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NAIRscore as a biomarker for the quality of immune
response to neoantigens is related with an
increased overall survival in multiple myeloma
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Neoantigen provides a promising breakthrough in tumor
immunotherapy, although only a subset of patients responds
well due to the quality of their immune response. However,
few biomarkers have been reported to measure the quality
of immune response to neoantigens and to predict prognosis
of patients with multiple myeloma (MM). Here, we first devel-
oped a neoantigen-prediction pipeline starting from out-
comes of somatic mutations and gene-expression profiles.
Given the expression of some specific marker genes, the hu-
man leukocyte antigen (HLA)-I score and the cytolytic score
were evaluated respectively to reflect HLA-I molecular expres-
sion and CD8+ T/natural killer (NK) cell abundance. Accord-
ing to the process of the immune response to neoantigens, we
comprehensively took neoantigen load, cytolytic score, and
HLA-I score to construct a neoantigen immune response
score (NAIRscore), in which the HLA-I score presented a haz-
ard ratio (HR) of less than 1, while the cytolytic score and
neoantigen load presented a HR of greater than 1. Meanwhile,
NAIRscore presented a competitive advantage to stratify MM
samples. Especially, those exhibiting high NAIRscore corre-
lated with an increased overall survival (OS), echoing the un-
derlying molecular signatures of lower driver-gene mutations
and down-regulated immune response. Notably, an online
tool based on this study is provided to identify neoantigens
and predict OS.

INTRODUCTION
Multiple myeloma (MM) is the second most frequent hematological
malignancy as characterized by the clonal expansion of malignant
plasma cells within bone marrow, affecting >30,000 individuals per
year in the United States.1,2 In recent decades, many explorations
and advances in therapeutics have prolonged the survival for most pa-
tients with MM, but MM remains incurable and prone to relapse in
the vast majority of cases.3–6 The treatment of MM remains chal-
lenging, especially for relapsed/refractory patients. Due to clinical
and pathological heterogeneity, response and survival in MM treat-
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ment vary to prognostic risk factors, such as disease stage at diagnosis
and cytogenetic abnormalities.7,8 Therefore, correlating prognostic
factors with biological function could enable the development of
novel and targeted therapeutic classes.

In recent years, cancer immunotherapy with neoantigen vaccines has
been considered a promising strategy for stimulating the body’s own
immune system to eliminate tumor cells; however, only small subsets
of patients within large cohorts favorably respond to the treatment
due to the quality of their immune response.9,10 Neoantigens are a
class of short peptides with aberrant expression in tumor cells, which
result from somatic mutations and are used as tumor-specific anti-
gens. Therein, neoantigens can bind to human leukocyte antigen
(HLA) molecules and be presented on the surface, thereby being
recognized as non-self by T cell receptors (TCRs) to elicit a T cell-
mediated anti-tumor immune response.11,12 Previously, our team
developed a customized proteogenomic workflow for neoantigen pre-
diction and selection, i.e., ProGeo-neo,13 and we recently updated this
tool (v.2.0) for expanding the source of candidate neoantigens.14 Also,
we issued a manually curated database of human tumor neoantigen
peptides, i.e., dbPepNeo,15 which helps screen immunogenic neoan-
tigens from candidates. This database was updated recently to
v.2.0.16 Besides, we have developed additional tools for identification
of immunogenic neoantigens and for the subsequent design of candi-
date peptide vaccines.17–19
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Table 1. Clinical characteristics of 516 samples used in this study

Primary (n = 462) Recurrent (n = 54)

Age (years)

Mean 65.2 68.1

SD 10.5 10.4

Gender (%)

Male 283 (61.3) 26 (48.1)

Female 179 (38.7) 28 (51.9)

Race (%)

White 462 (100) 54 (100)

ISS stage (%)

I 152 (32.9) 14 (25.9)

II 154 (33.3) 17 (31.5)

III 140 (30.3) 22 (40.7)

NA 16 (3.5) 1 (1.9)

