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Abstract: Measurement of stress levels from an in-service structure can provide important and useful
information regarding the current state of a structure. The stress relaxation method (SRM) is the most
conventional and practical method, which has been widely accepted for measuring residual stresses
in metallic materials. The SRM showed strong potential for stress estimation of civil engineering
structures, when combined with digital image correlation (DIC). However, the SRM/DIC methods
studied thus far have practical issues regarding camera vibration during hole drilling. To minimize
the error induced by the camera motion, the imaging system is installed at a distance from the
specimen resulting in the low pixel density and the large extent of the inflicted damage. This study
proposes an SRM/DIC-based stress estimation method that allows the camera to be removed during
hole drilling and relocated to take the after-drilling image. Since the imaging system can be placed as
close to the specimen as possible, a high pixel density can be achieved such that subtle displacement
perturbation introduced by a small damage can be acquired by DIC. This study provides a detailed
mathematical formulation for removing the camera relocation-induced false displacement field in the
DIC result. The proposed method is validated numerically and experimentally.

Keywords: digital image correlation; hole-drilling method; stress estimation

1. Introduction

Residual stress is the remaining internal stress without applied external forces that any solid
material, ranging from a microstructure to a full-scale civil infrastructure, can experience during its
entire lifetime. Under presence of confining boundary condition, the residual stress can be formed when
the material keeps expanding or contracting due to thermal or mechanical reasons [1]. This residual
stress can be intentionally introduced to enhance material property and prolong the lifespan of the final
product, therefore the industry has developed numerous strengthening mechanisms, such as laser shock
peening [2], martensite [3], and prestress [4]. On the other hand, unfavorable and unintended residual
stresses in a structure consistently take portion of stress level that the structure can accommodate,
which ends in service life reduction or system failure for the worst case. Such a well-known problem is
a buckling phenomenon in continuous welded rail subjected to thermal expansion under hot weather
that leaves the track vulnerable to bend even with a slight curve. A variety of structures can experience
favorable or unfavorable residual stresses; thus, appropriate measurement techniques are desired.

The residual stress relaxation method (SRM) [5,6] is one of the most traditional and effective ways
of residual stress estimation. Upon inflicting a small damage (e.g., hole) on the surface of a material,
the stress relaxation around the damage induces deformation, of which level and pattern has a linear
relationship with the residual stresses existing in the material. The finite element model [7] or analytical
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solution based on the Kirsch equations [8,9] can be used to relate the deformation and the residual
stresses. In general, strain gauges are employed in SRM to measure the deformation around the
inflicted damage, in turn, to estimate stress level. Due to the simple and intuitive preparation of the
strain rosette, a number of studies have validated the strain gauge-based method through practical
applications in the laboratory environment [10–16] that even detailed guidelines are extensively
documented in the ASTM standard [17] with providing error bounds of ±10% [13]. Strain gauge-based
methods, however, have limitations in the lack of measurement point, difficulty in capturing small
variation of the deformation, and errors induced by hole-eccentricity. Due to the limitation of the strain
gauge, stress estimation can be insufficiently accurate.

As an alternative to the strain gauge-based SRM, interferometry techniques are applied to measure
small perturbation introduced by drilling a hole offering a full-field deformation measurement [18–23].
In general, interferometric pattern-based research works employ holographic pattern, moire pattern,
or electronic speckle pattern, of which change reflects deformation induced by drilling a hole.
The interferometry-based method provides sensitive deformation measurement that the small size of
hole can be utilized. For example, Steinzig and Takahashi [21] estimated residual stress of a 12 mm
thick 2024–T351 aluminum ring using 1.59 mm diameter of hole-drilling with 8.5% error. Schmitt
et al. [22] used electronic speckle pattern interferometry using 5 mm of hole diameter to obtain the
residual stress with the error of 37% for the worst case. Albertazzi et al. [23] conducted a comparative
study between strain gauge method and digital speckle pattern interferometry method by measuring
stress in a 3 m long carbon steel bar showing 19% of maximum deviation between two methods.
As such, the interferometry-based method shows strong potential on the residual stress estimation.
Since creating the interferometric pattern is not a simple problem, researchers endeavor to build
a compact measurement system for practical applications.

Digital image correlation (DIC) has been introduced to monitor the stresses on full-scale
structures [24–29] that can replace strain-based and interferometry-based methods. DIC uses two
images, one before and one after deformation, by which displacement field is calculated through
searching the maximum correlation for each sub-divided pixel groups, also called subsets [30,31]. Since
displacement at each pixel is calculated, DIC provides dense displacement field. In the meantime, DIC
use a spayed pattern on the specimen without laser beam; hence can replace both the strain-based and
the interferometry-based methods offering dense deformation data and simple measurement setup.
Trautner et al. [15] used core drilling and DIC to measure the stress level of their specimen. Whereas the
stress was successfully estimated with 10% error, the core of 150 mm diameter used in the experiment
was considered to be impractical for general civil-engineering structures. Lee et al. [29] also applied the
SRM with DIC to measure the stress of concrete specimens, drilling a hole with a diameter of 10 mm and
a depth of 40 mm. While the inflicted damage was small, the stress estimation results showed a large
variation, with errors from 5.67% to 29.13%. Since DIC generally assumes that a camera takes images at
a fixed location, the camera used in the experiment was located 2 m away from the specimen to prepare
space for a drill. Thus, the camera resolution of 0.08 mm/pixel at the 2 m distance was not sufficiently
high for reliable and consistent stress estimation. Although SRM/DIC-based stress estimation methods
show strong potential for field application, drilling-induced camera vibration can be reflected as a DIC
error in the displacement field which has not been addressed in the existing literatures.

