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Annual and seasonal spatial models 
for nitrogen oxides in Tehran, Iran
Heresh Amini1,2, Seyed-Mahmood Taghavi-Shahri3,4, Sarah B. Henderson5,6, Vahid Hosseini7, 
Hossein Hassankhany8, Maryam Naderi8, Solmaz Ahadi8, Christian Schindler1,2, Nino Künzli1,2 
& Masud Yunesian9

Very few land use regression (LUR) models have been developed for megacities in low- and middle-
income countries, but such models are needed to facilitate epidemiologic research on air pollution. 
We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) 
in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel 
systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged 
from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables 
were: distance to the traffic access control zone; distance to primary schools; green space; official areas; 
bridges; and slope. The annual average concentrations of all pollutants were high, approaching those 
reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler 
and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences 
in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. 
These models provide a basis for understanding long-term exposures and chronic health effects of air 
pollution in Tehran, where such research has been limited.

Air pollution is a complex mixture of gases and particles, and it has been associated with a wide range of health 
outcomes1,2. The latest estimates from the Global Burden of Disease (GBD) Study indicated that approximately 
87% of the global population is exposed to ambient concentrations of fine particulate matter (PM2.5) that do not 
meet the guideline values set by the World Health Organization (WHO)3,4. This estimate is even higher when 
restricted to the populations of low- and middle-income countries (LMICs). In addition, air pollution was one 
of six modifiable risk factors associated with more than 5% of the GBD, as measured by disability-adjusted life 
years lost (DALYs)5. This burden is also reflected in Iran6,7, where the latest estimates suggest that approximately 
7% of total DALYs are attributable to air pollution, which is ten times greater than the DALYs attributable to 
HIV/AIDS and tuberculosis combined8. Even so, the burden of air pollution might be substantially underesti-
mated because (1) most of the exposure-response estimates are from high-income countries, and (2) the bur-
den might not be fully captured by PM2.5 and ozone, which were the only indicators used in the GBD analyses. 
Furthermore, emerging evidence suggests that air pollution is associated with many chronic diseases not yet 
included in the GBD assessment, such as acceleration of atherosclerosis2, high blood pressure9,10, diabetes11,12, 
metabolic syndrome13, and possibly with neurodegenerative diseases such as multiple sclerosis14, vascular demen-
tia and Alzheimer’s disease15,16.

The scientific community has consistently stated that lack of epidemiologic evidence from LMICs limits the 
generalizability of current air pollution findings4. One pillar of air pollution epidemiology is high quality exposure 
estimates17, but quantification of exposures at the individual level has been especially challenging in LMICs18–20. 
In light of the long-term health effects associated with reduced air quality, methods that estimate the spatial distri-
bution of air pollutants are particularly useful. Land use regression (LUR) is a widely applied, state-of-the-science 
method used to map spatial variability in ambient air pollutants. Generally speaking, LUR uses local land use 
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information characterized in geographic information systems (GIS) to estimate concentrations of air pollutants 
at any location within a city21. The land use variables can represent a broad range of characteristics in the area 
surrounding the locations, such as the type of land use, elevation, population density, point sources, and vehicle 
traffic22. Valid LUR models offer the opportunity to estimate air pollution concentrations at locations where no 
measurement data are available.

Two important considerations in LUR modeling are (1) the number of monitoring sites and (2) the locations 
of those sites within the study area23. Some LUR models are based on data from a small number sites (for example, 
17 sites in Houston metropolitan area)24, whereas others use large numbers of local, national, or multi-national 
measurement locations (for example, 562 sites across 12 Spanish cities in Girona Province25 or 2400 sites across 
Europe)26. Previous work suggests that LUR models should be constructed using measurements from at least 
80 locations27 identified by some algorithm to optimize their spatial variability28. However, several studies have 
used secondary data from existing regulatory monitoring networks, which typically have fewer locations24,29–32 
with less spatial variability. In addition to these considerations, Basagaña et al. (2012) suggested that LUR anal-
yses should use a restricted set of predictor variables, especially when the number of monitoring sites is small27. 
However, no LUR study to date has introduced a systematic approach to restricting the variable set.

Nitrogen oxides (NOx) are a group of highly reactive gasses that contain different numbers of nitrogen and 
oxygen atoms, including nitrogen oxide (NO), nitrogen dioxide (NO2), and nitrous oxide (N2O). However, NOx 
is frequently considered to be the sum of NO and NO2 in atmospheric sciences33. Fossil fuel combustion produces 
NO34 as a primary pollutant. This free radical rapidly oxidizes in the atmosphere, scavenges tropospheric ozone, 
and converts to secondary NO2

35. Both mobile and point sources contribute to NO in Tehran. Iran benefits from 
large natural gas reserves36 that are used for most commercial processes and residential heating.