SD, standard deviation; ISS, International Staging System; NA, not available.
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Several clinical trials have shown that personalized neoantigen vac-
cines have the ability to induce CD8+ and CD4+ T cell responses
and improve the overall survival of patients with melanoma and glio-
blastoma, highlighting the considerable potential of neoantigen used
in immunotherapy.20,21 In addition, neoantigen load was correlated
with somatic mutations, and both were reported to relate to pro-
longed survival with checkpoint inhibitors in melanoma and lung
cancer.22,23 High tumor mutational burden (H-TMB) has received
FDA approval for selecting suitable patients for immunotherapy;24

however, little has been reported with regard to low-TMB cancers,
such as MM. Studies have shown that the quality of immune response
to neoantigens may act as a better biomarker for immunotherapy.10,25

Here, based on the 516 paired outcomes (i.e., Maf and FPKM files) of
478 patients with MM downloaded from the MMRF-CoMMpass
project, we developed a neoantigen-prediction pipeline to identify
neoantigens in each tumor. Then, to represent the quality of immune
response to neoantigens, we took the neoantigen load, the cytolytic
score, and the HLA-I score to construct a neoantigen immune
response score (NAIRscore). A high NAIRscore was found to be asso-
ciated with an increased overall survival. For ease of use by clinicians,
based on this study, we have established a friendly web-based tool
with URL at http://www.biostatistics.online/MMPrgognosis/.

RESULT
Higher mutation burden and neoantigen load in recurrent

patients compared with primary patients

In this study, based on the MMRF-CommPass project on the GDC
data portal, we downloaded 1,092 simple nucleotide variation files
(i.e., Maf) and 859 transcriptomic profiles (i.e., FPKM), respectively.
These files were derived from whole-exon sequencing (WES) and
RNA sequencing (RNA-seq) of CD138+ cells from patients with
myeloma, respectively. As shown in Figure S1, after sample selection,
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a total of 516 matched Maf files and FPKM files derived from 478 pa-
tients with MMwere retained, including 462 primary samples and 54
recurrent samples (Table 1). In particular, paired primary and recur-
rent samples from 32 patients with MM were simultaneously
obtained.

We first carried out analysis of somatic mutations in 516 Maf files us-
ing R package maftools.26 In 462 primary samples, a total of 27,953
nonsynonymous variations were detected, ranging from 5 to 1,864
variations per sample, with a median of 46 variations (Figure S2A).
Similarly, in 54 recurrent samples, a total of 3,815 nonsynonymous
variations were identified, ranging from 4 to 207 variations per sam-
ple, with a median of 60 variations (Figure S2B). Comparatively, more
nonsynonymous mutations were found in recurrent samples (Fig-
ure 1A). And, in recurrent samples, significantly higher TMB was
observed as well (Figure 1B). When compared with the 33 TCGA tu-
mors cohorts by function “tcgaCompare” of R package maftools,26

MM expresses as a low-TMB tumor (Figure S3).

As shown in Figure S1, a workflow for predicting neoantigens starting
with the Maf file and the FPKM file was established through referring
to the published neoantigen-prediction pipeline.27 As the nonsynon-
ymous variations in chromosomes may lead to the changes in amino
acid sequences of mutated genes in various forms, including single
amino acid variation (SAAV), insertion or deletion of amino acids (in-
delAA), and frameshift mutation of amino acids (FSAA). Based on the
mutated genes and their altered amino acids, the 8–11 amino acid
short peptides containing those changed amino acid(s) were compu-
tationally cut from the reference amino acid sequence of mutated
genes, and then their binding to HLA type was separately predicted
for each patient. HLA-A$02:01 was applied to all patients with MM,
as this HLA type is most prevalent amongWhite people in the United
States, according to the Allele Frequency Net Database (AFND).28

Statistically, a total of 6,329 neoantigens were identified in 462 pri-
mary samples, ranging between 1 and 437 per sample, with a median
of 10. In 54 recurrent samples, a total of 887 neoantigens were iden-
tified, ranging between 1 and 65 per sample, with a median of 12.
Here, we directly defined the number of neoantigens as neoantigen
load in each sample. Comparatively, a significantly higher neoantigen
load in recurrent samples was observed when compared with the pri-
mary samples (Figure 1C). Also, a higher neoantigen load was found
when comparing those recurrent samples with their paired primary
samples (Figure 1D). Furthermore, when we compared those samples
diagnosed at different International Staging System (ISS) stages, no
significance was observed on neoantigen load in primary and recur-
rent samples (Figures S4A and S4B), suggesting that the production
of neoantigens has no significant correlation with ISS stage.

