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Bone immunity regulates osteoclast differentiation and bone resorption and is a

potential target for the treatment of postmenopausal osteoporosis (PMOP).

The molecular network between bone metabolism and the immune system is

complex. However, the molecular mechanism underlying the involvement of

the major histocompatibility complex class II (MHC-II) molecule protein

presentation pathway in PMOP remains to be elucidated. The MHC-II

molecule is a core molecule of the protein presentation pathway. It is

combined with the processed short peptide and presented to T lymphocytes,

thereby activating them to become effector T cells. T-cell-derived

inflammatory factors promote bone remodeling in PMOP. Moreover, the

MHC-II molecule is highly expressed in osteoclast precursors. MHC-II

transactivator (CIITA) is the main regulator of MHC-II gene expression and

the switch for protein presentation. CIITA is also a major regulator of osteoclast

differentiation and bone homeostasis. Therefore, we hypothesized that the

MHC-II promotes osteoclast differentiation, providing a novel pathogenic

mechanism and a potential target for the treatment of PMOP.
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Introduction

Postmenopausal osteoporosis (PMOP), a major public health

concern, is attributed to an imbalance of bone metabolism in

postmenopausal women. The condition is characterized by

decreasing bone strength and bone mineral density (1–3). There

are several pathological mechanisms involved in the development of

PMOP, such as imbalances in osteogenic/adipogenic differentiation

of bone marrow mesenchymal stem cells (BMSCs), osteogenic and/

or osteoclast (OC) coupling, and bone immunity. Among them,

bone immunity imbalance has recently attracted more attention.

The relationship between bone metabolism disorder and the

immune system is complex (4). Major histocompatibility complex

class II molecules (MHC-II) play essential roles in the adaptive

immune response and participate in the immune regulation of bone

health (5–7). However, the molecular mechanism underlying the

regulatory effects ofMHC-II on bonemetabolism imbalance remains

unclear. Therefore, this review summarizes the currently available

knowledge regarding this molecular mechanism. The following

aspects are discussed. Activation of T and B lymphocytes requires

MHC-II molecules, and loss of estrogen (E2) leads to the conversion

of T cells to effector T cells (TE) and the chronic production of related

inflammatory cytokines. In turn, TE promote bone remodeling by

releasing inflammatory factors. The main cytokines produced by TE
affect bone resorption and bone formation. MHC-II gene expression

is inseparable from the regulation of MHC-II transactivator (CIITA)

and phagolysosomal membrane integrity. Moreover, bioinformatics

revealed the potential pathologic association between PMOP and T

activation, as well as the protein presentation pathway.

Understanding the mechanisms through which MHC-II molecules

regulate bone homeostasis may facilitate the development of targeted

drugs for the treatment of PMOP.

There are two types of MHC molecules involved in adaptive

immune response in mammals, namely, MHC-I and MHC-II.

The former is distributed in almost all nucleated cells in the

body; the latter is distributed in professional antigen-presenting

cells (APCs), such as monocytes/macrophages, dendritic cells

(DCs), and B cells. Both types are tightly regulated and involved

in the activation process of effector T lymphocytes (TE) (8–10).
MHC-II molecules as key immune
molecules participating in
bone remodeling

OC precursors highly express
MHC-II molecules

As OC precursors, monocytes/macrophages are a type of

professional APCs. Hence, it is more meaningful to investigate

the effect of the MHC-II molecule protein presentation pathway

on bone metabolism in PMOP.
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Activation of T and B lymphocytes
requires MHC-II molecules

How can the initial T cells and memory T cells (TM) be

activated and induce inflammation? A series of processes are

required for T cells to induce adaptive immune responses and

inflammation. The initial activation of T cells and TM is followed by

further proliferation and differentiation into TE. The activation of

the initial T cells and TM requires signals from the interaction

between the T-cell receptor and the MHC-antigenic peptide

complex. MHC molecules monitor different proteolytic

machineries in APCs and transport the hydrolyzed peptide to the

surface of APCs for the identification and combination of initial T

cells and TM (11–13). DCs are the most powerful APCs in the body,

particularly mature DCs whose main feature is the high expression

of MHC-II molecules. Therefore, the MHC-II molecular

presentation pathway plays an important role in activating the

initial T cells and TM to become TE andmay be closely related to the

pathogenesis of PMOP.