To date, LUR has been applied to model NO2
21,22,30,37–39 in many high-income countries and in some 

LMICs40,41. However, LUR models for NO and NOx are rare, especially in LMICs42. We previously reported LUR 
models for particulate matter (PM10) and sulfur dioxide (SO2) in Tehran, where the entire population was located 
in areas exceeding the WHO guidelines for both pollutants40. The results also suggested the potential for seasonal 
differences in the spatial patterns of more primary pollutants. Here we develop annual and seasonal models for 
NO, NO2 and NOx using data from the regulatory monitoring network.

Results
Air quality data. None of the pollutants were normally distributed (p <  0.001). The annual median con-
centrations (interquartile range, or IQR) were 71.7 (59.3) ppb for NO, 50.9 (11.1) ppb for NO2, and 122.3 (55.1) 
ppb for NOX across the 23 monitoring stations. The cooler season medians (IQR) were 100.9 (87), 58.1 (19.7), 
and 155.9 (81.6) ppb, respectively, and the warmer season values were 43.4 (37.7), 41.7 (7.9), and 87.0 (38.0) 
ppb, respectively (Fig. 1). The correlation between the annual, cooler season, and warmer season concentra-
tions ranged from 0.94 to 0.99 for NO, from 0.61 to 0.92 for NO2, and from 0.90 to 0.99 for NOX across the 23 

Figure 1. Distribution of pollutant concentrations (ppb) over the 23 monitoring stations in Tehran, Iran, 
2010. The figure is generated using STATA 13 (STATA Corp., TX, USA, http://www.stata.com/).

http://www.stata.com/
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monitoring stations. The between-pollutant correlations ranged from 0.25 to 0.46 for NO and NO2, from 0.85 to 
0.95 for NO and NOX, and from 0.38 to 0.72 for NO2 and NOX (Table S2, supplemental information).

Final LUR models. Of the 210 potentially predictive variables (PPVs) we generated, 21 (10%) were signif-
icantly predictive in one or more of the LUR models. The R2 values for the final annual mean models were 0.78, 
0.69, and 0.71 for NO, NO2 and NOX, respectively. They ranged from 0.69 to 0.79 for the cooler season models and 
0.61 to 0.72 for the warmer season models (Table 1). Some of the variables appeared in multiple models. These 
included: (1) distance to the traffic access control zone; (2) distance to sensitive land use areas; (3) the natural 
logarithm of distance to the nearest primary school; (4) the natural logarithm of distance to the nearest hazardous 
facility; (5) slope; (6) the presence of bridges, and (7) areas of green, official/commercial, and other land uses 
(Table 1, and Tables S3–S11, supplemental information). The Moran’s I results were − 0.07, − 0.12, and − 0.04 for 
residuals of the annual, cooler season, and warmer season NO models. All p-values were greater than 0.23. The 
values were similar for the NO2 and NOx models (not shown), with a minimum p-value of 0.06.

Model stability. The R2 values for the leave-one-out cross validations ranged from 0.53 to 0.66 for the NO 
models, 0.51 to 0.58 for NO2 models, and from 0.42 to 0.63 for the NOX models (Table 1, and Tables S3–S11, 
Supplemental information). A final leave-one-out cross-validation (LOOCV) check was done for the coefficient 
of each predictive variable in the final regression models. The minimum and maximum of the LOOCV coeffi-
cients had the same direction of effect for all variables in all models. All the coefficients of variation ranged from 
7% to 11%.

Regression maps. The limits of prediction for the annual, cooler season, and warmer season NO models 
were 16.4, 21.0, and 12.0 ppb, respectively. For the NO2 models they were 15.6, 14.9, and 16.3 ppb, respectively, 
and for the NOx models they were 46.6, 54.0, and 34.6 ppb, respectively. Overall, out of 24,505,474 grid cells in 
the modeling domain, a range of 0.2% to 16.0% of cells were increased to the limit of prediction and 0.0% to 5.3% 
of cells were truncated to 120% of the maximum observed concentrations (Table 2).

Agreement between the measured and predicted pollutant concentrations was relatively good (Fig. 2). The 
maps showed clear hotspots for the NO concentrations across the city. These were well-characterized by distance 
to the traffic access control zone, the natural logarithm of distance to the nearest primary school, surrounding 

Figure 2. Observed versus predicted concentrations (ppb) for annual, cooler and warmer seasons of NO, 
NO2, and NOX in Tehran, Iran. The red line is the 1:1 linear prediction. The figures are generated using STATA 
13 (STATA Corp., TX, USA, http://www.stata.com/).

http://www.stata.com/
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areas of green land use, and slope. The NO2 concentrations were more dispersed and homogeneous throughout 
the city. The NOX maps were similar to the NO maps, and the hotspots were driven by similar variables, though 
they also reflected distance to the nearest hazardous facility and the presence of bridges (Fig. 3).