In addition, in both primary (Figure 1E) and recurrent (Figure 1F)
samples, a significant positive correlation was discovered between
the nonsynonymous mutations and neoantigen load. Additional non-
synonymous mutations may be responsible for relapse in recurrent
patients. At the same time, in recurrent samples, more
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Figure 1. Comparison of characteristics between recurrent and primary samples

(A–C) Comparison of nonsynonymous mutation (A), TMB (B), and neoantigen load (C) between primary and recurrent samples. (D) Comparison of neoantigen load between

primary and paired recurrent samples. (E and F) The Pearson’s correlation between nonsynonymous mutations and neoantigen load in primary (E) and recurrent (F) samples.

Significance was determined by Wilcoxon test. *p < 0.05, **p < 0.01.
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nonsynonymous mutations resulted in a relatively higher TMB, but
this may also lead to production of more neoantigens. Consistent
with the top mutated genes (Figures S2A and S2B), we found that
the neoantigens’ peptides were predominantly derived from immu-
noglobulin heavy- and light-chain genes IRF4 and TP53.

A high NAIRscore was related to an increased overall survival

Neoantigens are considered a class of tumor-specific antigens that can
bind to HLA moleculars and present on the surface of tumor cells,
thereby being recognized specifically by T cells.12 Since only HLA-I
neoantigens were predicted in this study, we took HLA-I molecular
expression and CD8+ T cell abundance into consideration. In light
of the expression level of some specific marker genes according to a
prior study,29 the HLA-I score and the cytolytic score can be evaluated
to represent HLA-I molecular expression and CD8+ T cell abundance
in each sample, respectively. Marker genes B2M,HLA-A,HLA-B, and
HLA-C were used to evaluate the HLA-I score, while marker genes
GZMA, GZMH, PRF1, GNLY, and GZMM were used to calculate
the cytolytic score.

Given the process of immune response to neoantigens, we used the
cytolytic score, the HLA-I score, and neoantigen load to construct a
NAIRscore to measure the quality of immune response to tumor neo-
antigens by performing a multivariable Cox proportional hazards
regression model. As shown in Figure 2A, we observed that the me-
dian of NAIRscore significantly stratified samples into high- and
low-NAIRscore groups, and the high-NAIRscore group was associated
with an increased overall survival (OS) (hazard ratio [HR] = 0.37; log
rank test, p = 0.0014). Due to the significant difference in neoantigen
load between primary and recurrent samples above, the NAIRscore
was separately applied for sample stratification. With one accord,
high NAIRscores were observed to relate to an increased OS in both
recurrent (Figure 2B;HR = 0.07, p = 3e-04) and primary samples (Fig-
ure 2C; HR = 0.52, p = 0.0667), although there was no significance in
primary samples.

To further investigate the association between NAIRscore and OS in
primary samples, we divided those primary samples into four quar-
tiles based on the rank of the NAIRscore (Figure 2D). Interestingly,
those primary samples in the third and fourth quartiles can both be
divided significantly into high- and low-NAIRscore groups by the me-
dianNAIRscore, respectively (Figures 2E and 2F), and the high-NAIR-
score group exhibited better OS. In contrast, those primary samples in
the first and second quartiles cannot both be significantly stratified by
Molecular Therapy: Nucleic Acids Vol. 29 September 2022 287
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Figure 2. Prognostic analysis in different subsets of patients with MM

