacing value to resize the images by interpolation since thin-
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thickness slices improve diagnosis.>® Moreover, segmentation
of lung parenchyma can increase efficiency of training con-
volutional neural networks for lung nodule detection.”® The
average of pixel values in the whole slice was applied as a
threshold to roughly separate lung parenchyma from the
body. We removed the irrelevant information in the border
and employed morphological closing to fill holes. To keep
more boundary texture for detection of wall-attached nodule,
morphological operation, dilation, was used. The segmenta-
tion procedure is described and illustrated in more detail in
our previous work.”® Segmented lung parenchyma in three
planes is illustrated in the third row of Fig. 1.

2.C. Multiplanar detection via transfer learning

Nodule candidate detection is a fundamental step as it is
highly related to the final sensitivity of the CAD system.
To achieve as high sensitivity as possible, we applied not
only axial slices but also coronal and sagittal slices for
nodule candidate localization. The reason of utilizing three
planes is that one nodule might be not obviously showing
in one plane. To further improve detection accuracy, we
combined our previous work and used 10 mm axial maxi-
mum intensity projection (MIP) based slices generated for
nodule detection. The output of the candidate detection
stage is constructed by using a union join from the output
of four CNNs streams. More specifically, detected candi-
dates on coronal and sagittal plane were first transformed
back to axial coordinates. Potential candidates are merged
if the largest radius of the candidates is smaller than 0.88
times central distance between the two. A smaller ratio
leads to much more FPs and the same number of detected
nodules, whereas a larger ratio results in a lower sensitivity
at this stage. The final detection performance in both situa-
tions will decrease. Hence, the optimal experimental ratio,
0.88, is applied in the study.

With its a series of dense skip pathways between decoder
and encoder networks, U-net++4 shows good performance in
segmentation tasks.'” Based on U-net++, we proposed our
object detection model, as shown in Fig. 2. Input slices and
ground truth images have a size of 512 x 512. The nodule in
the ground truth image is labeled by a square bounding box,
with a width set to the nodule diameter provided by the
LIDC-IDRI dataset.

The architecture has two parts, namely encoder and deco-
der. For the encoder part, we adopt Efficient-Net'® as back-
bone because it is more efficient on simple feature extraction
and had the promising results on the CIFAR-100 image clas-
sification task. The model Efficient-NetB4 was pretrained on
the ImageNet dataset, and its pretrained weights were down-
loaded from the python package website (https://pypi.org/pro
ject/keras-efficientnets/). Using a pretrained model based on
a large dataset such as ImageNet, and then retraining (also
called fine-tuning) that model on a different dataset for a dif-
ferent task is known as transfer learning. Transfer learning
has shown good results on different tasks in the past,**~** and
the main benefits of it include that the model will already
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Axial Coronal Sagittal

FiG. 1. Examples of preprocessing for axial, coronal, and sagittal slices. The first column is original computed tomography (CT) data and the second column rep-
resents slices after resizing by interpolation. In the last column, segmented lung parenchyma in various directions is applied as input for training convolutional
neural networks later.

Input image Candidate detection model

\,
a
é/'

1 mm axial slices 1 mm coronal slices

\ Down-sampling
Conv2D + Residual
block + LeakyReLU

\ Conv2DTranspose

..

' 7 € Concatenation

I 1 mm sagittal slices 10 mm MIP axial slices Module

FiG. 2. The overview of our proposed candidate detection method. The 1 mm slices on axial, coronal, sagittal plane, and 10 mm axial maximum intensity projec-
tion (MIP) slices are used as input. In the encoder part, the backbone of the detection model is based on efficient-net pretrained on ImageNet. In the decoder part,
the node is represented by X/ where the integer i (0 <i <4) denotes the transpose two-dimensional convolutional layer along the decoder and the integer j
(1 <£j <5) denotes the convolution layer along the skip pathway. The proposed model extracts features not only in small receptive fields but also large receptive
fields. After prediction, suspicious findings on each plane are localized by bounding boxes.