It is well established that extracellular proteins enter the

APCs and participate in the formation of phagosomes.

Phagosomes combine with intracellular lysosomes to form

phagolysosomes, where proteins are hydrolyzed into short

peptides. MHC-II molecule–peptide complexes migrate to

the surface of APCs for identification by CD4+ T cells,

thereby activating them to become T helper 1 (Th1), Th2,

Th17, etc. It is established that Th2 provides CD40L for the

activation of B lymphocytes. Activated T and B lymphocytes

can produce interferon-gamma (IFN-g), tumor necrosis factor-

alpha (TNF-a), interleukin-17A (IL-17A), and receptor

activator of nuclear factor-kB (NF-kB) ligand (RANKL) (14),

which are important immune molecules involved in bone

remodeling in PMOP. This evidence further shows that

MHC-II molecules are closely related to the occurrence and

development of PMOP.
E2 deficiency leads to conversion of
T cells into TE and chronic
production of related
inflammatory cytokines

Recently, a new pathway has been described, indicating that E2

loss results in chronic production of TNF-a and IL-17 by

converting TM into TE. IL-7 and IL-15 are involved in the

process; both are mainly secreted by bone marrow dendritic cells

(BMDCs), which are important APCs in the bone marrow (BM)

(15). Animal experiments have shown the absence of bone loss in

specially treated mice, in which TM cannot convert into TE (16).

Physiologically, E2 can induce apoptosis of BMDCs and TM

through the Fas ligand pathway (15). In the absence of E2,

BMDCs exist for a prolonged period of time. This effect leads to
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antigen-independent activation of TM to produce TNF-a and

IL-17A (16). In general, the classical activation and conversion

of TM into TE require antigen stimulation (17). However, the

activation induced by loss of E2 differs from that model (15), and

this difference may be associated with chronic inflammation in

PMOP. We hypothesize that, in postmenopausal women, the

lifespan of DCs and TM is extended with the decline in E2. This

further contributes to the conversion of initial T cells and TM

activation into TE, resulting in the release of various

inflammatory factors and causing PMOP.
TE promotes bone remodeling by
releasing inflammatory factors

The adaptive immune system is fundamental to the

progression of PMOP (15). Adaptive immune responses are

composed of cellular immunity and humoral immunity. The

former is mainly mediated by T lymphocytes, while the latter is

mainly mediated by B lymphocytes.

The deficiency of E2 promotes persistent inflammation,

which is conducive to the development of PMOP. Mechanistic

studies on the relationship between menopausal E2 loss and

activation of T cells have primarily been performed in rodents

with ovariectomy (OVX); the key results obtained from these

investigations have been verified in human studies (15). Bone

loss was decreased in T-cell-deficient mature mice with OVX,

demonstrating that T cells are required to promote bone

resorption in PMOP (18–22). TE can secrete numerous

cytokines, such as IFN-g, TNF-a, and IL-17A.
Main cytokines produced by TE affect
bone resorption

OCs are multinucleated giant cells formed by the fusion of

multiple mononuclear macrophages differentiated from myeloid

progenitor cells in the BM. OCs appear to be sensitive to

cytokines produced by TE, such as IFN-g, TNF-a, and IL-17A.

IFN-g derived from TE can regulate the RANKL signal

pathway during OC differentiation (20). Th1 cells are one of

the main TE in T-cell immunity and the major producers of IFN-

g. Initially, bone loss due to inflammation was attributed to a

Th1-mediated pathological process. However, it was later

demonstrated that Th17 cells are the main drivers of bone

loss (23).

It has been reported that mature monocytes/macrophages

differentiate into OCs in an IFN-g-rich microenvironment and

promote cell fusion (24). Moreover, IFN-g could readily induce

monocyte aggregation, leading to the formation of multinuclear

giant cells (25). In addition, it has been shown that TNF-a can

directly act on OCs and their precursors, and it cooperates with
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the RANKL signal pathway in osteoclastogenesis (26–29). TNF-

a can recruit TNF receptor-associated factors to sequentially

activate NF-kB p50, and, c-Fos, and nuclear factor of activated T

cells 1 (NFATC1) for the promotion of OC differentiation. This

process is similar to and independent of the RANKL pathway

(30). Blockade of the pathways by which lymphocytes migrate to

the BM reduced the levels of TNF-a and Th17 cells in the BM

after OVX in mice. These effects were accompanied by

trabecular bone loss in this model (31).