The median ofNAIRscore in each prognostic model was used to divide samples into high- and low-NAIRscore groups. (A–C) Prognostic analysis in all samples (A), recurrent

samples (B), and primary samples (C). (D) Comparison ofNAIRscore between the recurrent samples and the four quartiles of primary samples. (E–H) Prognostic analysis in the

fourth quartile (Qu.) (E), third Qu. (F), second Qu. (G), and first Qu. (H) in primary samples.
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the median of their NAIRscore (Figures 2G and 2H). However, when
those primary samples in the first and second quartiles were further
differentiated between high- and low-NAIRscore groups by the
optimal p value, respectively, we also observed that the high-NAIR-
score group exhibited better outcomes (Figures S5A and S4B). Indeed,
the quality of immune response to tumor antigens can play a pivotal
role in survival.10 In addition, we also considered that the NAIRscore
288 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
has no significant correlation with the ISS stage, as the comparisons
presented in Figures S4C and S4D reveal.

NAIRscore as a biomarker has a competitive advantage

Considering the observation of significant stratification in recurrent
samples and in the third and fourth quartiles of those primary sam-
ples above, we merged these samples to re-construct NAIRscore by



(legend on next page)
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re-computing a multivariable Cox regression model. Expectedly,
these samples were significantly stratified into high- and low-NAIR-
score groups, and the high-NAIRscore group was found to be associ-
ated with increased OS (Figure 3A). Consequently, in the subgroups
of MM samples, i.e., ISS stage, gender, and age,NAIRscore can be used
as an effective biomarker for sample stratification, and a high NAIR-
score was associated with an increased OS (Figures S6A–S6C). In
addition, in this fitted Cox model, a competitive concordance index
was measured, and the three features were all significant (Figure 3B).
Therein, an HLA-I score with an HR of less than 1 indicated that the
higher expression of the HLA-I molecular expression, the more
conducive to the patients’ OS. In contrast, a cytolytic score and neo-
antigen load with an HR of greater than 1 indicated that the higher
value of cytolytic score and neoantigen load, the worse the patients’
OS. Meanwhile, the relative contribution of each variable in this
model was estimated (Figure 3C), suggesting that the three variables
all critically contribute to construct NAIRscore.

Furthermore, by performing a 1,000� bootstrap resampling to calcu-
late the integrated area under the receiver operating characteristic
(ROC) curve (iAUC), we further compared the predictive accuracy
of NAIRscore with other factors. As shown in Figure 3D, the iAUCs
of NAIRscore and ISS stage were comparable, and both were superior
to the other features. Interestingly, neoantigen load, TMB, and non-
synonymousmutation were found to yield the same iAUC, suggesting
that they had similar predictive accuracy, possibly due to their
correlation.

Moreover, combining NAIRscore with three clinical features, i.e., ISS
type, gender, and age, we further carried out a prognostic analysis and
fitted the SCORE. Uniformly, when the median of SCORE were used
to divide those samples into high- and low-SCORE groups, much
smaller p values were observed (Figure 3E). In the forest plot shown
in Figure 3F, we observed a larger concordance index, indicating that
the addition of clinical features improved the predictive power. Mean-
while, as shown in Figure 3G, NAIRscore was found to make a greater
contribution to this model, followed by ISS stage, age, and gender. In
addition, a nomogram was constructed for clinicians, illustrating that
a quantitative probability can be evaluated in predicting 1-, 2-, and
4-year OS for an individual (Figure 3H). The calibration curves of
the nomogram in predicting 1-, 2-, and 4-year survival rates were
also validated (Figure 3I), suggesting that a good predictive robust-
ness can be achieved using this nomogram. Also, the NAIRscore
was observed to contribute the most risk points when compared
with others, indicating that the NAIRscore was a more important
feature.
Figure 3. Comparison of NAIRscore and other characteristics in a subset of sa

primary samples

(A) Prognostic analysis based onNAIRscore. (B) The forest plot based on cytolytic score,

contribution of cytolytic score, HLA-I score, and neoantigen load in prognostic model. (D

Prognostic analysis based onNAIRscore, age, gender, and ISS stage. (F) The forest plot

