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Circular RNA (circRNA), a relatively new member of the non-coding RNA family, has
spurred great interest among researchers following its discovery as a ubiquitous class
within the RNA world. Rapid progress in circRNA biology has coincided with its
identification in a plethora of diverse roles including regulation of gene expression and
probable coding potential, as well as competing interactions with proteins and microRNAs
in various pathological conditions. Emerging evidence suggests that circRNAs also
function in viral infections. The deregulation of circRNAs during viral infection has
prompted investigations into the possibilities of circRNA as a competing endogenous
RNA (ceRNA) that modulates response to infection. Recently, viruses have been shown to
encode circRNAs with proviral functions, providing a strong impetus for focused efforts to
elucidate the networks coaxed by circRNAs during infection. This review elaborates on
recent insights gained on the roles of circRNAs during virus infection and immunity.
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INTRODUCTION

The success of a pathogen is derived from its ability to subvert the host intracellular mechanisms
effectively. Viruses, being obligatory parasites, are adept at subverting various host mechanisms for
their benefit. Hijacking the host intracellular machinery by employing a set of virulence factors,
viruses promote an environment within the host cell to produce millions of their copies and deplete
the host resources. This sudden conflict must be solved, and the recurrence also has to be prevented
from time to time. Hence, vertebrates have developed intricate antiviral signaling mechanisms with
the help of which such intruders are kept in check. By augmenting the expression of antiviral factors
comprising proteins and other endogenous non-coding RNAs (ncRNAs), the host strives to fight
the incoming virus. Various viral and host strategies shape this battle. While central to this host-
virus conflict has been proteinaceous effectors, recent evidence also suggests circRNAs as an arsenal
employed by the host as well as the virus.

CircRNA is the class of RNA formed by a non-canonical splicing event, termed as back-splicing.
Among other ncRNAs, the archaic perception of circRNA as transcriptional junk was a significant
impediment to pioneering research on this topic (1). However, recent efforts have highlighted its
org May 2021 | Volume 12 | Article 6020061
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omnipresence among vertebrate genomes, with a plethora of
roles now being attributed- ranging from metabolic adaptation
(2), regulating blood glucose homeostasis (3, 4), organellar
circRNA dictating vital diseases (5, 6) to controlling lifespan
(7) and aging (8). Here, we discuss the roles of circRNAs and
their functions in viral infection outcomes.
CircRNAs AND THE CELL-INTRINSIC
ANTIVIRAL RESPONSES

Human cells have various proteins with antiviral functions that are
augmented during the infection. These antiviral effectors target the
viral life cycle and disrupt various virion components by sensing
them as the virus tries to replicate. RNA viruses are detected by key
RNA binding proteins such as retinoic acid-inducible gene I
(RIG-I), melanoma differentiation-associated gene 5 (MDA5),
laboratory of genetics and physiology 2 (LGP2), Protein Kinase R
(PKR) and Toll-like receptor 3 (TLR3) (9), including among
others. In contrast, DNA viruses are mainly sensed by cytosolic
DNA sensors, which drive downstream signaling (10). Current
understanding on the sensing of viral nucleic acids also
underscores the potential immunogenic nature of the circRNAs.
Concerning this, factors that could differentiate the self from non-self
RNA circles have been identified, including the specific molecule-of-
origin, the mode of biogenesis (11), circRNA-specific modifications
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(12), and cell type (13, 14). Further refinement of experimental
approaches for studying immune responses to circRNAs would
strengthen these observations in near future. Nevertheless, the
differentiation of self from non-self is essential due to the fact that
circRNAs are prevalent in eukaryotic cells as well as viral genomes
and the possibilities of viral-mediated transport also is being
envisaged. Innate immunity appears to be capable of detecting
foreign circRNAs, but the molecular basis of self versus foreign
identity awaits more research. Recent efforts have addressed this
conundrum by identifying methylation as a switch that governs the
immune response to circRNAs (12). Despite remarkable progress in
deciphering the sensing of circRNA by the innate immune system,
many questions remain unaddressed. For instance, the identity of
additional factors and intracellular sensors governing the
immunogenicity of circRNA in different cell types remains to be
explored. Additionally, the ability of foreign circRNA or viral
circRNA to differentially regulate innate immune response requires
further investigations.