The correlations between the predicted annual, cooler season, and warmer season concentrations at 1000 
randomly-selected sites were weak to moderate. Values for the warmer and cooler season estimates were 0.64 for 
NO, 0.58 for NOx, and 0.30 for NO2 (Fig. 4).

Response Equation (variables are ordered by partial R2) R2
Adjusted 

R2
LOOCVa 

R2

Highest Variance 
Inflation Factor 

(variable) p-value RMSEb
Measured 
Responsec

Log Annual  
NO

1.53 −  1.4e-04 ×  DIST to TACZ +  6.9e-01 ×  LNDIST to PRSC −  3.1e-
06 ×  GRS.500 −  4.4e-02 ×  SLP −  3.0e-05 ×  URF.100 0.78 0.71 0.66 1.8 (LNDIST to 

PRSC) < 0.001 32.1 88 (23–312)

Log Cooler Season 
NO

1.92 +  5.1e-01 ×  LNDIST to PRSC +  4.7e-05 ×  TPDC.2500 −  1.1e-04 ×  DIST 
to BST −  3.2e-04 ×  DIST to PST −  2.1e-06 ×  GRS.400 0.69 0.60 0.53 1.5 (TPDC.2500) < 0.001 38.6 117 (30–358)

Log Warmer Season 
NO

0.68 −  1.5e-04 ×  DIST to TACZ +  7.4e-01 ×  LNDIST to PRSC −  6.3e-
02 ×  SLP −  2.0e-06 ×  GRS.500 +  9.4e-04 ×  DIST to GRS 0.72 0.64 0.59 2.2 (SLP) < 0.001 36.9 60 (17–268)

Log Annual  
NO2

2.9 +  1.1e-05 ×  OFIC.300 −  1.5e-04 ×  DIST to SNS +  1.7e-01 ×  LNDIST to 
PRSC +  2.2e-05 ×  OTHR.300 0.69 0.62 0.57 1.3 (LNDIST to 

PRSC) < 0.001 9.9 53 (22–96)

(Log Cooler Season  
NO2)3

− 5.7e +  01 +  5.9e-04 ×  OFIC.300 +  1.1e-01 ×   ×  ELEV −  4.1e-03 ×  DIST to 
AIR +  8.3e-04 ×  OTHR.400 −  1.5e-03 ×  ARD.100 0.75 0.68 0.58 3.8 (DIST to AIR) < 0.001 9.2 62 (21–103)

(Log Warmer Season  
NO2)−1

3.3e-01 −  6.8e-07 ×  OFIC.300 +  1.2e-05 ×  DIST to SNS −  1.0e-02 ×  LNDIST 
to PRSC 0.64 0.58 0.51 1.2 (LNDIST to 

PRSC) < 0.001 10.2 45 (23–89)

(Log Annual NOX)−2 9.2e-02 +  2.0e-06 ×  DIST to TACZ −  6.5e-03 ×  LNDIST to PRSC +  2.6e-
05 ×  DIST to OFIC −  3.2e-03 ×  LNDIST to HZRFAC −  1.2e-03 ×  BGD.400 0.71 0.62 0.58 1.7 (DIST to 

OFIC) < 0.001 52.7 142 (66–385)

(Log Cooler Season  
NOX)−1

2.9e-01 +  5.8e-06 ×   ×  DIST to TACZ −  1.1e-02 ×  LNDIST to HZRFAC +  1.6e-
06 ×  URF.100 +  8.8e-08 ×  GRS.400 −  9.2e-03 ×  LNDIST to PRSC 0.79 0.73 0.63 1.9 (DIST to 

TACZ) < 0.001 37.1 180 (76–435)

(Log Warmer Season  
NOX)−4

7.1e-03 −  8.1e-04 ×  LNDIST to PRSC +  1.3e-07 ×  DIST to TACZ −  4.0e-
04 ×  (OFIC.100)0.1 −  1.3e-04 ×   ×  BGD.400 +  3.4e-05 ×  SLP 0.61 0.50 0.42 1.9 (LNDIST to 

PRSC) 0.004 44.8 105 (49–336)

Radius variable types included in the models were: The log-linear distance variables included in the models were:

 GRS =  green space area  LNDIST to HZRFAC =  log distance to hazardous facilities