(G) The relative contribution ofNAIRscore, age, gender, and ISS stage in prognostic mod

curves for 1-, 2-, and 4-year OS.
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Comparison of molecular characteristics between high- and

low-NAIRscore groups

To explore the underlying molecular characteristics of different OSs
between samples with high and low NAIRscores, we separately
compared their somatic mutations and differentially expressed genes
(DEGs). Primarily, driver genes in high- and low-NAIRscore groups
were identified (Figures 4A and 4B). Meanwhile, genes NRAS,
KRAS, and BRAF were considered as drivers in both high- and low-
NAIRscore groups. In the low-NAIRscore group, however, we identi-
fied more driver genes, especially genes KRAS, TP53, and IRF4 with
higher mutational frequency (Figure 4C), which may explain in
part the poor prognosis in the low-NAIRscore group. Compared
with wild-type samples, samples with KRAS mutant (Figure 4D)
and samples with TP53 mutant (Figure 4E) all exhibited a decreased
survival. Indeed, KRASmutation was reported to relate to tumor-pro-
moting inflammation and immune modulation, leading to immune
escape in the tumor microenvironment.30,31 The loss or mutation
of TP53 resulted in immune evasion by affecting the activity of
myeloid and T cells and modulating the immune response during
cancer development.32 The transcription factor IRF4 is required dur-
ing immune response, including lymphocyte activation and the gen-
eration of immunoglobulin-secreting plasma cells.33

Moreover, the DEGs between high and lowNAIRscores were investi-
gated as well. As shown in Figure 4F, we identified 14 up-regulated
genes and 171 down-regulated genes in total (Table S1). In particular,
genes GZMA, GZMH, GNLY, and PRF1 marked to the cytolytic score
were down-regulated in the high-NAIRscore group. Therefore, lower
cytolytic scoreswere evaluated in the high-NAIRscore group,which cor-
responded to the cytolytic score with an HR greater than 1 (Figure 3B).
Further, these down-regulatedDEGs in the high-NAIRscoregroupwere
applied for GO enrichment analysis (Table S2). Consistently, several
significant biology processes (BPs) with regard to immune response
were enriched (Figure 4G), such as T cell activation, immune-
response-activating cell-surface receptor signaling pathway, antigen-
receptor-mediated signaling pathway, and regulation of T cell activa-
tion. The cell component (CC) and molecular function (MF) also
were enriched, including TCR complex, antigen binding, TCR binding,
and major histocompatibility complex (MHC) class I protein binding.
More specifically, these down-regulated immune response induced by
neoantigens may lead to better survival in the high-NAIRscore group.

A web-based tool to identify neoantigens and predict OS for

patients with MM

Based on the neoantigen-predictive pipeline proposed above and the
prognostic model constructed by 516 patients with MM, we
mples, including the recurrent samples and the fourth Qu. and third Qu.

HLA-I score, and neoantigen load. *p < 0.05, **p < 0.01, ***p < 0.001. (C) The relative

) Comparison of predictive accuracy on between NAIRscore and other features. (E)

based onNAIRscore, age, gender, and ISS stage. *p < 0.05, **p < 0.01, ***p < 0.001.

el. (H) Nomogram for predicting the 1-, 2-, and 4-year OS probabilities. (I) Calibration



Figure 4. Molecular characteristics between high- and low-NAIRscore groups

(A and B) The driver genes identified in samples of high- (A) and low-NAIRscore group (B). (C) The mutational waterfall of driver genes in samples of high- and low-NAIRscore

groups. (D) Prognostic analysis in samples withKRASmutant. (E) Prognostic analysis in samples with TP53mutant. (F) The up- and down-regulated genes between high- and

low-NAIRscore groups. (G) The GO enrichment analysis of the down-regulated genes, including biological process (BP), cellular component (CC), and molecular function

(MF).
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developed a web-based tool to identify neoantigens and predict the
OS for each patient with MM (http://www.biostatistics.online/
MMPrgognosis/). In this tool, users need to provide two text files
from the same patient with MM patient, i.e., a Maf file to reflect so-
matic mutations in tumor and an FPKM file to represent expression
level of genes in tumor. After uploading the two files, those neoanti-
gens in the tumor can be identified within several minutes, and users
can directly download results for further exploration, such as person-
alized neoantigen vaccines. In the meantime, users also can obtain the
predictive OS table and risk curve.