E2 deficiency can increase the number of Th17 cells and TNF-

a-producing T cells in the BM, and this process is dependent on the

gut microbiome. Subsequently, BM IL-17A and TNF-a stimulate

RANKL expression and activity, causing bone loss. Demonstrating

the functional relevance of T-cell trafficking, blockade of Th17 cells

and TNFa-producing T cells from the gut or their influx into the

BM prevented OVX-induced bone loss. Therefore, it can be

concluded that T cells in the gut are proximal targets of E2

deficiency-induced bone loss in PMOP (32).

Additionally, as an immune cytokine, IL-17A participates in

the regulation of bone remodeling (15). IL-17A is mainly

secreted by a special subtype of TE, namely, Th17 cells (33),

and promotes bone destruction (34–36). Of note, there is a one-

quarter amino acid sequence homology of IL-17A between

humans and mice (37). It is thought that IL-17A participates

in inflammation and may be mainly derived from the activated

memory CD4+ T cells (TM), which subsequently differentiate

into Th17 cells (37, 38). The local cytokine environment can

promote or protect against bone loss. In addition, the

mechanisms through which TNF-a and IL-17A affect bone

metabolism via OCs have been studied extensively (39, 40).

IL-17A signaling plays a role through the IL-17A receptor

(IL-17AR); however, the role of IL-17A signaling in OCs

remains elusive (41). Different concentrations of IL-17A exert

varied effects on OCs. A low concentration of IL-17A (0.5 ng/ml)

can promote OC differentiation via RANKL-JUN N-terminal

kinase (RANKL-JNK) signaling and reduce the apoptosis of OCs

through the RANKL–beclin 1 (BECN1)–autophagy–TRAF3

pathway. IL-17A increases the number of OC precursors to

influence subsequent RANKL-dependent OC differentiation.

However, a high concentration of IL-17A (5–50 ng/ml) could

inhibit OC differentiation and stimulate the apoptosis of OCs via

the two aforementioned pathways (42, 43). Interestingly, a

higher concentration of IL-17A (100 ng/ml) increases the

number of OC precursors and induces OC formation (34). IL-

17A also indirectly targets the OC-supporting cells, such as

BMSCs, osteoblasts (OBs), and osteocytes, to produce various

cytokines and molecules for the regulation of OC differentiation

(4). Binding of IL-17A to its receptor IL-17AR on pre-OC

triggers Act1 adaptor protein and may activate the

downstream Janus kinase 2-signal transducer and activator of

transcription 3 (JAK2-STAT3) signal, which can promote

RANKL expression (44–47). The upregulation of RANKL and
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the increase in the RANKL/osteoprotegerin ratio could promote

OC differentiation.

Theories on the activity of IL-17A in OC differentiation remain

controversial; thus, it is imperative to explore the specific underlying

mechanisms (48). Specific subtypes of TE express TNF-a, which
increases OB apoptosis and indirectly stimulates osteoclastogenesis

via B-cell-produced RANKL, thereby triggering bone loss during

PMOP (49).
The main cytokines derived from TE
show different effects on bone formation

As discussed above, inflammation affects bone resorption.

However, studies on the role of inflammatory factors in

restraining bone formation are currently limited. Physiologically,

under coupled bone remodeling conditions, there is a dynamic

balance between bone resorption and formation. For example,

increasing resorption is accompanied by the recruitment of

BMSCs and their conversion into OBs (15). However, this

process appears to be impaired in the presence of inflammatory

cytokines (i.e., TNF-a and IL-17). Therefore, bone formation is

reduced versus bone resorption, which is consistent with the

pathological mechanism of PMOP. OBs and BMSCs are

sensitive to TNF-a and IL-17A.