This study proposes an SRM/DIC-based stress estimation approach considering camera relocation
before and after the hole is drilled. The proposed method assumes that the camera is placed close to
a specimen for maximum pixel density, removed while the hole is drilled, and placed at the original
location to take the after-damage image. Since the camera cannot be placed at the same location,
the difference in the camera location is reflected as displacement error in the DIC result. Provided that
the displacement measured by DIC is simultaneously induced by stress relaxation and movement of
the camera, the proposed method compensates for the component of camera movement. Numerical
and experimental validations are conducted to demonstrate the successful removal of the camera
motion-induced errors and the resulting stress estimation.
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2. Residual Stress Estimation

The residual stress can be estimated by using the hole-drilling method in conjunction with the DIC
technique. This method, however, exhibits unreliable stress estimation due to the camera movement
during the hole-drilling process. This section briefly introduces the basics of the residual stress
estimation, and then, a practical limitation of the residual stress method is discussed.

2.1. Residual Stress Estimation

Drilling a hole in an isotropic plate results in redistribution of the displacement field, the pattern of
which is described well by the Kirsch equation [8,9]. Note that the conventional Kirsch equation deals
with an isotropic material under linear elastic behavior, thereby an unexpected error can be observed
due to plasticity and anisotropic properties [13,32,33]. Consider an infinite plate under uniform biaxial
stresses over the material, as shown in Figure 1. Based on the Kirsch equation, the perturbation
introduced by a circular hole is expressed as{

uhole(xi, yi)

vhole(xi, yi)

}
=

{
Pu(xi, yi)

Pv(xi, yi)

}
σx +

{
Qu(xi, yi)

Qv(xi, yi)

}
σy +

{
Ru(xi, yi)

Rv(xi, yi)

}
τxy, (1)

where uhole(xi, yi) and vhole(xi, yi) are, respectively, the x- and y-directional displacements at the i-th
material position (xi, yi), induced by the residual stresses (σx, σy, τxy). The stress coefficients Pu, Qu, Ru,
Pv, Qv, and Rv are expanded as

Pu(xi, yi) = [Ai + (Bi + Ci) cos(2θi) −Ci] cos(θi) (2)

Qu(xi, yi) = [Ai − Bi cos(2θi)] cos(θi) + Ci sin(2θi) sin(θi), (3)

Ru(xi, yi) = +2[(Bi + Ci) cos(2θi) + Bi] sin(θi), (4)

Pv(xi, yi) = [Ai + (Bi + Ci) cos(2θi) + Ci] cos(θi), (5)

Qv(xi, yi) = [Ai − (Bi + Ci) cos(2θi) −Ci] sin(θi), (6)

Rv(xi, yi) = −2[(Bi + Ci) cos(2θi) − Bi] cos(θi), (7)

where θi is the angular coordinate of the location (xi, yi) in the polar coordinate system. The coefficients
Ai, Bi, and Ci are expanded as

Ai =
a2(1 + ν)

2E
1
ri

, (8)

Bi =
2a2

E
1
ri
−

a4(1 + ν)
2E

1
ri3

, (9)

Ci = −
a2(1− ν)

E
1
ri
−−

a4(1 + ν)
2E

1
ri3

, (10)

where ri is the radial coordinate of the location (xi, yi) in the polar coordinate system; a is the radius
of the hole; υ is Poisson’s ratio; and E is the Young’s modulus of the material. Using Equation (1),
the biaxial residual stresses can be reformulated in the form of a linear regression form as


σx

σy

τxy

 =



Pu(x1, y1) Qu(x1, y1) Ru(x1, y1)

Pv(x1, y1) Qv(x1, y1) Rv(x1, y1)
...

...
...

Pu(xn, yn) Qu(xn, yn) Ru(xn, yn)

Pv(xn, yn) Qv(xn, yn) Rv(xn, yn)



+

uhole(x1, y1)

vhole(x1, y1)
...

uhole(xn, yn)

vhole(xn, yn)


, (11)
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where [·]+ is the Moore–Penrose inverse [34]; n is the number of locations where displacements uhole
and vhole are measured; and Pu, Qu, Ru, Pv, Qv, and Rv are the stress coefficients calculated at every
measurement location. Once the 3 × 2n premultiplying matrix in Equation (11) is established based on
the foreknown information (E, υ, a, xi, yi) for 1 ≤ i ≤ n, the biaxial residual stresses can be estimated
using the displacement field measured by a deformation measurement technique.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

u u u hole

x v v v hole

y

u n n u n n u n n hole n nxy

v n n v n n v n n hole n n

P x y Q x y R x y u x y
P x y Q x y R x y v x y

P x y Q x y R x y u x y
P x y Q x y R x y v x y

σ
σ
τ

+
  
  
     = 
  
      

   


 
  
 
 
 
  

, (11) 

where [·]+ is the Moore–Penrose inverse [34]; n is the number of locations where displacements uhole 
and vhole are measured; and Pu, Qu, Ru, Pv, Qv, and Rv are the stress coefficients calculated at every 
measurement location. Once the 3 × 2n premultiplying matrix in Equation (11) is established based 
on the foreknown information (E, υ, a, xi, yi) for 1 ≤ i ≤ n, the biaxial residual stresses can be estimated 
using the displacement field measured by a deformation measurement technique. 

 

Figure 1. Stress configuration and coordinate system in the hole-drilling method. 

The full-field displacement required in Equation (11) can be obtained by means of the DIC 
technique. Images of a specimen, of which surface is prepared with a random speckle pattern by 
spraying paints, are captured before and after the deformation. Here, the captured images are 
respectively denoted as the reference and deformed images. The reference image is divided into 
subsets, as shown in Figure 2. The new position of each of the subsets in the deformed image is 
searched using a correlation criterion such as cross-correlation, normalized cross-correlation, or zero-
normalized cross-correlation [30,31]. Finally, the displacements computed for each subset are 
collected to construct a two-dimensional displacement field. Therefore, the generic DIC method 
calculates the displacement field by tracking the position of the material points using a correlation 
criterion that can be employed in Equation (11). 