 OFIC =  official/commercial land use area  LNDIST to PRSC =  log distance to the nearest primary school 

 OTHR =  other land use area

 URF =  urban facilities area Other variable included in the models were:

 ARD =  arid/undeveloped area  BGD =  bridge length in a buffer radii divided by distance to the bridges

The linear distance variables included in the models were:  ELEV =  elevation

 DIST to AIR =  distance to airport or air cargo facilities  SLP =  slope

 DIST to BST =  distance to bus terminal  TPDC =  population density excluding unemployed and children < 5 years

 DIST to GRS =  distance to green space area

 DIST to SNS =  distance to sensitive area For variables of the form XXX.YYY the XXX indicates the variable type, 
and the YYY indicates the buffer size, in meters.

 DIST to OFIC =  distance to official/commercial area

 DIST to PST =  distance to petrol stations

 DIST to TACZ =  distance to the traffic access control zone

Table 1.  Final land use regression models for annual and seasonal concentrations of NO, NO2 and NOX in 
Tehran, Iran. Variables in bold highlight consistencies between models for the same pollutant—see SI, Tables 
S2–S7 for full description of each model. aLeave one out cross validation; bRoot mean square error =  
 ∑ −

N
Observed Predicted1 ( )2 ; cMean (min–max); note that the units are ppb. The p-values of underlined 

variables are ≤ 0.001; The p-values of dotted-underlined variables are ≤ 0.01; The p-values of wave-underlined 
variables are ≤ 0.05.

Action Pollutant Annual
Cooler 
season

Warmer 
season

Enlarged

NO 8.9% 11.3% 11.4%

NO2 0.4% 2.1% 0.2%

NOx 16.0% 12.1% 0.5%

Truncated

NO 0.1% 0.0% 1.5%

NO2 4.6% 5.3% 2.0%

NOx 1.0% 1.3% 0.9%

Table 2.  The percentage of predicted grid cells out of >24 million cells in the study area that either 
enlarged to the quantification limit or truncated to 120% of the maximum observed concentrations by 2010 
LUR models in Tehran, Iran.
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Materials and Methods
Study area. The megacity of Tehran is the capital of Iran. It covers an area of 613 km2, with the Alborz 
Mountains in north and desert in south. The populated areas within the city range from 1,000 to 1,800 meters 
above sea level (Fig. 5). The annual mean daily temperature is 18.5 °C, with highs of 43 °C in July and lows of  
−15 °C in January. The average annual precipitation is 220 millimeters (mm), with the maximum in March 
(39 mm) and the minimum in September (1 mm). The weather is typically sunny, with an annual average of 2800 h 
of bright sunshine and a mean cloud cover of 30%. The prevailing winds blow from west and north (Figure S1,  
Supplemental information). Tehran is the most populous city in Iran, and the third largest city in the Middle East. 
There are approximately 9 million urban residents, with a daytime population of more than 10 million due to 
diurnal migration from the surrounding areas40,43.

Figure 3. Estimated annual, cooler and warmer seasons NO, NO2 and NOX concentrations (ppb) from the 
final land use regression models in Tehran, Iran, 2010. The prediction resolution is 5 ×  5 meters. The figure is 
generated using ESRI’s ArcGIS 10.2.1 for Desktop (ESRI, Redlands, CA, USA, http://www.esri.com/).

Figure 4. The Spearman correlation coefficients between the annual (A), cooler season (C), and warmer season 
(W) predicted concentrations across 1000 random locations for NO, NO2, and NOx in 2010, Tehran, Iran. The 
seasonal comparisons (C vs W) are bold underlined.

http://www.esri.com/
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Air quality data. Hourly NO, NO2 and NOx concentrations for the 2010 calendar year were obtained from 
23 air quality monitoring stations administered by two government agencies (Fig. 5). Of the stations, 16 belonged 
to the Air Quality Control Company (AQCC), and 7 to the Department of Environment (DOE). Both the AQCC 
and DOE monitoring stations used chemiluminescence analyzers (Model AC 32 M of Environment SA, France; 
APNA-370 of Horiba, Japan; and EC 9841 of Ecotech, Australia) to measure nitrogen oxides. They follow qual-
ity assurance/quality control (QA/QC) procedures that, under ideal circumstances, ensure the instruments are 
checked and calibrated every two weeks. However, calibration gases can be challenging to obtain in Tehran.