have rich feature maps prior to fine-tuning which can speed in eight versions of the Efficient-Net. The method applies a
up the training and give better performance on other datasets. compound coefficient p to constrain width (w), depth (d),
Efficient-Net has a compound scaling method, which results and resolution (r) in networks:
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d=a 4]
w=p 2
r=y" 3)

where a, P, and y are constants and greater than or equal to 1.
To avoid amount of computation more than 2¥, the product of
o- ﬁ2 . y2 is close to two. The width, depth, resolution, and the
dropout rate of EfficientNet-B4 that we use are 1.4, 1.8, 380,
and 0.4, respectively, established by a grid search experi-
ment.'® The output of the backbone is connected to Leaky
Rectified linear units (LeakyReLU) with a negative slope
coefficient of 0.1.*> Since the learning rate (1073) at this
stage is relatively large, this may cause the dying ReL.U prob-
lem. Thus, LeakyReLU is used to extend the range of ReLU
and prevent vanishing gradients in parts of the network.
Then, it is followed by a max-pooling layer and a dropout
layer. The dropout rate in this architecture is 0.1. In the deco-
der part, the node is represented by X'/ where the integer i
(0<i<4) denotes the transpose 2D convolutional layer
along the decoder and the integer j (1 <j<5) denotes the
convolution layer along the skip pathway. In the middle of
the U-Net++, the first convolutional layer consists of 256
kernels of size 3 x3 between X** and X*'. In order to
increase the depth of the model, we apply two residual blocks
which have 256 channels with LeakyReLU as the activation
function. The decoding pathway consists of five similar mod-
ules. The first module (X*! — X3! — X>! — X — X0 is
made of four transposed 2D convolutional layers, one con-
catenation layer, one dropout layer, one convolutional layer,
and one residual block with LeakyReLU as the activation
function. More specifically, in order to revert the spatial com-
pression, we employ four transpose 2D convolutional layers
with 128 kernels of size 3 x 3 for up-sampling.** Then, the
concatenation layer combines related feature maps from
transposed convolutional layers at previous one level and the
corresponding layer in the encoding pathway (backbone:
Efficient-NetB4). At each horizontal level, all concatenated
feature maps are merged on the ultimate node on that level
(nodes X32, x23, x4, XO’S). After the concatenation layer
followed by one drop-out layer (drop rate: 0.1) and one con-
volutional layer with 128 kernels, there is a 128-channel
residual block activated by LeakyReLU. For the following
four modules, the number of transposed convolutional layers
is reduced by one and the number of channels/kernels is
halved for each subsequent module. For example, the second
module is comprised by the pathway
X32 - X*? X2 - X%2 The last module is almost the
same as the fourth module. However, it does not have the
concatenation layer and has one more dropout layer with the
rate 0.05. The last layer is a convolutional layer with a kernel
size of 1 x 1 and a sigmoid activation function. After predic-
tion, suspicious findings on each plane are localized by
bounding boxes.

In the training stage, each input image has at least one
nodule. During the training, image augmentation, such as 0°,
90°, 180°, and 270° rotations, horizontal-vertical flipping,
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and horizontal—vertical shift, is randomly performed on the
fly. Images are not rotated by arbitrary degrees since arbitrary
rotations might change nodule image characteristics due to
interpolation and in turn reduce the detection performance.
The data were separated by the LUNA16 challenge into ten
sets.”> We use tenfold cross-validation for model develop-
ment, as shown in Fig. 3(a). Specifically, every fold of the
cross-validation consists of training, validation, and testing
data. In each fold, we leave one set of data for testing. The
remaining data are split into a training set (70%) and a valida-
tion set (30%). The validation set here is used for model eval-
uation for each of the hyper-parameter sets during the
training. The test repeats ten times until every set is used as
the independent testing set once and the detected nodules on
each set are then aggregated. We use a batch size of 8 and the
Adam optimizer.* To calculate the overlap between ground
truth and prediction, we apply dice as the loss function.*®
The initial learning rate is 10~ and the minimum value is
10~*. The decreasing factor of the learning rate scheduler is
set to 107!, If the minimum validation loss does not change
for 5 epochs, the learning rate decreases. The training ends
when the model minimum loss on the validation set does not
change for 10 epochs.