 

Figure 2. Displacement field calculation using the digital image correlation (DIC) technique. 

σy

τxy

σx

τxy

σx

σy

a

(r,θ)

Figure 1. Stress configuration and coordinate system in the hole-drilling method.

The full-field displacement required in Equation (11) can be obtained by means of the DIC
technique. Images of a specimen, of which surface is prepared with a random speckle pattern by
spraying paints, are captured before and after the deformation. Here, the captured images are
respectively denoted as the reference and deformed images. The reference image is divided into
subsets, as shown in Figure 2. The new position of each of the subsets in the deformed image is searched
using a correlation criterion such as cross-correlation, normalized cross-correlation, or zero-normalized
cross-correlation [30,31]. Finally, the displacements computed for each subset are collected to construct
a two-dimensional displacement field. Therefore, the generic DIC method calculates the displacement
field by tracking the position of the material points using a correlation criterion that can be employed
in Equation (11).

Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

u u u hole

x v v v hole

y

u n n u n n u n n hole n nxy

v n n v n n v n n hole n n

P x y Q x y R x y u x y
P x y Q x y R x y v x y

P x y Q x y R x y u x y
P x y Q x y R x y v x y

σ
σ
τ

+
  
  
     = 
  
      

   


 
  
 
 
 
  

, (11) 

where [·]+ is the Moore–Penrose inverse [34]; n is the number of locations where displacements uhole 
and vhole are measured; and Pu, Qu, Ru, Pv, Qv, and Rv are the stress coefficients calculated at every 
measurement location. Once the 3 × 2n premultiplying matrix in Equation (11) is established based 
on the foreknown information (E, υ, a, xi, yi) for 1 ≤ i ≤ n, the biaxial residual stresses can be estimated 
using the displacement field measured by a deformation measurement technique. 

 

Figure 1. Stress configuration and coordinate system in the hole-drilling method. 

The full-field displacement required in Equation (11) can be obtained by means of the DIC 
technique. Images of a specimen, of which surface is prepared with a random speckle pattern by 
spraying paints, are captured before and after the deformation. Here, the captured images are 
respectively denoted as the reference and deformed images. The reference image is divided into 
subsets, as shown in Figure 2. The new position of each of the subsets in the deformed image is 
searched using a correlation criterion such as cross-correlation, normalized cross-correlation, or zero-
normalized cross-correlation [30,31]. Finally, the displacements computed for each subset are 
collected to construct a two-dimensional displacement field. Therefore, the generic DIC method 
calculates the displacement field by tracking the position of the material points using a correlation 
criterion that can be employed in Equation (11). 

 

Figure 2. Displacement field calculation using the digital image correlation (DIC) technique. 

σy

τxy

σx

τxy

σx

σy

a

(r,θ)

Figure 2. Displacement field calculation using the digital image correlation (DIC) technique.

The overall procedure of the residual stress estimation involves drilling a hole and acquiring
images. By drilling a hole, the underlying residual stresses in the target material are relaxed, thus
deforming the surface texture around the hole. Using the images before and after the hole is drilled,
the DIC technique calculates the deformation field. Finally, the residual stresses in the specimen are
estimated based on the linear relationship between the amount of released deformation and the level
of relaxed stress, as formulated in Equation (11). Here, improper measurement of the displacement
field adversely affects the stress estimation. Thus, for a reliable stress estimation, the camera needs to
be fixed at a stationary point during the hole-drilling process.
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2.2. Residual Stress Estimation with Camera Motion-Induced Error

Camera motion is inevitable, owing to the hole-drilling process. Consider a common hardware
configuration of the residual stress estimation method, as shown in Figure 3, in which the camera needs
to be fixed during the hole-drilling process. The process is accompanied by near-field vibration, which
causes camera motion. To avoid this vibration, the camera is placed away from the specimen, but this
long working distance produces errors, even with a slight vibration of the camera. As such, camera
motion is difficult to avoid considering the practical implementation of the hole-drilling method.
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The displacement field induced by the camera motion can be formulated using the homography
transform. Let the image coordinate systems before and after the hole-drilling process be respectively
denoted as IC1 and IC2, as shown in Figure 4. The relationship between IC1 and IC2 is expressed as

xi
yi
1


IC2

= sHIC1→IC2


xi
yi
1


IC1

, (12)

where {xi, yi, 1}T
IC1 and {xi, yi, 1}T

IC2 are the image coordinates of the i-th material point represented in IC1
and IC2, respectively; HIC1→IC2 is the homography transform associated with the six degrees-of-freedom
(6DOF) camera motion [35]; and s is the scaling factor that holds the third component of {x, y, 1}T

IC2 in
1. Using the homography relationship, the camera motion-induced displacement field is formulated as{

umotion(xi, yi)

vmotion(xi, yi)

}
=

{
xi
yi

}
IC2
−

{
xi
yi

}
IC1

, (13)

where umotion(xi, yi) and vmotion(xi, yi) are, respectively, the x- and y-directional displacements of the
i-th material point, induced by the camera motion. Note that the subtraction between the vectors in
different coordinate systems are performed by taking the components. Thus, the homography matrix
HIC1→IC2 established by the camera motion governs the displacements of all the material points.