Sensing of the viral infection activates a cascade of effector
proteins within the host cell wherein the crosstalk and
competition between host and viral factors begin (Figure 1).
Recent studies have demonstrated the regulatory role of host
circRNA in immunosurveillance. A study by Li and colleagues
showed nuclear export of NF90/NF110 upon activation of the
infection sensors like PKR to inhibit viral infection. Interestingly,
NF90/NF110 in the nucleus promotes circRNA biogenesis and is
often found in circRNP complex, however upon viral infection
FIGURE 1 | CircRNA mediated regulation of immune effectors during viral infections. NF90/NF110 promotes the biogenesis of circRNA within the nucleus. During
infection, the export of NF90/NF110 to the cytoplasm leads to inhibition of viral replication. On the other hand, the exogenous circRNAs are sensed by RIG-I, leading
to an innate immune response. Under normal conditions, the endogenous circRNAs escape recognition by immune sensing owing to the presence of mechanisms
that confirms their self-origin. Cellular circRNAs can inhibit PKR, a key enzyme in antiviral signaling. RNase L-mediated degradation of circRNAs releases the locked
PKR to promote antiviral state. The possibilities of RBP-driven packaging of circRNAs into viruses and the implications remains to be investigated.
May 2021 | Volume 12 | Article 602006

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choudhary et al. Circular RNAs and Host-Virus Interactions
NF90/NF110 is released from circRNP complexes and binds to the
viral RNAs - thereby inhibiting virus replication (15). It would be
fascinating to identify other factors involved in pathogen sensing
that intersect circRNA biogenesis or functions. An additional
possibility is circRNAs acting as carriers for the host immune
factors and is required to maintain the dormancy of immune
mediators. A revealing study wherein yet another layer of the
complex interplay between host circRNA and antiviral proteins
was unearthed reported a locking mechanism that was enforced by
circRNA to regulate immune responses. Characteristically,
endogenous circRNA forms imperfect 16-26 bp RNA duplexes,
which sponge PKR. However, upon viral infection, the
endoribonuclease RNase-L depletes both viral and host RNAs,
limiting the spread of the virus in the early stages. Because of the
degradation of the associated circRNAs, PKR gets activated, which
leads to the stimulation of innate antiviral immune responses via a
downstream cascade (16). This suggests that by keeping the PKR
dormant, circRNAs function as a “lock” by preventing spurious
immune activation in undesirable conditions. It would be
interesting to comprehend whether the activities of NF90/110 and
RNase-L coordinates to elicit an effective response through PKR
and, as yet unknown, other sensors in this context by modulating
intracellular pools of circRNAs. Nonetheless, the ability of
endogenous cia-cGAS (circular RNA antagonist for cGAS) to
silence a critical DNA sensor cGAS in long-term hematopoietic
stem cells (17) indicates the existence of more such mechanism(s)
wherein circRNA abundance may determine the licensing of
immune mediators. While these observations highlight
immunomodulatory roles for circRNA, it also suggests the
possibility that the defects in circRNA biogenesis factors or
pathways may underlie autoimmune diseases.
THE INTERPLAY OF THE HOST AND
VIRAL-DERIVED CircRNAs

Parallel to the circRNA-mediated regulation of host factors,
viruses also acquired various counteracting mechanisms that,
as we now know, directly or indirectly involve circRNAs.
Ultimately, this asserts a much complex interplay between the
host and the viruses, which decides the overall infection
outcome. A handful of exciting findings unveil the role of non-
coding RNAs such as virus-derived small interfering RNAs
(vsiRNAs) (18), PIWI-interacting RNAs (piRNAs) (18), and
microRNAs (miRNAs) (19) as key players in such interactions.
Due to its distinctive feature and unique way of acting as an
intermediate in various biological processes, circRNA also has
enthralled the scientific community to elucidate its role in the
complex host-virus interplay.

For instance, Epstein-Barr Virus (a Herpesvirus) encodes
circRPMS1 that was earlier shown to promote metastasis by
escalating cell proliferation, cell invasion, and inhibiting
apoptosis in EBV-positive Nasopharyngeal carcinoma (NPC)
cells. It is also known to regulate gene expression by sponging
miRNAs such as miR-203, miR-31, and miR-451 (20). Along
similar lines, it was proposed that numerous miRNAs regulating
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both host and viral gene expression would be expressed during the
viral latency phase of KSHV (Kaposi’s sarcoma-associated
herpesvirus) infections in order to facilitate immune evasion
(21–24). A few human-derived antiviral circRNA were reported
to be activated upon viral infection for withstanding such viral
immune exploitation. One such host-derived antiviral circRNA is
hsa_circ_0001400, which gets induced upon KSHV infection and
suppresses the expression of viral latent gene LANA and the lytic
gene RTA. In response to such gene alterations, some viral
circRNA expression is augmented in lytic infection vis-à-vis
latent infection. Intriguingly enough, some KSHV-derived
circRNA dampens the infected cell’s immunogenicity by
inhibiting the viral gene expression itself (25). Such prevalence
of circRNA-associated functions could provide insights for further
investigation to understand viral antagonism mechanisms.