A complete annual dataset would contain 8760 measurements (24 hours/day ×  365 days in 2010) for each pollut-
ant at each monitoring site. However, 28.1%, 27.7%, and 27.6% of the NO, NO2 and NOX values were missing, respec-
tively (Figure S2, supplemental information). As in our previous work40, the Amelia program was used for imputation 
of the missing data (Page S5, supplemental information)44. The program uses a new expectation-maximization algo-
rithm with bootstrapping to impute missing values and return a complete dataset. We provided the program with all 
available hourly concentrations from the different stations, along with the month, day, and hours of measurement. In 
order to evaluate the consistency and reliability of the missing data estimates we ran the Amelia program 10 times for 
each pollutant to impute hourly missing values, and calculated the resulting 10 annual averages for each monitoring 
station. The mean of the 10 imputation-filled datasets was calculated for NO, NO2 and NOX from January 1st, 2010 
through January 1st, 2011 for all monitors, and these values were used as the LUR response variables.

We also divided the year into warmer and cooler seasons based on our previous work40 and because Chen  
et al. (2010) reported different LUR predictor variables and spatial patterns in Tianjin, China during the heating 
and non-heating seasons. The same study also found that the predictive variables and the R2 values for the LUR 
models differed by season41. The warmer and cooler seasons were defined as April through September and October 
through March, respectively. These months were selected based on WHO guidelines for countries in the Northern 
hemisphere, and on the highest and lowest mean daily temperatures at Mehrabad International Airport in Tehran40.

Spatial predictors. We generated 210 PPVs in six classes and 73 sub-classes (Table 3). The six classes were 
Traffic Surrogates, Land Use, Distance Variables, Population Density, Product Variables, and Geographic Location. 
The Traffic Surrogates class described the vehicular network in buffers around the pollution monitoring stations. 
The Land Use class described ten land use types within buffers around the stations. The Distance Variables class 
measured the Euclidian distance (and natural logarithm of the distance) from each station to all of the Traffic 
Surrogate and Land Use types, and to other features. The natural logarithms of the distances were used based on 
studies that have reported exponential decay in air pollutant concentrations with increasing distance from pollu-
tion sources45–48. The Population Density was calculated for the total population and for the population excluding 
unemployed people and children less than five years of age. The Product Variables class included the ratio of vari-
ables in the Traffic Surrogates class to the variables in the Distance Variables class. Finally, the Geographic Location 
class included the elevation of each monitoring site, obtained from a digital elevation model (DEM) of Tehran in 
meters above sea level, and a slope (gradient) variable that was created in GIS based on the DEM. The potential 
geospatial variables were selected based on previous studies and available information in Tehran. The raw GIS 
inputs were all in vector format, originating from the Japan International Cooperation Agency (JICA) and the 
Centre for Earthquake and Environmental Studies of Tehran (CEST)49. The final PPVs were all in raster format 
with a resolution of 5 ×  5 meters, and their values in the grid cells underlying the monitoring stations were used 

Figure 5. The study area of Tehran, Iran showing locations of 23 air quality monitoring stations in 2010. The 
figure is generated using ESRI’s ArcGIS 10.2.1 for Desktop (ESRI, Redlands, CA, USA, http://www.esri.com/).

http://www.esri.com/
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for the regression analyses. All spatial analyses and figures were generated using ESRI’s ArcGIS 10.2.1 for Desktop 
(http://www.esri.com/).

Model development and diagnostics. The model building algorithm was based on one we developed 
for a previous study40. However, we further refined the algorithm to account for non-normality of the response 
variable, which can violate the assumptions of linear regression modeling. We also used transformation to nor-
malize the relationships between the response variables and the PPVs, and we restricted the number of variables 
in the final model to the root of the number of observations. The key steps of the updated stepwise algorithm are:

(1)  Take the log transformation of the response variable.
(2)  Check for normality using the Shapiro-Wilk test50.
(3)  Apply a power transformation if not normally distributed.
(4)   Linearize the relationships between the transformed variables and the PPVs using log and power transfor-

mations on the PPVs, and then proceed with the original algorithm40 such that steps (5) through (8) are done 
for every iteration (i.e. the addition of each new PPV to the model):

(5)   Check the direction of the effect of each PPV in the model for consistency with a priori assumptions (Table 3)  
to ensure that final models did not contradict knowledge about pollution emissions and dispersion.

(6)  Ensure a p-value of <  0.1 for each PPV.