TNF-a can inhibit bone formation by suppressing OB

differentiation. It can inhibit the expression of osterix (OSX) and

runt-related transcription factor 2 (RUNX2), which are vital to OB

differentiation (50, 51). RUNX2 is a specific transcription factor that

could commit BMSCs to the OB pathway. It has been demonstrated

that TNF-a could restrict the differentiation of BMSCs into OBs by

regulating RUNX2 expression (15). OSX is another key

transcription factor for OB maturation, and TNF-a also can

target OSX expression (52–54). Furthermore, OB differentiation

can be regulated via the mechanistic target of rapamycin (mTOR)

pathway (55–58). Studies have shown that TNF-a can preferentially

regulate cellular metabolism in adipocytes and muscle cells (59–61).

OBs, adipocytes, and muscle cells originate from BMSCs through

different directions of differentiation. The mechanism by which

TNF-a regulates OB cellular metabolism is currently unknown. In-

vitro studies have shown that TNF-a can regulate autophagy and

apoptosis via the NF-kB signal pathway in OBs (62–64), both of

which are controlled by the mTOR.

In ankylosing spondylitis, a study on human pre-OB has

indicated that IL-17A could promote bone-derived cells to

differentiate into OBs through the JAK2/STAT3 signal pathway

(65). IL-17A can promote the differentiation of BMSCs into OBs

and the mineralization of OBs by upregulating the expression of

bone formation-related gene alkaline phosphatase and RUNX2

(66). IL-17A and bone morphogenetic protein 2 (BMP2) could

promote the osteogenic differentiation of BMSCs (67). OBs and

adipocytes are both differentiated from a common pluripotent

precursor, namely, BMSCs. The decision for the differentiation of
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BMSCs into OBs or adipocytes is delicately balanced and there is

competition. IL-17A may steer BMSCs into OBs. Moreover, it can

activate cyclooxygenase 2 (COX2)-induced prostaglandin E2

(PGE2) to inhibit lipid-related proteins, such as peroxisome

proliferator-activated receptor gamma (PPARg) and adiponectin.

This process leads to a reduction in the differentiation of BMSCs

into adipocytes (68). Therefore, IL-17A may exert different effects

onOCs andOBs and can induce extensive bone turnover in PMOP.

It has been demonstrated that IL-17A could affect the

differentiation of BMSCs into OBs and the functions of

mature OBs (40). Th17 cells release IL-17A, which directs

mesenchymal stem cell differentiation toward the osteogenic

lineage but also indirectly increases OC differentiation (49).

In summary, bone metabolism is sensitive to chronic

inflammation induced by the activation of T cells in PMOP.

Specifically, deficiency of E2 promotes the conversion of TM into

TE in the BM.
Key aspects of MHC-II molecule
protein complexes presented
to T cells

Proteins enter APCs and participate in the formation of

phagosomes. Phagosomes combine with intracellular lysosomes to

form phagolysosomes, where proteins are hydrolyzed into short

peptides. Meanwhile, MHC-II molecules synthesized in the

endoplasmic reticulum are transported to MHC class II-

containing compartments, where peptides are loaded in the

peptide-binding groove of MHC-II molecules (69).

Phagolysosomes associate with MHC class II-containing

compartments to form terminal lysosomes in APCs. MHC-II

molecule–peptide complexes migrate to the cell surface for

identification by CD4+ T cells and activation of adaptive immune

responses. Therefore, the expression of MHC-II molecules and the

integrity of the phagolysosomal membrane are critical for the

presentation of the MHC-II molecule protein complexes to T cells.
Expression of MHC-II genes is
dependent on the regulation of CIITA

It has been shown that CIITA is a master regulator of MHC-II

genes in APCs, which are critical for the activation of T cells and the

induction of adaptive immune response (8, 9).

Under physiological conditions, CIITA is the master

regulator of MHC-II genes (8, 9). It is a non-DNA-binding co-

activator, which can specifically regulate the expression of MHC-

II molecules. CIITA deficiency could result in rare human

immunodeficiency disease (70). Overexpression of CIITA

induces severe spontaneous osteoporosis by an increase in the

number of OCs and bone resorption (7).
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The classical MHC-II molecules in humans (HLA-DR,

HLA-DP, and HLA-DQ) are the major target genes of CIITA.