The effect of the camera motion in the residual stress estimation can be simplified based on
Equations (1) and (12). The position of the i-th material point after hole drilling is expressed as

xhole(xi, yi)

yhole(xi, yi)

1


IC1

=


xi + uhole(xi, yi)

yi + vhole(xi, yi)

1


IC1

, (14)
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where xhole(xi, yi) and yhole(xi, yi) are, respectively, the x and y coordinates of the i-th material point after
the hole drilling represented in IC1. Considering the camera motion, the coordinates in Equation (14)
are represented in IC2 as 

xhole(xi, yi)

yhole(xi, yi)

1


IC2

= sHIC1→IC2


xhole(xi, yi)

yhole(xi, yi)

1


IC1

. (15)

The combination of Equations (13) and (15) results in{
uhole+motion(xi, yi)

vhole+motion(xi, yi)

}
=

{
xhole(xi, yi)

yhole(xi, yi)

}
IC2
−

{
xi
yi

}
IC1

, (16)

where uhole+motion(xi, yi) and vhole+motion(xi, yi) are the displacements of the i-th material point after hole
drilling and the camera motion computed by the DIC technique. Thus, the residual stress estimation
fails when the camera moves because of the additional displacement from the camera motion.Sensors 2019, 19, x FOR PEER REVIEW 6 of 21 
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3. Camera Motion-Independent Residual Stress Estimation

This study proposes a residual stress estimation method that offers camera movement during
the hole-drilling process. The displacement field measured using DIC is decomposed into
homography-dependent and homography-independent components. Associated with the level
of residual stresses, the latter is further used for stress estimation considering the camera movement.
This section describes the extraction of the homography-independent displacement field, which is then
utilized for the residual stress estimation.

3.1. Extraction of Homography-Independent Component

DIC yields full-field displacement data, uhole+motion(xi, yi) and vhole+motion(xi, yi), which
can be decomposed into homography-dependent and homography-independent components.
The displacement field induced by the camera motion can only be included in the homography-
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dependent terms (see Equations (12) and (13)), whereas hole drilling induces the displacement field
consisting of the homography-dependent and homography-independent terms as{

uhole(xi, yi)

vhole(xi, yi)

}
=

{
uh(xi, yi)

vh(xi, yi)

}
+

{
uh(xi, yi)

vh(xi, yi)

}
(17)

where the subscripts h and h, respectively, denote the homography-dependent and
homography-independent components within the displacement field induced by the hole drilling.
Note that the homography-dependent term can be replaced with the premultiplication of a principal
homography matrix Hh as

xi + uh(xi, yi) + uh(xi, yi)

yi + vh(xi, yi) + vh(xi, yi)

1

 = sHh


xi + uh(xi, yi)

yi + vh(xi, yi)

1

, (18)

Equation (18) is coupled with Equation (15) as
xi + uh(xi, yi) + uh(xi, yi)

yi + vh(xi, yi) + vh(xi, yi)

1


IC2

= sHIC1→IC2Hh


xi + uh(xi, yi)

yi + vh(xi, yi)

1

, (19)

which is, in turn, expressed as
xi + uhole+motion(xi, yi)

yi + vhole+motion(xi, yi)

1

 = sHIC1→IC2Hh


xi + uh(xi, yi)

yi + vh(xi, yi)

1

. (20)

Equation (20) represents the homography-dependent terms in the homography matrices.
On the contrary, the homography-independent terms cannot be expressed in a homography matrix.
Thus, the displacement field computed using DIC, which is uhole+motion(xi, yi) and vhole+motion(xi, yi),
consists of the homography-dependent terms that can be expressed by HIC1→IC2Hh and the
homography-independent terms uh (xi, yi) and vh (xi, yi).

The homography-independent terms can be extracted using the known information: uhole+motion(xi, yi),
vhole+motion(xi, yi), xi, and yi. A unique homography transform can be found when minimizing the residue
defined by

residue =
n∑

i=1

∣∣∣∣∣∣∣∣∣


xi + uhole+motion(xi, yi)

yi + vhole+motion(xi, yi)

1

− sH


xi
yi
1


∣∣∣∣∣∣∣∣∣
2

=
n∑

i=1

∣∣∣∣∣∣∣∣∣


uh(xi, yi)

vh(xi, yi)

0


∣∣∣∣∣∣∣∣∣
2

, (21)

where |·|2 denotes the 2-norm of a vector. This unique homography transform derived in Equation (21) is
indeed HIC1→IC2Hh in Equation (20) because the homography-independent terms, uh(xi, yi) and vh(xi, yi),
remained as the residue. Equation (20) can be approximately reorganized by using Equation (21) as

xi + uhole+motion(xi, yi)

yi + vhole+motion(xi, yi)

1

 = sH


xi
yi
1

+


uh(xi, yi)

vh(xi, yi)

0

. (22)

By employing the direct linear transform [35], H in Equation (22) is computed using the correspondences
between {xi + uhole+motion(xi, yi), yi + vhole+motion(xi, yi)} and {xi, yi} for 1 ≤ i ≤ n. Note that uh(xi, yi)
and vh(xi, yi) are excluded in the determination of the homography matrix because these terms
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are homography-independent. After H is determined, the homography-independent terms are
extracted through 

xi + uh(xi, yi)

yi + vh(xi, yi)

1

 = sH−1


xi + uhole+motion(xi, yi)

yi + vhole+motion(xi, yi)

1

, (23)

which is further developed as{
uh(xi, yi)

vh(xi, yi)

}
=

{
xi + uh(xi, yi)

yi + vh(xi, yi)

}
−

{
xi
yi

}
. (24)

Hence, the homography-independent terms, uh(xi, yi) and vh(xi, yi) for 1 ≤ i ≤ n, can be extracted by
deriving H in Equation (22) and using Equation (24).