2.D. Multiscale dense training for false positive
reduction

Reduction of FPs is also essential for radiologists in clini-
cal practice. The aim of this stage is to lower the number of
nodule candidates so that fewer nodule candidates have to be
manually inspected, ultimately reducing the workload of radi-
ologists. The model that we propose here is based on 3D
multiscale dense convolutional neural networks,"™ as shown
in Fig. 4. Overall, the model has feature maps at three differ-
ent scales and a maximum depth of 32 in the vertical and the
horizontal direction, respectively. The node is represented by
S where the integer i (1 <i < 3) denotes the scale level and
the integer j (1 <j<32) denotes the depth. Green arrows
indicate regular convolution operations in the horizontal path,
while orange arrows represent strided convolution operations
in the vertical path. Feature maps are extracted and concate-
nated from the results of regular convolutions on the same
scale and the result of strided convolutions on the previous
scale. Connection between different scales and horizontal lay-
ers are not drawn explicitly. But an example on scale of 3 at a
depth of 4 with green and orange arrows is shown in Fig. 4.
The network consists of 32 basic blocks, five transition
blocks, and a classifier block. The architecture starts with
three convolution blocks to extract initial feature maps in
three scales. Each convolution block contains a convolutional
layer with a kernel size of 3 x 3 x 3 followed by batch nor-
malization with the activation function ReLU.*” Because a
small learning rate is applied to train the model and the
chance of having dead neurons is low, ReLU, therefore, can
be used for this task. On three scales, their numbers of filters
are 32, 64, 128, and growth rates are 8, 16, 32, separately. A
basic block includes three concatenation layers and five
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FiG. 3. Illustrations of the training scheme. (a) presents the principle of the tenfold cross-validation for both nodule candidate detection and false positive (FP)

reduction. (b) shows how the ten sets at the FP reduction stage are generated.
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FiG. 4. The scheme for false positive reduction based on three-dimensional (3D) multiscale dense convolutional neural networks. The cubes are extracted from
3D volume as input. Feature maps are in three scales and the scale 1, 2, 3 has a depth of 16, 24, and 32, respectively. An example of concatenated feature maps
from different levels through regular and strided convolutions is shown in scale 3 at layer 4. The classifier is in the end of scale 3, giving a probability of being a
nodule for each cube. The node is represented by S where the integer i (1 <i < 3) denotes the scale level in the vertical direction and the integer j (1 <j < 32)
denotes the depth in the horizontal direction. The P,y and Pron—noduie Tepresent the probability of being a nodule and a non-nodule, respectively. Connection

between different scales and horizontal layers is not drawn explicitly.

bottleneck operations that are used to reduce the number of
features and improve calculation efficiency. Every bottleneck
operation consists of two convolution blocks. After the bot-
tleneck block, the number of filters is reduced by 75%. On
scales 2 and 3, coarse and fine features are aggregated by
concatenation from the previous and current scales. When
extracting features by the strided convolution from the previ-
ous scale, the stride depth is two rather than one for a larger
receptive filed. To further improve model compactness, tran-
sition blocks are designed to reduce the number of feature
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maps. A transition block has a convolution block with a stride
of one and a kernel size of 1 x 1 x 1. The transition blocks
are connected to the basic block and located at a depth of 16
and 24 in three scales. The final block is a classifier block
which gives, for each input cube, the probability of contain-
ing a nodule. It has two convolutional blocks, an average
pooling layer with stride of two, a flatten layer, two dense lay-
ers (128, 32 filters), and two dropout layers with the rates of
0.5 and 0.2 separately. The initializer in the convolutional
layer is the he_normal.48
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Before the training session, each candidate needs to be
rescaled to 32 x 32 x 32. The rough size of every candidate is
first estimated in the candidate detection stage, which gives a
bounding box for candidates according to their diameters.
However, the surrounding textural information also influ-
ences the differentiation between nodules and non-nodules
for convolutional neural networks. Therefore, we experiment
with two parameters that govern the availability of textural
context to the FP reduction model: (a) Whether or not the
lung parenchyma is segmented and (b) size of the region of
interests of the input data.