Variable class (N 
variables) Description Variable sub-class (N variables) Buffer radii (m) Assumed effect Input file type & source, and procedure

Traffic Surrogates 
(26)

Total length of 
road types and 

bridges (m)

ST =  streets (5)
HW =  highways (5)
RDa =  major roads (7)
RDb =  all roads (7)
BG =  bridges (2)

100–500
100–1000
400–500

+ 
+ 
+ 
+ 
+ 

Polyline format, JICA and CESTa

(a) Convert polyline files into raster files 
with 5 m pixel size (b) Use Neighborhood, 
Focal Statisticsb to sum the number of road 
pixels within the search radii (c) Multiply 
the result by 5

Land Use (50) Total area of 
10 LU types (m2)

RES =  residential (5)
GRS =  green space (5)
URF =  urban facilities (5)
IND =  industrial/workshop (5)
OFIC =  official/commercial (5)
TRS =  transportation (5)
SNS =  sensitive areas (5)
AGR =  agriculture (5)
ARD =  arid/undeveloped (5)
OTHR =  other (5)

100–500

−
−
?c

+ 
+ 
+ 
?c

− 
− 
?c

Polygon format, JICA and CESTa

(a) Convert land use polygons into 10 
raster files for RES, GRS, URF, IND, OFIC, 
TRS, SNS, AGR, ARD, and OTHR with 
5 m pixel size (b) Use Neighborhood, Focal 
Statisticsb to sum the number of land use 
type pixels within the search radii (c) 
Multiply the result by 25

Distance Variables 
(60)

Distance (DIST) 
and log distance 

(LNDIST) to 
various features 

(m)

DIST and LNDIST to:
All Traffic Surrogate and Land Use variables (30)
FWY =  freeways (2)
TACZ =  traffic access control zone (2)
TACAP =  TACZ in critical air pollution conditions (2)
SPLND =  sport land (2)
PRSC =  primary school (2)
SCSC =  high school (2)
PST =  petrol stations (2)
PRK =  park (2)
MSQ =  mosque (2)
HZRFAC =  hazardous facility (2)
FV =  various food shops (2)
BST =  bust terminal (2)
AIR =  airport or air cargo facilities (2)
AMB =  ambulance service (2)

N/A

Opposite of above
−
−
−
+ 
+ 
+ 
− 
+ 
+ 
?c

?c

−
?c

?c

Raster format, calculated from raw files of 
JICA and CESTa

Use Spatial Analyst, Distance, Straight Line 
to produce DIST variables; use Spatial 
Analyst, Raster Calculator to produce 
LNDIST variables

Population 
Density (22)

Density of 
population 

(persons per km2)
PD =  total (11)
TPDC =  PD excluding unemployed and children < 5 years (11) 500–3000 + 

+ 

Polygon format, JICA and CESTa

a) Convert census polygons to centroids; 
assign each centroid the population count 
of the polygon from which it was derived 
(b) Use Kernel Density to estimate the 
values within each radius.

Product or Ratio 
Variables (52)

Integrated 
products of the 

traffic surrogates 
and distance 

variable classes

STD =  ST/DISTST (5)
HWD =  HW/DISTHW (5)
STSQD =  ST/sq(DISTST) (5)
HWSQD =  HW/sq(DISTHW) (5)
RDaD =  RDa/DISTRDa (7)
RDbD =  RDb/DISTRDb (7)
RDaSQD =  RDa/sq(DISTRDa) (7)
RDbSQD =  RDb/sq(DISTRDb) (7)
BGD =  BG/DISTBG (2)
BGSQD =  BG/sq(DISTBG) (2)

100–500
100–1000
400–500

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Raster format, calculated from raw files of 
JICA and CESTa

Use Spatial Analyst, Raster Calculator to 
create Product Variables

Geographic 
Location (2) Physical location ELEV =  elevation (m)

SLP =  slope (degree) N/A ?c

?c

Digital Elevation Model (DEM), NCCId

Use Spatial Analyst, Surface Analysis to 
create slope from DEM

Table 3.  The spatial predictor variables, assumed directions of their effects on pollutant concentrations, 
raw inputs, and the procedures for generating them. Modified from ref. 40 with permission from Elsevier. 
aJapan International Cooperation Agency and Center for Earthquake and Environmental Studies of Tehran. 
bFeatures of the Spatial Analyst Tools to ESRI’s ArcMap 10.2.1 GIS (ESRI, Redlands, CA). cNo a priori assigned 
because no effect could be assumed. dNational Cartographic Center of Iran.

http://www.esri.com/
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(7)   Ensure that each new PPV increases the coefficient of determination (R2) for a LOOCV51.
(8)  Calculate a multicollinearity index called the variance inflation factor (VIF)52.
(9)   Finally, restrict the number of predictor variables in LUR model to N , where N denotes the number of 

monitoring stations.
(10) Check the normality of residuals using the Shapiro-Wilk test50.

The algorithm was programmed as a function in the R statistical package. Its details are explained in pages 
S7–S11, the supplemental information, and in the original paper by Amini et al.40. Models were constructed for 
average annual, cooler season, and warmer season concentrations of NO, NO2, and NOx.