The factors which regulate MHC-II expression play roles via the

promoters that drive transcription of the MHC2TA gene

encoding CIITA. As OC precursors , macrophages

constitutively and highly express MHC-II molecules (8, 9). In

the presence of low levels of CIITA, the synthesis of MHC-II

molecules can be limited, and the presentation of MHC-II

molecule proteins in DCs (a type of APC) is impaired (18).

The expression of genes which encode accessory proteins

required for MHC-II molecule protein presentation can also

be regulated by CIITA. Thus, CIITA is a central regulator

controlling the response to proteins that will be processed and

the maintenance of tolerance in the immune system (8, 9). This

coordinated regulation of MHC-II and other genes necessary for

its function is unique; hence, CIITA has been termed the “master

regulator” of MHC-II molecules and the protein presentation

pathway (8, 9).

Therefore, it is hypothesized that overexpression of CIITA will

lead to overexpression of MHC-II molecules, which in turn can

cause overactivation of the protein presentation pathway.

Subsequently, more initial T cells and TM are activated to become

TE, resulting in excessive immune response and inflammation in

PMOP. As monocytes/macrophages are a type of professional

APCs, we hypothesized that the relationship between CIITA and

MHC-II may be in the OC precursors.
Phagolysosomal membrane integrity
determines whether MHC-II molecule–
peptide complexes can be presented

Phagolysosome is a critical endocytic organelle in the MHC-II

molecular protein presentation pathway. Its membrane integrity

determines whether MHC-II molecule–peptide complexes can be

presented. The rupture of the membrane before the presentation of

the MHC-II molecule–peptide complexes will lead to APC death

and lack of T-cell activation.

Following the completion of the MHC-II molecule–peptide

complexes, the membrane of the phagolysosome fuses with the

cell membrane. At the same time, the peptide-binding region of

the MHC-II molecule can bind to processed peptides, and its

immunoglobulin-like region can be specifically recognized by

CD4 molecules expressed on T cells.

The effect of phagolysosomal membrane integrity on the

MHC class II molecular protein presentation pathway is critical.

However, the mechanism regulating the integrity of the

phagolysosomal membrane is unknown. The maintenance of

phagolysosomal membrane integrity is regulated by numerous

factors, such as the osmotic control of membrane tension, lipid

bilayer modifications and renitence vacuoles, and membrane-

stabilizing proteins (71).
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The membrane-stabilizing proteins are of particular interest.

It has been reported that the Bin–amphiphysin–Rvs (BAR)

domain-containing protein family plays important roles in

scaffolding and stabilizing the curved membranes (72). These

proteins will increase the surface of the endocytic organelle,

thereby facilitating the rapid export of osmolytes that can diffuse

into the tubules and access the membrane solute carriers

(73, 74).

Mature endocytic organelles, including phagolysosomes,

require transmembrane proteins to protect the membrane from

the harsh luminal environment (75, 76). The lysosome-associated

membrane proteins (LAMP1 and LAMP2) and the lysosome

integral membrane protein 2 (LIMP2) have been well investigated

(76, 77). Loss of LAMP1 and LAMP2 does not affect the lysosomal

membrane integrity (78, 79). In contrast, loss of LIMP2 results in

severe damage to the lysosomes (76). The homolog of the human

LIMP2, SCAV-3, has been identified as an important regulator of

lysosome integrity (76). Loss of SCAV-3 can lead to the rupture of

lysosome membranes. Therefore, SCAV-3 is vital for preserving

lysosomal membrane stability. Notably, modulation of lysosome

integrity by the insulin/insulin-like growth factor 1 (insulin/IGF1)

signaling pathway affects longevity (76).