CircRNA was also found to regulate gene expression in the case
of CHB (Chronic hepatitis B), promoting the pathogenesis of HBV
(Hepatitis B virus) and associated liver disease. By establishing a
bioinformatics pipeline for detecting circRNA associated with CHB
and performing an in silico analysis of the circRNA-miRNA-
mRNA axis, Zhou and colleagues have shown that the circRNA
hsa_circ_0000650 promotes TGFb2 expression by negatively
impacting the miRNA, miR-6873-3p (26). Another finding by
Chen et al. adds to the knowledge of circRNA as a defense
mechanism. They studied the sponging of eIF4AIII (a crucial
player in the Nonsense-Mediated Decay pathway) by circPSD3.
During hepatitis C virus infection, expression of circPSD3 is
enhanced, which leads to loss of available eIF4AIII and ultimately
inhibits the NMD pathway (27). This inhibition may lead to the
progressive accumulation of truncated proteins in the liver cells,
which aids viral pathogenesis (28). However, pertinent questions
remain unanswered. For one, being a host-derived circRNA, why
would circPSD3 facilitate viral pathogenesis? Furthermore, acting as
an RBP sponge for eIF4AIII its preferred mechanism of action?

To identify the role of circRNA in the host and viral interactions,
researchers have developed competing endogenous RNA (ceRNA)
networks (29) to explore circRNAmediated sponging that is equally
compelling as other ncRNA. Here we discuss some of the studies
done to understand the classical circRNA-miRNA-mRNA
regulatory network that helped to explore host-virus interactions.

In Ebolavirus (EBOV) infection, both the immune system and
the vascular system are hampered, which leads to severe
hemorrhagic symptoms (30). To understand the disease
progression, Wang et al. developed the complex ceRNA
network revealing the interaction of circRNAchr19 and miR-
30b-3p. This miRNA possesses potential binding sites in 3′-UTR
of CLDN18, a tight junction gene (31, 32). The above interaction
designates the putative function of circRNAchr19 to promote the
expression of CLDN18 and evade sponging by miR-30b-3p.
Similarly, in HTNV (Hantaan virus) infection, a study done by
Lu et al. established the circ_0000479-miR-149-5p-RIG-I
regulatory axis, which elucidates that sponging of miR-149-5p
by circ_0000479 indirectly promotes RIG-I expression, thereby
further inhibiting viral replication (33). Another finding via
ceRNA networking showed that circRNA might serve as
potential therapeutic targets in Middle East respiratory
syndrome coronavirus (MERS-CoV) infection. An siRNA
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mediated knockdown of host-derived circRNAs, circFNDC3B
and circCNOT1, significantly reduced viral load suggesting the
pro-viral activity of circRNAs. Furthermore, circFNDC3B and
circCNOT1 regulated target mRNA expression involved in ERK/
MAPK pathway and RIG-I-mediated antiviral signaling (34).
However, additional experimental evidence regarding such
competitive interaction of circRNA with miRNA and target
mRNA could reveal other potential gene regulatory effects in
viral infections.

Our discussion until this point suggests that circRNAs are
both liabilities as well as an asset for the host. Although the fate of
virus-host interaction may be altered by circRNA, the probable
answer would lie in the mechanism of action. It is very well
conceivable that alternate mechanisms exist which presently
remain unearthed.
FUTURE PERSPECTIVES

The discovery of circRNAs and associated functions has enabled
a paradigm shift in the field of non-coding RNA biology, which
has now extended to viral infections. Even considering just a
handful of validated circRNAs, the interacting network seems
intricately intertwined. Changes in the levels of circRNAs could
have far-reaching ramifications on infection outcomes by
modulating immune effectors. A wealth of intriguing early
results on virally encoded circRNAs and those regulating
immune responses provides a strong impetus for focused
efforts in the future to elucidate their functions. Such analysis
will require biochemical characterizations using relevant
infection models to identify the interactions which are not only
binary but include a network of potentially intertwined
interactions coaxed by the circRNA.
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In summary, an analysis of the myriad circRNA interactions
in viral infections may represent a robust platform to uncover
regulatory networks that protein-focused studies have
overlooked. Development of circRNA-centric molecular assays
and improvement in the functional assays could help unveil new
roles of circRNA in the foreseeable future. Comprehensive
insights into host-virus interactions obtained by such analyses
can have exciting implications for developing an improved,
enhanced, and effective therapeutic arsenal.
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