3.2. Residual Stress Estimation Using the Homography-Independent Terms

The residual stresses can be estimated by solely employing the homography-independent terms
derived in Section 3.1. Equation (1) is reinterpreted in terms of homography dependency as

{
uhole(xi, yi)

vhole(xi, yi)

}
=

{
Puh(xi, yi) + Puh(xi, yi)

Pvh(xi, yi) + Pvh(xi, yi)

}
σx +

{
Quh(xi, yi) + Quh(xi, yi)

Qvh(xi, yi) + Qvh(xi, yi)

}
σy +

{
Ruh(xi, yi) + Ruh(xi, yi)

Rvh(xi, yi) + Rvh(xi, yi)

}
τxy, (25)

where the additional subscripts h and h denote the homography-dependent and homography-
independent components, respectively. The homography-independent terms in Equation (25) are
expressed as{

uh(xi, yi)

vh(xi, yi)

}
=

{
Puh(xi, yi)

Pvh(xi, yi)

}
σx +

{
Quh(xi, yi)

Qvh(xi, yi)

}
σy +

{
Ruh(xi, yi)

Rvh(xi, yi)

}
τxy. (26)

The residual stresses are computed as


σx

σy

τxy

 =



Puh(x1, y1) Quh(x1, y1) Ruh(x1, y1)

Pvh(x1, y1) Qvh(x1, y1) Rvh(x1, y1)
...

...
...

Puh(xn, yn) Quh(xn, yn) Ruh(xn, yn)

Pvh(xn, yn) Qvh(xn, yn) Rvh(xn, yn)



+

uh(x1, y1)

vh(x1, y1)
...

uh(xn, yn)

vh(xn, yn)


. (27)

Once Puh, Quh, Ruh, Pvh, Qvh, and Rvh are calculated for all the material points, the residual stresses can
be obtained by using Equation (27) with the homography-independent terms.

The homography-independent coefficients (i.e., Puh, Quh, Ruh, Pvh, Qvh, and Rvh) can be derived
by numerically generating displacement fields. Firstly, homography-dependent displacement fields
for given in-plane stresses, which is denoted by uhole(xi, yi; σx, σy, τxy) and vhole(xi, yi; σx, σy, τxy),
are numerically generated. For given in-plane stresses, uhole(xi, yi) and vhole(xi, yi) can be numerically
generated using E, ν, a, n, and the pixel location (xi, yi) for every pixel based on Equations (1)–(10).
Using the correspondences between {xi + uhole(xi, yi), yi + vhole(xi, yi)} and {xi, yi} for 1 ≤ i ≤ n,
the principal homography transform Hh in Equation (18) can be approximately calculated using direct
linear transform [35] with the residue terms as

residue =
n∑

i=1

∣∣∣∣∣∣∣∣∣


xi + uhole(xi, yi; σx, σy, τxy)

yi + vhole(xi, yi; σx, σy, τxy)

1

− sHh


xi
yi
1


∣∣∣∣∣∣∣∣∣
2

=
n∑

i=1

∣∣∣∣∣∣∣∣∣


uh(xi, yi; σx, σy, τxy)

vh(xi, yi; σx, σy, τxy)

0


∣∣∣∣∣∣∣∣∣
2

. (28)
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Using the calculated Hh, Equation (18) can be reorganized as
xi + uh(xi, yi; σx, σy, τxy)

yi + vh(xi, yi; σx, σy, τxy)

1

 = sHh


xi
yi
1

. (29)

As a result, uhole(xi, yi; σx, σy, τxy) and vhole(xi, yi; σx, σy, τxy) can be prepared for any given stress
combination. Second step is to find the homography-independent terms Puh, Quh, Ruh, Pvh, Qvh,
and Rvh using a number of numerically generated uhole(xi, yi; σx, σy, τxy) and vhole(xi, yi; σx, σy, τxy).
For computational simplicity, assume that the homography-dependent terms Puh, Quh, Ruh, Pvh, Qvh,
and Rvh are linearized as{

uh(xi, yi)

vh(xi, yi)

}
=

 Puh,xxi + Puh,yyi

Pvh,xxi + Pvh,yyi

σx +

 Quh,xxi + Quh,yyi

Qvh,xxi + Qvh,yyi

σy +

 Ruh,xxi + Ruh,yyi

Rvh,xxi + Rvh,yyi

τxy, (30)

where Puh,x, Quh,x, Ruh,x, Pvh,x, Qvh,x, Rvh,x, Puh,y, Quh,y, Ruh,y, Pvh,y, Qvh,y, and Rvh,y are constants to be
determined. Equation (30) is rearranged as:

Puh,x
Puh,y
Quh,x
Quh,y
Ruh,x
Ruh,y


=


x1σx y1σx x1σy y1σx x1τxy y1τxy

...
...

...
...

...
...

xnσx ynσx xnσy ynσx xnτxy ynτxy


+

uh(x1, y1)
...

uh(xn, yn)

 (31)

and 

Pvh,x
Pvh,y
Qvh,x
Qvh,y
Rvh,x
Rvh,y


=


x1σx y1σx x1σy y1σx x1τxy y1τxy

...
...

...
...

...
...

xnσx ynσx xnσy ynσx xnτxy ynτxy


+

vh(x1, y1)
...

vh(xn, yn)

. (32)

Since the homography-dependent terms uh(xi, yi) and vh(xi, yi) for 1 ≤ i ≤ n are numerically computed
using Equation (29), the unknown constants (Puh,x, Quh,x, Ruh,x, Pvh,x, Qvh,x, Rvh,x, Puh,y, Quh,y, Ruh,y, Pvh,y,
Qvh,y, and Rvh,y) can be calculated using Equations (31) and (32) with known (xi, yi) and (σx, σy, τxy).
Once the unknown constants are calculated, Puh, Quh, Ruh, Pvh, Qvh, and Rvh can be obtained using
Equation (25), and in turn, the residual stresses can be calculated by using Equation (27) with the
homography-independent terms uh(xi, yi) and vh(xi, yi) for 1 ≤ i ≤ n.