In this tool, the scoring system of NAIRscore was fitted as follow:
(�1� 0.3222� cytolytic score) + [�1� (�0.2699)�HLA-I score] +
(�1 � 0.0021 � neoantigen load), and the median NAIRscore in this
Molecular Therapy: Nucleic Acids Vol. 29 September 2022 291
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study (2.5686) was used to divide patients into high- and low-NAIR-
score groups. The patients with a NAIRscore greater than
2.5686 would exhibit a high OS rate. The OS rate at different time
points could be calculated and presented in the table and curve.
Moreover, if three clinical features, i.e., ISS stage, age, and
gender, were provided by users, the scoring system would be
further upgraded as follow: (�1 � 0.7009 � NAIRscore) +
(�1 � 0.0316 � age) + [�1 � (0female | 0.3634male)] + [�1 � (0ISS-I
| 0.9343ISS-II | 1.4124ISS-III)]. Similarly, the median SCORE
(�1.3509) was used to stratify samples and predict OS. Importantly,
this tool is easy to operate and is user friendly for clinicians, which is
very helpful for the generalization and application of our models.

DISCUSSION
In this study, an effective neoantigen-prediction pipeline starting
from Maf and FPKM profiles was proposed and integrated into a
web-based tool, in which neoantigens resulted from somatic muta-
tions can be identified within minutes. It can serve as an alternative
when raw sequencing data is not available. Here, consistent with a
prior report,34 we found that larger mutational burden and neoanti-
gens load in recurrent MM samples compared with the primary MM
samples. This indicated that the larger mutational burden may be the
cause of relapse in recurrent patients, as well as more neoantigen
production.

According to the process of immune response to tumor antigens, we
treated neoantigen load, the HLA-I score, and the cytolytic score as
features to construct the NAIRscore, representing the quality of im-
mune response to tumor antigens in samples. Meanwhile, we
observed that neoantigen load and the cytolytic score have HRs of
greater than 1, and the HLA-I score has an HR of less than 1. Consis-
tently, neoantigen load has been reported as an HR of greater than 1,
and high somatic mutation and neoantigen load were correlated with
decreased progression-free survival in MM.35 These suggested that a
higher cytolytic score resulting from neoantigen load did not yield a
better prognosis in MM, although a high neoantigen load and tumor-
infiltrating CD8+ T cells have been reported to imply a better survival
in some solid tumors, such as melanoma and neuroblastoma.36,37

This might indicate a difference between low- and high-TMB tumors.

In addition, patients whose samples had a highNAIRscorewere found
to be significantly associated with a better OS, indicating that this is
consistent with previous research that a high quality of immune
response to tumor antigens was beneficial to prognosis.10 In partic-
ular, we found that the NAIRscore was able to significantly stratify
those MM samples with a high NAIRscore. That suggests that a
comprehensive consideration of immune response processes may
better serve as a biomarker, rather than any one individually, i.e., neo-
antigen load, tumor-infiltrating CD8+ T cells, and HLA molecular
expression. Indeed, in the high-NAIRscore group, we observed fewer
driver genes, such asKRAS, TP53, and IRF4, and a down-regulated BP
of immune response induced by neoantigens, such as immune-
response-activating cell-surface receptor signaling pathway and anti-
gen-receptor-mediated signaling pathway. Of course, in the future,
292 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
NAIRscore needs to be validated in more MM samples, including tak-
ing monoclonal gammopathy of undetermined significance (MGUS)
and smoldering MM (SMM) into account. Especially, NAIRscore
needs to be verified and compared in more tumors, including high-
and low-TMB tumors.