Figure 3(b) describes how the ten sets for FP reduction are
generated. At the nodule candidate detection stage, in every
fold, nodule candidates, including FPs and true positives, are
generated by a nodule detection model. As a consequence,
ten sets are created at the nodule candidate detection stage.
These ten sets are used directly as the ten sets for FP reduc-
tion. The tenfold cross-validation scheme is then applied to
train, validate, and test the FP reduction models, as shown in
Fig. 3(a). After tenfold cross-validation, the performance on
the full set is calculated. The loss function is binary cross-en-
tropy and the optimizer is Adam. The learning rate is 10~%. If
the validation loss does not change for 6 epochs, the training
stops.

2.E. Performance evaluation

At the nodule candidate detection stage, sizes and types of
detected nodules from our proposed CAD system are ana-
lyzed. In our case, the number of true positives is much smal-
ler than the number of FP findings. Using the area under the
receiver operating characteristic (ROC) curve as an evalua-
tion metric therefore does not reflect the performance of the
CAD system objectively.* Thus, we used the Competition
Performance Metric (CPM),50 which calculates the average
sensitivity at seven FP rates (1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs/
scan) in the free-response ROC (FROC) curve for assess-
ment.*® After tenfold cross-validation, the predictions for all
ten test sets were combined to compute the performance and
95% confidence intervals on the full dataset, using bootstrap-
ping with 1000 bootstraps.”'

The proposed scheme is implemented by applying deep
learning library of Keras based on a graphics processing unit
(GPU), NVIDIA V100.>?

3. RESULTS
3.A. Nodule candidate localization

The performance of the system at nodule candidate detec-
tion stage on each plane, as well as the fused results are pre-
sented in Table I. The sensitivity acquired by 1 mm axial
slices, 1 mm coronal slices, and 1 mm sagittal slices is
91.1%, 82.5%, and 81.8%, respectively. Details of the contri-
butions of each stream and nodules only identified by the
coronal or sagittal stream are in the supplementary material.
When the results of 1 mm axial and coronal slices are

Medical Physics, 48 (2), February 2021

739

TaBLE I. Performance of the CAD program using 1 mm slices in three direc-
tions and 10 mm axial maximum intensity projection (MIP) images as input,
as well as fused results at the nodule candidate detection. Total number of
nodules is 1186 within 888 scans.

Number of detected Sensitivity False positives
Input data nodules (%) per scan
1 mm axial 1081 91.1% 38
slices
1 mm coronal 979 82.5% 33
slices
1 mm sagittal 970 81.8% 40
slices
10 mm MIP 1105 93.2% 22
images
Fusion 1 mm 1140 96.1% 98
slices
Fusion all 1163 98.1% 108

combined, the sensitivity improves from 91.1% to 94.9% as
same as the sensitivity after fusing the results of 1 mm axial
and sagittal slices. When we merge the results from 1 mm
axial, coronal and sagittal slices, the system achieves a sensi-
tivity of 96.1%. Upon combining the results from the 10 mm
axial MIP images, the CAD system detects 98.1% of lung
nodules. This proves that every stream provides complemen-
tary information for nodule candidate localization, especially
the axial plane. Normally, a high sensitivity implies many
FPs from the CAD system. With 1 mm axial slices, 1 mm
coronal slices, 1 mm sagittal slices, and 10 mm axial MIP
images, our proposed method has 38, 33, 40, and 22 FPs/
scan, respectively. The FP rate is 98 FPs/scan after fusing
results from three 1 mm planes, whereas the number of FPs/
scan is 108 by fusion of candidates from four streams.

The summary of detected lung nodules in size and density
type according to the Lung CT screening reporting and the
data system at the nodule candidate detection stage is shown
in Table II. The main missed nodules are in the small-size
group (3—6 mm), there are three ground-glass nodules and 12
solid nodules undetected. However, the detection rate of small
nodules is still 97.0%. Regarding nodules larger than 6 mm,
only eight nodules are missed and the detection rate is
98.8%. For ground-glass, part-solid, and solid nodules, the
detection rate is 90.6%, 100%, and 98.2%, respectively.