To check the stability of the final LUR models, the regression coefficients for the LOOCV models were retained 
for all predictor variables in the final NO, NO2, and NOx models. The minimum, maximum, and coefficient of 
variation were calculated for the set of LOOCV coefficients, and models with lower variability were considered to 
be more stable. The spatial autocorrelations for all annual and seasonal NO, NO2, and NOx residuals were evalu-
ated by calculating the global Moran’s I statistic. Values of Moran’s I range from − 1.0 to 1.0, with − 1.0 meaning 
perfect negative autocorrelation, 1.0 meaning perfect positive autocorrelation, and 0 meaning a random spatial 
pattern53.

Regression mapping. When generating raster variables from vector data, raster cells outside of the 
buffer zones are returned as null (or “NoData” in ArcGIS). All null values for the Traffic Surrogates, Land Use, 
Distance Variables, Population Density, Product Variables, and Geographic Location variables were set to zero. 
The Raster Calculator in the ArcGIS Spatial Analyst Tools was used to render our final nine regression equa-
tions into maps that estimated annual and seasonal concentrations of NO, NO2, and NOX across the study area. 
We established a limit of prediction for low values, defined as the minimum observed concentration divided 
by the square root of two. All grid cells with estimates below this limit were set to this limit. Grid cells with 
very high estimates were set to 120% of the maximum observed concentrations, as per Henderson et al.22 and 
Amini et al.40.

Seasonality of the spatial variability. In order to evaluate the effect of season on the spatial variability 
in NO, NO2, and NOx concentrations, we assessed the correlations between annual, cooler season, and warmer 
estimates at 1000 locations within the study area. These were randomly selected using the Feature Class Data 
Management Tools in ESRI ArcMap 10.2.1 GIS (ESRI, Redlands, CA). We checked the normality of the estimate 
distributions with a Shapiro-Wilk test, and we calculated the Pearson or Spearman correlation depending on the 
results.

Discussion
This study developed annual and seasonal LUR models for NO, NO2 and NOx for the Middle Eastern megacity 
of Tehran, Iran, using data from 23 sites in the air quality monitoring network. The models performed reasona-
bly well for all pollutants and time periods. Because there are few comparable studies published for LMICs, the 
discussion will focus on the observed patterns in concentrations, and the strengths and limitations of the models.

We found that the 2010 annual NO, NO2, and NOX concentrations were relatively high in Tehran. The mean 
NO concentrations (88 ppb) were more than five times higher than those reported for other large cities, such as 
New York (16 ppb)54, and the mean NO2 concentrations (53 ppb) were almost 2.5 times higher than the recom-
mended WHO guideline value of 21 ppb55. They were also considerably higher than the 2008 concentrations 
reported for many comparable megacities, such as Delhi (18.8 ppb), São Paulo (24.6 ppb), Tokyo (28.7 ppb), 
Mexico City (29.3 ppb), Los Angeles (34.5 ppb), and Dhaka (43.3 ppb), and approaching the values in Beijing 
(63.8 ppb)56.

Overall, the concentrations of nitrogen oxides were higher in the cooler season than in the warmer season 
(Fig. 1). This is consistent with the findings of Matte et al. (2013), where NO and NO2 concentrations in New 
York were higher in winter than summer54, and findings of Dons et al. (2014) in Antwerp (Belgium)57. The higher 
concentrations during the cooler season in Tehran could be due to residential heating, which is done primarily by 
natural gas36. There are also seasonal differences in meteorological factors given the specific topographical situa-
tion of the city, including inversions and low mixing heights. This may lead to more complex spatial variability in 
pollutants and different exposure patterns.

When considering the R2, adjusted R2, and LOOCV R2 values, model performance was better in the cooler 
season than in the warmer season for NO2 and NOX, but the opposite was true for NO (Table 1). Regardless, sev-
eral of the cooler and warmer season models shared the same predictor variables. The most predictive variables 
for all pollutants were surrogates of traffic impact, including distance to the traffic access control zone (DIST to 
TACZ) in the NO and NOx models (Table 1, and Figure S3, supplemental information). This is a high traffic zone 
in the middle of Tehran, with access restricted to authorized vehicles on working days. It supports the hypothesis 
that the major source of NO and NOx in Tehran is vehicles and traffic. The natural logarithm of distance to near-
est primary school (LNDIST to PRSC) appeared in eight out of nine models. All models indicate that the primary 
schools tended to be located in less polluted areas (Figure S4, supplemental information).