As we have known, H-TMB has received FDA approvals for selecting
patients for promising immune checkpoint inhibitor (ICI) treatment.
However, compared with TMB, neoantigen load was observed to be of
equal advantage, whileNAIRscore presented a greater advantage (Fig-
ure 3D). TMB refers to the number of somatic mutations per mega-
base of interrogated genomic sequence, while neoantigens denote
those immunogenic short peptides originated from somatic muta-
tions. To some extent, TMB and neoantigen load are all positively
correlated with somatic mutations in tumor. Meanwhile, emerging
research showed that the quality of the immune response is more
important in tumors,10 which may explain why NAIRscore exhibits
a better advantage.

In summary, we constructed NAIRscore for the first time to evaluate
the quality of immune response to tumor neoantigens, in which a
high NAIRscore was found to be an effective biomarker to relate
with increased OS. A friendly web-based tool was implemented to
identify neoantigens and predict prognosis for patients with MM.

MATERIALS AND METHODS
Sample collection and selection

In this study, open sequencing files of CD138+ cells from patients
with MM were downloaded from the MMRF-CoMMpass project
(dbGaP study accession: phs000748) through the GDC data portal
(https://portal.gdc.cancer.gov/projects/MMRF-COMMPASS),
including WES and RNA-seq (Figure S1). We obtained 1,092 simple
nucleotide variation files (Maf format) derived from WES and 859
transcriptomic profiles (FPKM) derived from RNA-seq. Here, we
only retained the matched WES and RNA-seq samples with clinical
information. Further, we selected those files sequenced from bone
marrow samples from White patients with MM. Eventually, a total
of 516 matched Maf files and FPKM files derived from 478 patients
withMMwere retained, including 462 primary samples and 54 recur-
rent samples. Therein, the paired primary and recurrent samples from
32 patients with MM were obtained simultaneously.

Sequencing and statistical analysis

As shown in GDC, the tumor cells (CD138+ cells sorted from bone
marrow) and normal cells (whole blood cells from peripheral blood)
frommatched samples were evaluated byWES. Based on the workflow
of aliquot ensemble somatic variant merging and masking and human
reference genome (GRCh38), the simple nucleotide variations of each
tumor sample were separately filtered and saved inMaf format. On the
R (v.4.0.3) platform, the mutated classifications and mutated genes in
each Maf file were filtered and analyzed by R package maftools
(v.2.6.05),26 the driver genes in different groups were implemented
by the oncodrive function with mutations of greater than 8 and
adjusted p values of less than 0.05.

https://portal.gdc.cancer.gov/projects/MMRF-COMMPASS
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In addition, the tumor cells were evaluated by RNA-seq, and the
merged FPKM expression matrix was downloaded and used in this
study. The FPKMmatrix was applied for filtering of candidate neoan-
tigens and evaluation of the cytolytic score and the HLA-I score.29 The
FPKMmatrix was used to screen DEGs between groups by performing
Wilcoxon rank-sum test and Benjamini-Hochberg (BH) adjustment,
in which we set the cutoff at the absolute value of log2, a fold change
of greater than 1, and an adjusted p value of less than 0.05.

Neoantigen-prediction pipeline

Referring to the published neoantigen-prediction pipeline,27 as
shown in Figure S1, we constructed a similar workflow for a neoanti-
gen-prediction pipeline starting from Maf file and FPKM file. In this
workflow, the mutated genes and their altered amino acids were first
filtered from eachMaf file. We downloaded the amino acid sequences
of all human genes from UniprotKB. Then, based on those mutated
genes and their altered amino acids, we can select those short peptides
containing the mutated amino acids from their reference amino acid
sequences. Only HLA-I neoantigens consisting of 8–11 amino acids
were considered. Subsequently, the binding of these short peptides
to HLA type was predicted by netMHCpan4.0,38 and we screened
those short peptides with %Rank of less than 2. Eventually, the
expression level of genes mapped by those screening short peptides
in the paired RNA-seq files was applied for selection, and we selected
those peptides with FPKM of greater than 2.