3.3. Summary of the Proposed Method

The procedure of the proposed stress estimation, compensating for the 6DOF camera motions, is
summarized as follows:

1. E, ν, a, n, x, and y are given before the measurement based on the material properties, hole-drilling
scheme, and image resolution.

2. Derive Pu, Qu, Ru, Pv, Qv, and Rv using the given E, ν, a, n, x, and y (known at step 1) based on
Equation (2)–(10).

3. Derive Puh, Quh, Ruh, Pvh, Qvh, and Rvh by numerically generating multiple pairs of displacement
fields (uh, vh) and residual stresses (σx, σy, τxy) based on Equations (31) and (32).
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4. Derive Puh, Quh, Ruh, Pvh, Qvh, and Rvh by subtracting Puh, Quh, Ruh, Pvh, Qvh, and Rvh (derived at
step 3), respectively from Pu, Qu, Ru, Pv, Qv, and Rv (derived at step 2) based on Equation (25).

5. Obtain the displacement field uhole+motion and vhole+motion by applying DIC to the images of before
and after the hole drill engaged with camera motion.

6. Compute H in Equation (22) by using correspondences between {x, y} (known at step 1) and
{uhole+motion, vhole+motion} (obtained at step 5) for all material points using direct linear transform [35].

7. Compute uh and vh by using uhole+motion and vhole+motion (obtained at step 5) in combination with H
(obtained at step 6) based on Equations (22)–(24).

8. Compute the residual stresses σx, σy, and τxy using uh and vh (obtained at step 7) in
combination with Puh, Quh, Ruh, Pvh, Qvh, and Rvh (derived at step 4) using Equation (27).

The overall proposed SRM/DIC method consists of displacement field measurement and stress
estimation, as shown in Figure 5.
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Figure 5. Flowchart of the proposed stress estimation.

4. Numerical Validation

To validate the proposed method, the stress estimation involving hole drilling and camera motion
is numerically simulated. For any in-plane stresses and any 6DOF camera motions, the displacement
fields uhole+motion and vhole+motion, which are employed in the proposed residual stress estimation, are
numerically generated. The stresses estimated using the proposed method are compared with the
actual stresses applied. This section demonstrates the numerical generation of the displacement fields
under movement of the camera before and after the hole is drilled, and presents a comparison between
the estimated and actual stresses.

4.1. Numerical Generation of the Displacement Field

The displacement field induced by drilling a hole is numerically generated for a commercial grade
camera system. The camera, equipped with a macro lens and having the specifications listed in Table 1,
is numerically modeled to have 79.52 × 53.04 mm of field of view, which can be achieved by adjusting
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the working distance to 100 mm. Each pixel in the image of 7952 × 5304 resolution is indexed such that
(xi, yi) for every i-th pixel is appropriately allocated, as shown in Figure 6. The Young’s modulus (E),
Poisson’s ratio (ν), and diameter of the hole (a) are assumed to be 206 GPa, 0.3, and 12 mm, respectively.
Hence, given the in-plane stresses (i.e., σx, σy, τxy), the displacement field, uhole(xi, yi) and vhole(xi, yi),
can be established using Equation (1) with the known variables E, ν, and a.

Table 1. Hardware specification.

Item Model Specification

Camera Sony α7R II Resolution: 7952 × 5304 pixels
Lens SEL50M28 Focal length: 50 mm
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The stress-related terms uhole(xi, yi) and vhole(xi, yi) are affected by the 6DOF camera motion, which
affects the final displacement field data uhole+motion(xi, yi) and vhole+motion(xi, yi). The camera mentioned
in Table 1 is modeled such that the intrinsic parameter K becomes

K =


10000 0 3976 0

0 10000 2652 0
0 0 1 0

. (33)

Assuming that the initial working distance is 100 mm, the coordinate transformation from the target
surface to IC1 can be represented as

K1 = K


1 0 0 0
0 1 0 0
0 0 1 100
0 0 0 1

. (34)

The coordinate transformation from the target surface toward IC2 is represented as

K2 = K
[

R T
0T 1

]
1 0 0 0
0 1 0 0
0 0 1 100
0 0 0 1

, (35)
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where R, T, and 0T are respectively a 3 × 3 rotation matrix, a 3 × 1 translation vector, and a 1 × 3 zero
vector. The homography matrix HIC1→IC2 in Equation (12) is calculated as

HIC1→IC2 =
[

K2,1 K2,2 K2,4
]−1[

K1,1 K1,2 K1,4
]
, (36)

where K1,j and K2,j are the j-th column of K1 and K2, respectively. For any given camera motion R and T,
HIC1→IC2 can be constructed for the camera model mentioned in Table 1. Consequently, using uhole(xi,
yi), vhole(xi, yi), and HIC1→IC2 for any given in-plane stresses and camera motions, the displacement
field, uhole+motion(xi, yi) and vhole+motion(xi, yi), can constructed based on Equations (14)–(16).

4.2. Stress Estimation Using the Proposed Method

To evaluate the performance of the proposed method, the displacement fields are constructed for
various stress conditions and camera motions, as listed in Table 2. Herein, rx, ry, and rz are, respectively,
the rotation about the x, y, and z axes, which comprise the rotation matrix R. In addition, tx, ty, and
tz are, respectively, the translations along the x, y, and z axes, which comprise the translation vector
T. A total of 100 test cases are considered. From Test 1 to Test 60, the camera motions with rotation
and translation for a specific stress combination (i.e., σx = 20 MPa, σy = −5 MPa, and τxy = 2 MPa) are
considered. From Test 61 to Test 100, the 6DOF camera motions are controlled such that the applied
single-DOF motions are increasingly applied from −10 to 10 mrad for the rotations and from −5 to
5 mm for the translations. For Tests 61–100, random combinations of stresses and camera motions
are considered, in which unif (α, β) is the randomly selected variable from the uniform distribution
bounded by (α, β).