TasLE II. Performance when combining results of multiple planes at the nod-
ule candidate detection stage.

Nodule type
Nodule diameter  Ground-glass  Part-solid Solid Total
3-6 mm 25 (89%) 75 (100%) 387 (97%) 487 (97%)
6-8 mm 13 (93%) 41 (100%) 220 (100%) 274 (99%)
8-15 mm 18 (95%) 48 (100%) 211 (99%) 277 (99%)
> 15 mm 2 (67%) 25 (100%) 98 (99%) 125 (98%)
Total 58 (91%) 189 (100%) 916 (98%) 1163 (98%)
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3.B. False positive candidate exclusion

Our developed system in these configurations is assessed
by FROC curves, as shown in Fig. 5. The system has a
sensitivity of 94.2% with 1.0 FP/scan and 96.0% with 2.0
FPs/scan regardless of nodule size. For detection of nodules
smaller than 6 mm, the designed CAD system detects
93.4% (95.0%) of these small nodules at an overall FP rate
of 1.0 (2.0) FP/scan. The CPM score of the CAD scheme
with varied configurations at the FP reduction stage is
shown in Table III. Applying 1 mm unsegmented axial
slices in the size with four extra pixels has the best CPM
score (0.9403) that is slightly higher than the score when
the patch size with eight extra pixels is used. Compared to
that, using 1 mm.

segmented axial slices acquires a lower CPM score
(0.9326). Hence, we adopt the 1 mm unsegmented region of
interest with four extra pixels on the axial plane as input data
for FP exclusion. The experimental results show that the
remaining lung boundaries can slightly improve the final per-
formance of nodule identification. Examples of true positive
nodules, false negatives and FPs after FP reduction are shown
in Fig. 6.

3.C. Comparison with published nodule detection
systems

To benchmark the performance of our complete CAD
program, we list the results from other published papers
which were obtained on the same dataset. Sensitivities at
different FP rates in other methods are shown in Table
Iv.

1.0
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4. DISCUSSION

We proposed a novel lung nodule detection system based
on multiple planes using convolutional neural networks. The
aim of this study was to improve the performance of the deep
learning-based CAD system for automatic pulmonary nodule
detection. Our method achieved comparable performance
among the CAD systems evaluated on the LIDC-IDRI data-
base. The combined results from three planes showed better
performance than the result from any individual single plane,
indicating different planes can provide complementary infor-
mation for lung nodule detection.

Nodule detection performance was evaluated on the axial,
sagittal, and coronal planes separately. The axial plane out-
performs the rest of two planes in 1 mm slice thickness,
achieving a detection sensitivity of 91.1%. A possible reason
is the difference in image quality. Since nearly 90% of scans
have a slice thickness larger than one millimeter, the image
resolution in coronal and sagittal planes is low. After interpo-
lation and scaling, image noise might increase and the mor-
phological information of nodules in coronal and sagittal

TasLE III. Performance of the CAD scheme with varied configurations at the
false positive reduction stage.

Segmentation Region of interest CPM

Segmented Original 0.9326
Original 0.9371
0.9403

0.9401

Unsegmented
Unsegmented Four pixels larger

Unsegmented Eight pixels larger

I et s SPPITTTTICTI T L el

0.8 1

Sensitivity
© o o o ©
w S w [e)] ~

©
N
.

0.1

—— Our proposed system
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1 2 4 8

Average number of false positives per scan

FiG. 5. Free-response receiver operating characteristic (FROC) curves of our proposed system in different configurations. The performance was computed based

on 95% confidence interval using bootstrapping with 1000 bootstraps.
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Axial

Coronal

Sagittal

True positives

False Negatives

™

False positives

Fic. 6. Examples of true positive nodules, false negative ones, and false positives.

TaBLE IV. Performance of other computer-aided detection systems evaluated on the LIDC-IDRI database.