Somatic mutations in chromosomesmay lead to the changes in amino
acid sequences of mutated genes in various forms, including SAAV,
indelAA, or FSAA. For SAAV, we first found the mutant site in the
amino acid sequence of the reference gene and replaced it with the
mutant amino acid. Then, we can theoretically cut the sequence
into 8–11 amino acid short peptides containing the mutated position.
Similarly, for indelAA, we found the mutant site in the amino acid
sequence of the reference gene and inserted or deleted the mutant
amino acid(s). Also, those 8–11 amino acid short peptides containing
the mutant amino acid(s) can be cut from the sequence. For FSAA, all
mutant sites in the amino acid sequence of the reference gene were
first identified, and the sequence containing these mutation sites
was cut into 8–11 peptides.

Due to lack of sequence files (e.g., fastq), we cannot accurately predict
HLA types for each patient with MM. In this study, as only White pa-
tients with MM were selected, according to the AFND,28 we found
that HLA-A$02:01 is the major HLA type among White people in
the United States. Therefore, those short peptides were applied to pre-
dict the binding to HLA-A$02:01 by using netMHCpan4.0.

Evaluation of cytolytic score and HLA-I score

A previous report29 showed that the cytolytic score and the HLA-I
score in hematologic tumors can be evaluated by the geometric
mean of expression of several specific marker genes as follows:

Cytolytic score =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY5

i = 1
Markeri

5

q

HLA� I score =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY4

i = 1
Markeri

4

q
;

in which i denotes the i-th marker genes. Accordingly, the marker
genes GZMA, GZMH, PRF1, GNLY, and GZMM were used to calcu-
late the cytolytic score, which is positively related to the cytolytic ac-
tivity of CD8+ T/natural killer (NK) cells. The marker genes B2M,
HLA-A, HLA-B, and HLA-C was used to detect the HLA-I score,
which is significantly associated with the presentation of HLA-I
neoantigens.
NAIRscore construction and prognostic analysis

In this study, we directly treated the number of neoantigens as neo-
antigen load in each sample. Taking neoantigen load, the cytolytic
score, and the HLA-I score as features, a multivariable Cox propor-
tional hazards regression model was constructed using the R package
survival (v.3.2-13) and survminer (v.0.4.9), in which the coefficient
(weight) of each feature can be generated in view of the importance
of this feature. Meanwhile, NAIRscore can be constructed as follows:

NAIRscore = � 1�
X3

i = 1

Coefi � Featurei;

in which i denotes the i-th feature, and Feature and Coef represent its
value and coefficient in the fitted model, respectively. The NAIRscore
was designed to reflect the quality of immune response to neoantigens
in each sample. We applied the median of NAIRscore to stratify sam-
ples into high- and low-NAIRscore groups.

Further, when combining NAIRscore and three clinical features, i.e.,
ISS stage, age, and gender, the scoring system was further upgraded
as follows:

SCORE = � 1�
X4

i = 1

Coefi � Featurei;

in which i denotes the i-th feature. When the continuous features (i.e.,
NAIRscore, age) were applied, Feature and Coef represent its value
and coefficient, respectively. When the feature was gender, “female”
was treated as reference, and then “male” was applied by its Coef.
When the feature was ISS stage, “ISS-I” was treated as reference,
and then “ISS-II” and “ISS-III” were individually applied by their
Coef.

The Kaplan-Meier survival curve was implemented by R package
survminer (v.0.4.9), and the log rank test was used to compare the
OS between high- and low-NAIRscore groups. The nomogram and
calibration plots were visualized by using the R package rms (v.6.2-0).

To compare the predictive accuracy of the different variables or
models, the iAUC with 100,00� bootstrap resampling was performed
and analyzed. Referring to two previous studies,39,40 the relative
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contribution of each variable in the model was estimated by the pro-
portion of overall c2 from Harrell’s rms R package (v.6.2-0). The R
package compareC (v.1.3.2) was used to compare if the difference
in two correlated overall concordance indices were statistically
significant.

Establishment of online web tool

An easy-to-use web tool starting from the paired Maf and FPKM files
was developed, which can allow users to identify neoantigens in tu-
mor and predict a patient’s OS. To implement an interaction interface
and improve user experience, the front-end web framework was built
by Bootstrap and Jquery, and the back-end was implemented by PHP.
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