Table 2. Numerical simulation scenario.

Test
Stress (MPa)

Camera Motions

Rotation (mrad) Translation (mm)

σx σy τxy rx ry rz tx ty tz

1–10

20 −5 2

[−10, 10] 0 0 0 0 0
11–20 0 [−10, 10] 0 0 0 0
21–30 0 0 [−10, 10] 0 0 0
31–40 0 0 0 [−5, 5] 0 0
41–50 0 0 0 0 [−5, 5] 0
51–60 0 0 0 0 0 [−5, 5]

61–100 unif(−50, 50) * unif(−10, 10) * unif(−5, 5) *

* unif (α, β) denotes a number randomly selected by the uniform distribution bounded by (α, β).

To estimate the residual stresses, uh and vh are extracted from the numerically simulated
displacement field uhole+motion and vhole+motion. As can be seen in Figure 7a,b, the displacement
fields are primarily dominated by the camera motion-induced patterns, which veil those generated by
the stress relaxation shown in Figure 7c,d. Note that the stresses can be computed using uhole and vhole,
as discussed in Section 2.1, whereas the displacement fields cannot be directly obtained owing to the
camera motion, as discussed in Section 2.2. The homography-independent term is extracted, as shown
in Figure 7e,f, using the direct linear transform, as discussed in Section 3.1. The extracted uh and vh
will be employed in stress estimation.
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Figure 7. Example of the numerically generated displacement fields for (σx, σy, τxy) = (20, −5, 2) MPa,
(rx, ry, rz) = (3, −5, 5) mrad, and (tx, ty, tz) = (3, −2, −5) mm: (a) uhole+motion; (b) vhole+motion; (c) uhole;
(d) vhole; (e) uh; (f) vh.

The stresses are estimated for the scenarios listed in Table 2, using the extracted homography-
independent displacement fields uh and vh . Based on Equation (27), the stresses can be directly
obtained by using the uh and vh calculated for every (xi, yi). As exhibited in Figure 8, the stresses
estimated by the proposed method agree well with the applied stress. The maximum estimation error
is 0.3072 MPa, which is 0.63% of the true stress. Therefore, the proposed method can successfully
estimate the residual stresses, even with the camera relocation during the hole-drilling process.
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5. Laboratory-Scale Validation

The proposed method is validated through practical implementations of the stress estimation
in a laboratory environment. Three specimens made of cork and ethylene-vinyl acetate (EVA) are
prepared, the material properties and dimensions of which are summarized in Table 3. The specimen
is compressed using a universal testing machine (UTM), as shown in Figure 9a. Herein, to obtain
a two-dimensional stress condition, the horizontal expansion is constrained using polycarbonate plates
connected by steel rods. After applying 100 KPa of vertical compression, the image-capturing and
hole-drilling processes are performed as depicted in Figure 9b, using the camera system illustrated in
Figure 9c. Note that the camera is completely detached and reattached before and after the hole-drilling
process, which causes a subtle camera movement. The experiments are repeated with three specimens,
and thereby, the images before and after hole drilling are prepared for the post processing.

The displacement fields are calculated by using the images before and after the hole-drilling
process. Although the images before and after the hole drilling look very similar, as can be seen
in Figure 10a,b, the camera motion is certainly present. Ncorr [36], an open-source DIC software,
is used for the computation of the displacement fields. A circular subset with a radius of 10 pixels
is empirically selected. The resulting displacement fields are shown in Figure 10c,d, in which the
camera motion-induced error is dominant. These DIC results are employed in the proposed stress
estimation method.

Table 3. Specimen and experimental information.

Property Value

Young’s modulus 2.46 MPa
Poisson’s ratio 0.1

Dimension (height ×width × depth) 230 × 150 × 75 mm
Hole diameter 14 mm

Pixel resolution 7952 × 5304
Pixel density 108.26 pixel/mm
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The residual stresses are computed by using the displacement fields. The homography-
independent terms are extracted as shown in Figure 11, and are then used to calculate the residual
stresses. The estimated stresses are compared with the stress applied by the UTM. As shown in Table 4,
the maximum error is calculated to be 7.1%. Even though the error in the numerical simulation was
within 0.7%, the laboratory tests result in 1.3% to 7.1% of error due to experimental conditions such
as quality of the hole drilling. Nevertheless, 7.1% of error can be considered to be reasonable as
previous studies have reported ± 10% of error [13]. Thus, the proposed method reliably measures the
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residual stresses by successfully compensating the error induced by the camera motion through linear
regression using a large amount of displacement field data as discussed previously.Sensors 2019, 19, x FOR PEER REVIEW 16 of 21 
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Table 4. Experimental results.

Test
True stress (KPa) Estimated Stresses (KPa) Error (KPa)

σy−σy,trueσy,true σx σy τxy

1 −100.0 −29.3 −101.3 +1.2 −1.3
2 −100.0 −21.6 −103.1 −3.7 −3.1
3 −100.0 −39.2 −107.1 −3.0 −7.1

As the hole drilling is a source of measurement error, the goodness of fit is checked after the
stress estimation. The hole drilling generally produces a hole with an elliptical shape rather than
a perfect circular hole. If the specimen is under compression, the material inside the hole pushes
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the rotating drill bit during the hole-drilling process because of displacement toward the center of
the hole. On the other hand, the tensile zone tends to deviate from the hole center resulting in small
damage along the tensile region. As a result, the shape of the hole tends to be an ellipse, which
can cause stress estimation error. To investigate the effect of the hole drilling on the measurement
accuracy, the goodness of fit is considered. The homography-independent displacement fields are
reconstructed using the estimated stresses and Equation (26) as shown in Figure 12. The measured
(shown in Figure 11) and the reconstructed displacement fields (shown in Figure 12) exhibit the similar
patterns, while the displacement amplitudes are slightly different. To quantitatively evaluate the
difference, the root mean square error (RMSE) between the two displacement fields defined in Equation
(37) is calculated.

