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Abstract: A simple and rapid method for efficient synthesis of sulfonyl chlorides/bromides from
sulfonyl hydrazide with NXS (X = Cl or Br) and late-stage conversion to several other functional
groups was described. A variety of nucleophiles could be engaged in this transformation, thus
permitting the synthesis of complex sulfonamides and sulfonates. In most cases, these reactions are
highly selective, simple, and clean, affording products at excellent yields.
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1. Introduction

Sulfonyl chlorides are the most prevalent reagents for the installation of the sulfonyl
protecting group [1], which can be converted into numerous sulfonyl derivatives [2–6],
undergo diverse desulfitative cross-couplings [7,8], and serve as arylating agents [9–13]. In
addition, they have been widely used as important building blocks for the manufacture of
elastomers, pharmaceuticals, dyes, detergents, ion exchange resins, and herbicides [14–16].
Recently, they have also exhibited important applications in building synthetic recep-
tors [17] and catalysts [18–20]. Given their importance in various fields, there is a strong
interest in developing efficient synthetic methods for preparing them. The oxidative chlori-
nation of thiols has been a frequently applied synthetic pathway using several combinations
of oxidants and chloride sources [21–28]. In addition, chlorination with different sulfur
compounds [29–32] or Grignard reactions [33] have been developed as efficient methods
for the synthesis of sulfonyl chlorides. However, in the reported methods, toxic and
highly corrosive reagents were required, the formation of some side products was reported,
and tedious workup procedures for the isolation of the pure products were necessary.
Therefore, the development of a milder and more practical method for the synthesis of
sulfonyl chlorides is highly desirable. In 2017, Montelongo’s group developed an elegant
strategy for the synthesis of sulfonyl chlorides and bromides by the oxidation of thiols
using NCS/NBS-iPrOH as an oxyhalogenation reagent (Scheme 1a) [34]. Recently, Cornella
reported highly selective conversion reactions of primary sulfonamides to the corresponding
sulfonyl chlorides and fluorides using pyrylium salt as an activating reagent (Scheme 1b) [35].

Sulfonyl hydrazides are attractive targets because of their wide applications in organic
synthesis, particularly in total synthesis [36]. Because of the high activity of sulfonyl chlo-
ride, they could react with hydrazine hydrate to synthesize various sulfonyl hydrazides [36].
We suspected that more stable sulfonyl hydrazides could convert to sulfonyl chloride, in
which sulfonyl hydrazide can be used as a protective reagent in organic synthesis. Mag-
notta reported a simple strategy for the synthesis of sulfonyl bromides from sulfonyl
hydrazides with bromine (Scheme 1c) [37]. This strategy represents a highly valuable
synthetic tool but leaves ample opportunities to develop more green and gentle reaction
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systems to construct sulfonyl chlorides/bromides. Herein, we describe that the sulfonyl
hydrazides react with NCS/NBS under mild reaction conditions, providing convenient
and efficient access to sulfonyl chlorides/bromides (Scheme 1d).
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Scheme 1. Synthesis of sulfonyl halides. (a) The oxidation of thiols using NCS/NBS-iPrOH;
(b) Sulfonyl chloride formation from sulfonamides enabled by pyrylium salt; (c) The synthesis
of sulfonyl bromides from sulfonyl hydrazides with bromine; (d) The reaction of sulfonyl hydrazides
with NCS/NBS.

2. Results

We commenced our study by investigating 4-methylbenzenesulfonhydrazide (1a) and
a halogen source (2). Inspired by the work of Cornella, we first evaluated the reaction
using MgCl2 as the halogen source in CH3CN at room temperature without any catalysts
or additives; however, no appreciable formation of target product 3a was detected in the
reaction mixture (Table 1, entry 1). Subsequent screening of a large panel of chlorides found
that the use of CuCl resulted in the generation of 3a at a 38% yield (Table 1, entries 2–7). We
further investigated the reactivity of organic chlorides, and the results suggested that NCS
(N-chlorosuccinimide) was optimal to provide a comparable 99% yield (Table 1, entries
8–10). Furthermore, the replacement of CH3CN with other solvents hampered product
formation to various degrees (Table 1, entries 11−16). Furthermore, the replacement of NCS
with NBS (N-bromosuccinimide) also smoothly provided the target product sulfonyl bro-
mide 4a at an 87% yield (Table 1, entry 17). However, when using NIS (N-iodosuccinimide)
as the substrate, the corresponding product 5a was not formed (Table 1, entry 18).

Table 1. Optimization of reaction conditions a.
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Table 1. Cont.