In summary, we conclude that phagolysosomal membrane

integrity determines whether MHC-II molecule–peptide

complexes can be presented to T cells. This affects their activation

and conversion into TE, thereby influencing the release of numerous

cytokines and the development of PMOP.
MHC-II may promote OC
differentiation

It has been demonstrated that CIITA is a key regulator of OC

differentiation and bone remodeling (6). Previous studies have

shown that CIITA exerts an indirect effect on bone homeostasis

during E2 deficiency-induced bone loss, which may be associated

with its effects on protein presentation. In OVXmice, an increase in

the expression of CIITA increased the expression of MHC-II

molecules and enhanced activation-induced T-cell proliferation

(75). Hence, it is vital to activate T cells for bone loss caused by

OVX, and CIITA could be regulated by the presence of E2. The

regulation of CIITA is dependent on IFN-g, because OVX leads to

increased levels of IFN-g derived from TE. Of note, it has been

shown that CIITA was not upregulated in IFN-gR-/p-mice (80).

Therefore, it would be meaningful to examine the expression of

CIITA in OC precursors during PMOP.

CIITA is a key regulator of the activation of T cells and should

be considered an important factor in the relationship between the

immune response and bone health (7). However, the effect of the

MHC-II molecule on OC differentiation is currently unknown. We

hypothesize that MHC-II molecules could also promote

OC differentiation.
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Bioinformatics revealed a potential
pathologic association between
PMOP and T activation, as well as
the protein presentation pathway

In the article, we used bioinformatics analysis methods

(Supplementary 1) to integrate multiple databases for the

screening of different genes involved in PMOP. Next, we

performed enrichment analysis of the Kyoto Encyclopedia of

Genes and Genomes pathway. Of the top 30 pathways, some

pathways associated with immunity in PMOP were enriched (e.g.,

cytokine–cytokine receptor interaction, JAK-STAT signaling

pathway, Th17 cell differentiation, OC differentiation, T-cell

receptor signaling pathway, and TNF signaling pathway)
Frontiers in Endocrinology 06
(Figure 1A). The top 20 Gene Ontology enrichment candidate

targets of the different genes associated with immunity in PMOP are

shown in Figure 1B. There was a pathologic crosstalk of core

cytokine networks involved in PMOP and immunity. Gene

Ontology functional enrichment analysis of common differentially

expressed genes in PMOP and immunity was performed, including

the cellular component. Figure 1B shows the enrichment of the

MHC-II protein complex.

In addition, protein–protein interaction network

topology analysis was conducted to identify common

differentially expressed genes in PMOP and immunity genes

(Figure 2). IL-17A, TNF, and IFN are derived from TE; IGF is

associated with the membrane integrity of phagolysosomes;

PPAR is associated with the differentiation of BMSCs into

adipocytes; CD40L can be expressed only on activated T cells;
B

A

FIGURE 1

Results of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The top 30 KEGG pathway enrichment
candidate targets of the target genes (A). Pathways with significant changes (FDR < 0.05) were identified. The vertical coordinates represent the
KEGG pathway with significant enrichment, and the horizontal coordinates represent the gene ratio which refers to the ratio of enriched genes
to all target genes. The top 20 GO enrichment candidate targets of the target genes (B). The color of the bubble graph indicates the categories
of “cellular components” in the GO of the target genes (FDR < 0.05), and the horizontal coordinates represent the gene ratio which refers to the
ratio of enriched genes to all target genes.
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and cytotoxic T-lymphocyte-associated protein 4 (CTLA4)

can provide inhibitory information for T-cell activation.

These results indicate that MHC-II molecules may promote

OC differentiation and play crucial roles in the development of

PMOP. They mainly act through various cytokines produced by

TE cells, some may act on osteoblasts, and some may act on

osteoclasts (Figure 3).

Conclusion

This review focused on the MHC-II molecular protein

presentation pathway. The phagolysosomal membrane
Frontiers in Endocrinology 07
integrity and CIITA are critical to the MHC-II molecular

protein presentation pathway. The evidence suggests that

MHC-II molecules play a key role in OC differentiation,

providing a new direction for revealing the pathological

mechanism underlying the development of PMOP. Such

knowledge may provide potential therapeutic targets for the

prevention and treatment of PMOP. According to the

network pharmacology analysis, the common differential

genes in PMOP differential genes and immunity genes were

found. However, which genes are upregulated and which are

downregulated and their specific roles in bone immunity need

to be further explored.
FIGURE 2

PPI network topology analysis was conducted for common differential genes in PMOP differential genes and immunity genes.
FIGURE 3

The relationship between MHC-II and PMOP.
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