False positives/scan

CAD system Year 0.125 0.25 0.5 1 2 4 8 CPM
Our current work 2020 0.893 0.917 0.930 0.942 0.960 0.966 0.973 0.940
Setio et al.>? 2017 0.859 0.937 0.958 0.969 0.976 0.982 0.982 0.952
Zhang et al.”’ 2018 0.890 0.931 0.944 0.949 0.965 0.972 0.976 0.947
Zheng et al.>° 2019 0.876 0.899 0.912 0.927 0.942 0.948 0.953 0.922
Ozdemir et al.>* 2019 0.832 0.879 0.920 0.942 0.951 0.959 0.964 0.921
Wang et al.?’ 2019 0.788 0.847 0.895 0.934 0.952 0.959 0.963 0.905
Huang et al.?® 2019 0.817 0.851 0.869 0.883 0.891 0.907 0.914 0.876
Dou et al.”! 2017 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.826
Xie et al.? 2019 0.734 0.744 0.763 0.796 0.824 0.832 0.834 0.790

The highest score of each column is shown in bold.

planes might be lost, especially for small nodules. In contrast,
the resolution (pixel spacing small than one) in axial slices is
higher. This keeps more nodule information for convolutional
neural networks to better differentiate nodules from other
anatomical structures. In a study regarding human reader per-
formance, it was found that radiologists also have a higher
sensitivity, but more FPs for nodule detection on the axial
plane compared to the coronal one.”® In clinical practice, the
sagittal plane might be the last option for radiologists to find
nodules since vessels tend to be presented as cross sections in
this direction. The section of vessels can result in more suspi-
cious findings during reviewing. Through experiments, our
study found most of the FP candidates on the sagittal plane.
When we fused the results from three 1 mm planes and
10 mm axial MIP images, the sensitivity increased from the
lowest sensitivity of 81.8% to 98.1%, although the number of
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FPs increased. This suggests that incorporating multiple
planes can be an effective approach for 2D nodule detection.
At the FP reduction stage, we also found that leaving the lung
parenchyma unsegmented and using a larger region of inter-
est of extra four pixels in radius boosts the performance of
classification. This implies that CNNs can be more accurate
to differentiate nodules and FP findings with more surround-
ing information.

In a recent study it was shown that detection of small nod-
ules (i.e., nodules with a diameter <6 mm) is the main chal-
lenge for which the sensitivity of CAD systems is difficult to
improve.?**?” We analyzed detected nodules at the candi-
date localization stage. Our method had a sensitivity of 97%
on detection of these small nodules in various types. There
are only 15 of 502 lung nodules still missed by our method.
The detection rate of these small nodules is high since with
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the help of skip connections, U-net++ can efficiently
extract features not only in small receptive fields but also
large receptive fields. Interestingly, there is no missed
part-solid nodule. The reason might be that unlike solid
nodules, having nonsolid components helps part-solid ones
to be easier differentiated from section of vessels. More-
over, their morphology is more distinguishable compared
to ground-glass nodules for convolutional neural networks.
Note that the proposed method found 99% of nodules
(>6 mm) in large morphological variations. However,
there are still some missed nodules. These nodules may
appear in unusual locations or close to tissues, which
makes detection more difficult for the system.