Another important predictor was green space within buffers up to 500 meters. The negative coefficients sug-
gest that concentrations of nitrogen oxides decreased as the green space increased, which supports the call for 
urban greening to improve air quality and overall health58. We also observed increasing nitrogen oxides with 
increasing elevation, but decreasing concentrations with increasing slopes. This may reflect different traffic flows 
through the city, where the northern and southern outskirts differ in elevation by almost 800 meters. In the cooler 
season, the NO concentrations were also increased in areas with higher total population density, which is consist-
ent with the hypothesis that seasonal differences were driven by residential heating. Both the annual and warmer 
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season mean NOx concentrations increased with higher bridge density. These are predominantly land bridges 
that allow one roadway to pass over another roadway, replacing roundabouts and traffic lights to control traffic 
flow. They are found at most intersections of major roads in Tehran, and also at many smaller intersections.

The correlations of cooler and warmer season measured concentrations across the 23 fixed sites were very 
high for NO and NOx, but they were reduced to 0.64 and 0.58, respectively, across the 1000 randomly-selected 
locations. The correlation for NO2 was 0.61 across the fixed sites and 0.30 across the 1000 locations. Visual inspec-
tion of the pollution maps showed some interesting seasonal differences in the spatial distributions of NO2. One 
region in the northern part of the city appeared highly polluted in the cooler season, but not in the warmer sea-
son. This region had some gaps in the monitoring data, so the validity of the model may have been compromised 
despite our use of Amelia (see S4 to S6, supplementary information). Overall, however, our findings suggest that 
epidemiologic studies based on long-term exposures should account for seasonal patterns in the spatial data.

To date, many LUR models have been developed for NO2 in high-income countries, mainly because NO2 is 
quite easy to measure with passive samplers21. However, some studies have also modeled NO and NOx22,37,38,59. In 
all of these studies, direct or surrogate measures of traffic have been the most predictive variables. For example, in 
Oslo (Norway) all oxides of nitrogen were modelled using elevation, length of large roads in a 100 m buffer, length 
of medium roads in a 250 m buffer, and length of small roads in a 1000 m buffer based on 80 measurement loca-
tions37. In Tehran, the models were mostly driven by distance to the traffic access control zone and the presence 
of bridges in a 400 m buffer. Su et al. (2009) conducted a study to estimate NO, NO2, and NOx using 201 locations 
in Los Angeles (California) for two seasons. They found that traffic volume, truck routes, road networks, land use, 
greenness, and slope gradients were the most predictive variables38. We found similar explanatory variables in 
Tehran using data from 23 regulatory monitoring locations. However, the magnitude and ranking of the R2 values 
in Los Angeles were more similar to those in Oslo, with 81% for NO, 85% for NOx, and 86% for NO2

38. Results 
from Vancouver (Canada) are also consistent with our findings in Tehran, with traffic variables, elevation, geo-
graphic coordinates, and total population within 2500 m buffer radius driving the models22. In Montreal (Canada) 
Gilbert et al. (2005) found that distance to highways, lengths of roads within buffers of 100–500 m, open space, 
and population density within a radius of 2000 m were the most predictive variables for NO2, and the best-fitting 
model had an R2 of 0.5460.

The use of fixed site monitor locations to develop the LUR models can be both a strength and a limitation. 
Readily-available data from validated instruments allows academics and government agencies to regularly model 
the spatial variability in air pollutants with minimal additional costs. However, the locations for fixed monitoring 
networks are generally chosen by criteria that may not optimize their ability to capture the variability necessary 
for spatial modelling28. Although we did not evaluate whether 23 measurement sites are sufficient to reliably 
model spatial variability in a megacity such as Tehran27, our future work will examine this question in more detail.

Another limitation is that some predictor variables could not be assigned a direction of effect a priori due to 
lack of previous knowledge or other studies. This, in turn, might have caused inconsistent effects of variables in 
the regression models. These variables include urban facilities, sensitive areas, such as military and protected 
government areas, other land use variables, distance to hazardous facilities areas, distance to food shops, dis-
tance to airports, distance to health and ambulance services, elevation, and slope gradients. Therefore, we suggest 
conducting further studies in Tehran to better specify the impact of these areas on air pollution concentrations.

Conclusions
We found significant seasonal differences in the spatial variation of nitrogen oxides in Tehran, especially 
NO2. However, the small number of measurement sites in our study might affect these findings. Examples of 
LUR models are rare in LMICs, and these results are relevant for the next generation of exposure assessment, 
population-based health research, and policy-making in such contexts. In addition, this work establishes a bench-
mark for future air pollution modeling in Tehran. Overall, our models performed relatively well. Our next step is 
to evaluate whether a larger number of monitoring sites selected with a strict algorithm produces different results 
and/or different conclusions about the spatial patterns reported here.
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