RMSE =
1
n

n∑
i=1

√
(umeasured(xi, yi) − ureconstructed(xi, yi))

2 + (vmeasured(xi, yi) − vreconstructed(xi, yi))
2 (37)

where subscripts measured and reconstructed denote measurement and reconstructed displacement
fields, respectively. The RMSE can identify mean errors for each pixel. The RMSE values for Tests 1–3
are 1.89 × 10−4, 3.41 × 10−4, and 3.98 × 10−4 pixel, respectively. These values are less than 0.02 pixel of
the common DIC error criteria. Thus, the DIC is properly applied with reasonable error levels.
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6. Conclusions

This paper proposed an SRM/DIC-based stress estimation method that allows camera relocation
for high-resolution image acquisition. Conventionally, DIC uses two images, one before and one after
deformation, taken by a fixed camera. As SRM requires hole drilling, the camera needs to be placed
away from the specimen to allow space for the drill. To maximize the pixel resolution of the camera,
this study developed a stress estimation method in which the camera can be installed directly in front
of the specimen. Thus, in the proposed method, the camera is removed while drilling a hole and
replaced for taking the after-deformation image. The mathematical formulation for compensation of
the camera relocation-induced error was provided in detail. A numerical simulation was conducted for
a total of 100 test cases with various camera movements and stress levels, resulting in a maximum error
of 0.63%. This study also conducted a laboratory experiment using an EVA specimen. A UTM was
used to provide the compressive force that induced 100 KPa of stress in the specimen. The stress levels
were estimated with a maximum error of 7.1%. Therefore, the numerical simulation and experiment
have shown that the proposed method can accurately measure the stress level, even when the camera
is relocated.
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Nomenclature

σx In-plane residual stress (normal stress along x direction).
σy In-plane residual stress (normal stress along y direction).
τxy In-plane residual stress (shear stress).
xi x coordinate of i-th material point.
yi y coordinate of i-th material point.
uhole(xi, yi) x directional displacement at {xi, yi} induced by hole-drilling.
vhole(xi, yi) y directional displacement at {xi, yi} induced by hole-drilling.
umotion(xi, yi) x directional displacement at {xi, yi} induced by camera motion.
vmotion(xi, yi) y directional displacement at {xi, yi} induced by camera motion.
uhole+motion(xi, yi) x directional displacement at {xi, yi} induced by hole-drilling and camera motion.
vhole+motion(xi, yi) y directional displacement at {xi, yi} induced by hole-drilling and camera motion.
uh(xi, yi) Homography-dependent x directional displacement among uhole+motion(xi, yi).
vh(xi, yi) Homography-dependent y directional displacement among vhole+motion(xi, yi).
uh(xi, yi) Homography-independent x directional displacement among uhole+motion(xi, yi).
vh(xi, yi) Homography-independent y directional displacement among vhole+motion(xi, yi).
Pu Stress coefficient for linear relationship between σx and uhole(xi, yi).
Qu Stress coefficient for linear relationship between σy and uhole(xi, yi).
Ru Stress coefficient for linear relationship between τxy and uhole(xi, yi).
Pv Stress coefficient for linear relationship between σx and vhole(xi, yi).
Qv Stress coefficient for linear relationship between σy and vhole(xi, yi).
Rv Stress coefficient for linear relationship between τxy and vhole(xi, yi).
Puh Stress coefficient for linear relationship between σx and uh(xi, yi).
Quh Stress coefficient for linear relationship between σy and uh(xi, yi).
Ruh Stress coefficient for linear relationship between τxy and uh(xi, yi).
Pvh Stress coefficient for linear relationship between σx and vh(xi, yi).
Qvh Stress coefficient for linear relationship between σy and vh(xi, yi).
Rvh Stress coefficient for linear relationship between τxy and vh(xi, yi).
Puh Stress coefficient for linear relationship between σx and uh(xi, yi).
Quh Stress coefficient for linear relationship between σy and uh(xi, yi).
Ruh Stress coefficient for linear relationship between τxy and uh(xi, yi).
Pvh Stress coefficient for linear relationship between σx and vh(xi, yi).
Qvh Stress coefficient for linear relationship between σy and vh(xi, yi).
Rvh Stress coefficient for linear relationship between τxy and vh(xi, yi).
Puh Stress coefficient for linear relationship between σx and uh(xi, yi).
Quh Stress coefficient for linear relationship between σy and uh(xi, yi).
Ruh Stress coefficient for linear relationship between τxy and uh(xi, yi).
Pvh Stress coefficient for linear relationship between σx and vh(xi, yi).
Qvh Stress coefficient for linear relationship between σy and vh(xi, yi).
Rvh Stress coefficient for linear relationship between τxy and vh(xi, yi).
IC1 Image coordinate system before the hole-drilling and camera motion.
IC2 Image coordinate system after the hole-drilling and camera motion.

s
Scaling factor that holds the third component (w) of the homogeneous representation {x,
y, w}T in 1.

HIC1→IC2 Homography transform from IC1 to IC2 associated with 6DOF camera motion.
Hh Principal homography transform.
H HIC1→IC2Hh.
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