Recent published approaches on the LUNA16 challenge
were summarized in Table IV. To compare the results using
the same criteria, we only listed the methods which used the
competition performance metric (CPM) with sensitivities at
seven FP rates. Our designed method was ranked third and
had the highest sensitivity when the number of FPs allowed
is equal to 0.125 FP/scan. The top 1 is from the work of Setio
et al.>>. With gaining benefits from different CAD systems,
they have a better sensitivity when more FPs are allowed.
The CPM score from Zhang et al.”’ is also higher and detect-
ing all possible nodule candidates gives them a good upper-
bound quality for the FP exclusion stage. The work by Ozde-
mir et al.,>* Wang et al.,>° and our previous study demon-
strates that a high sensitivity can be achieved,*® but the large
number of FPs per scan that are generated incurs extra read-
ing time for radiologists. The CAD system we propose here
shows good performance in detecting these small nodules
even after the FP reduction stage, representing a higher sensi-
tivity than radiologists’®'®> We also improve our perfor-
mance in detection of nodules smaller than 6 mm, compared
to our previous work (sensitivity: 93.4% vs 90.4%, at 1.0 FP/
scan; sensitivity: 95.0% vs 91.6%, at 2.0 FPs/scan).30
Another study from Ozdemir et al.>* showed a sensitivity of
around 90% with 1FP/scan for nodules smaller than 5 mm,
whereas our method achieved a sensitivity of 93.0% with
1FP/scan to detect nodules with the same size. Methods of
Dou et al.,”! Xie et al.,”* and Huang et al.”® might need to fur-
ther improve the discrimination between nodules and wrong
findings. Some systems did not report sensitivities at various
FP rates. For instance, Cui et al. developed a nodule detection
system using 39 014 scans from multiple centers.”” Although
the system reached a sensitivity of 93.4% with 0.8 FP/scan, a
number of true nodules were still missed by the system when
the FP rate was smaller than 0.5. Nevertheless, the external
validation results showed the potential use of the deep learn-
ing-based system in clinical practice. Additionally, Gruet-
zemacher et al.”® utilized a 3D U-net with more spatial
information for detection, which results in a high sensitivity
of 92.7% but 4 FPs/scan. The system also might have an
issue of extra screening time for radiologists due to a large FP
rate. Besides, with the help of shape-based features and tex-
ture-based knowledge, Tan et al.”® achieved good results on
nodule detection using part of the dataset. However, the per-
formance on the whole dataset was unknown.
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The study has several limitations. Firstly, the reference
standard is not derived by the consensus of radiologists but
consists of nodules accepted by at least three radiologists.
The system might find some true nodules only identified by
one or two readers and the performance of the system can be
underestimated. Secondly, the dataset has imbalanced num-
bers of nodules in size and density for system development.
For example, the number of solid nodules is 14 times the
number of ground-glass ones. Thus, the system tends to
detect suspicious solid nodules and might miss ground-glass
nodules. This may affect the performance of the system when
it is tested on other datasets. Last but least, the system is
developed and evaluated based on the scans that might from
the same vendors or protocols via a cross-validation scheme,
which might lead to a positive bias. There are some sugges-
tions for the future work. Although this developed CAD sys-
tem had good performance on this large public dataset,
evaluations on lung cancer screening programs need to be
carried out. Another interesting topic is that with larger mem-
ory in GPUs, convolutional neural networks are capable to be
trained by the whole 3D lung volume for nodule detection.
The system might achieve better performance since vessels
and pulmonary nodules can be easily differentiated in 3D
space.

5. CONCLUSIONS

We have developed a multiplanar nodule detection system
using convolutional neural networks. The promising perfor-
mance has shown the effectiveness of combining results from
three planes for the candidate detection task. Sharing multi-
scale features helped dense convolutional neural networks to
become more effective for removal of FPs.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. Examples of nodules which are only identified on
one plane. (a) The nodule is only detected on the coronal
plane. (b) The nodule is only found on the sagittal plane.
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Table S1. Performance of using 1 mm axial slices in the
detection of nodules at the candidate detection stage.

Table S2. Performance of using 1 mm coronal slices in the
detection of nodules at the candidate detection stage.

Table S3. Performance of using 1 mm sagittal slices in the
detection of nodules at the candidate detection stage.

Table S4. Performance of using 10 mm MIP slices in the
detection of nodules at the candidate detection stage.

Table SS. Performance when combining results on 1 mm
sagittal, 1 mm axial and 10 mm MIP slices in the detection
of nodules at the candidate detection stage.

Table S6. Performance when combining results on 1 mm
coronal, 1 mm axial and 10 mm MIP slices in the detection
of nodules at the candidate detection stage.

Table S7. Performance when combining results on 1 mm
axial and 10 mm MIP slices in the detection of nodules at the
candidate detection stage.

Data S1. Contributions of each plane in the candidate genera-
tion process.
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