Entry X Source Solvent Product Yield (%) b

12 NCS EtOAc 3a 94
13 NCS DME 3a 87
14 NCS THF 3a 56
15 NCS DCE 3a 58
16 NCS Dioxane 3a 75
17 NBS CH3CN 4a 87
18 NIS CH3CN 5a N.R.

a Unless noted otherwise, reactions were performed with 1a (0.3 mmol) and X source (0.6 mmol, 2 equiv) in
2 mL solvent and room temperature under open air for 2 h. b Isolated yield. N.R.: no reaction, NCS: N-
chlorosuccinimide, NBS: N-bromosuccinimide, NIS: N-iodosuccinimide.

3. Discussion

With the obtained optimized reaction conditions, we explored the substrate’s scope.
As shown in Scheme 2, various ortho-, meta-, and parasubstituted arylsulfonyl hydrazides,
including the aryl and alkyl substitution, could react smoothly with NCS to deliver the
desired products in good to excellent yields (3a–3u). The substitution in the aromatic
ring of sulfonyl hydrazides, regardless of the electron-donating or electron-withdrawing
groups, hardly affected the reactivity of the reaction. To our delight, the naphthyl and
heterocyclic sulfonyl hydrazides, such as thiophene, also afforded the corresponding
products in satisfactory yields (3p–3r). In addition, both benzylsulfonyl hydrazide and
alkylsulfonyl hydrazides could undergo this process smoothly to afford the corresponding
products (3s−3u) in moderate to high yields. On the other hand, NBS was subjected to the
reaction under the same reaction conditions. In contrast with NCS, NBS showed relatively
weak reactivity, and the corresponding sulfonyl bromide products could also be obtained
in moderate to good yields (4a–4u). Unfortunately, benzylsulfonyl hydrazide was not
suitable for this transformation (4s).

Having established a protocol for synthesizing highly versatile sulfonyl chlorides and
considering that the importance of complex sulfonamide and sulfonates in drug discovery,
we next assessed the scope of the reaction between different nucleophiles in the presence of
a base in one pot. As listed in Scheme 3, both aromatic and aliphatic primary amines reacted
smoothly with 1a and 2a under air, giving the corresponding sulfonamides in moderate
to excellent yields (7a–7i). It was discovered that secondary alkyl amines were suitable
participants (7j–7l), as along with ammonia (7m). Phenol was able to furnish corresponding
sulfonate 7p at a good yield. In addition, we turned our attention to biologically active
compounds bearing various functional groups embedded in their structure. Paroxetine was
successfully applied in this transformation and afforded an 87% yield of the corresponding
sulfonamides over two steps (7o). As we predicted, ethynyl estradiol was also compatible
in sulfonate formation via a simple two-step process (7q).

To further illustrate the robustness of the protocol, we scaled up this sulfonyl chloride
synthesis. Without modification of the original protocol, 6 mmol of 1a could successfully be
converted to 3a at a 94% yield (Scheme 4a). By adding aniline to the above reaction system
without any separation, sulfonamide 7a could be obtained at a yield of 92% (Scheme 4b).

To gain insight into the reaction mechanism, several control experiments were designed
to understand the mechanism of this process. We performed experiments with the addition
of the radical inhibitor TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or BHT (butylated
hydroxytoluene), and the product yield was significantly reduced in both cases (Scheme 5).

On the basis of the above results and literature, a plausible mechanism was proposed,
as shown in Scheme 6. Initially, nitrogen center radical I and chlorine radical were generated
from NCS [38–40]. Then, sulfonyl hydrazide could transfer to sulfonyl radical II with the
release of nitrogen gas under oxidative conditions [38–40]. Finally, sulfonyl radical II went
through a coupling reaction with chlorine radical to afford the final product 3.
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4. Materials and Methods
4.1. General Information

NMR data were obtained for 1H at 400 MHz and for 13C at 100 MHz. Chemical
shifts were reported in ppm from tetramethylsilane with the solvent resonance as the
internal standard in CDCl3 solution. Column chromatography was performed on silica
gel (300–400 mesh) eluting with ethyl acetate/petroleum ether. TLC was performed on
glass-backed silica plates. UV light and I2 were used to visualize products. All chemicals
were used without purification as commercially available unless otherwise noted.

4.2. General Procedure for Synthesis of Sulfonyl Chloride 3 or Sulfonyl Bromide 4

N-Chlorosuccinimide 2a or N-bromosuccinimide 2b (0.6 mmol, 2.0 equiv) was added
to a solution of sulfonyl hydrazide 1 (0.3 mmol) in CH3CN (2 mL) in one portion. The
mixture was stirred at room temperature for 2 h. The solvent was removed, and the residue
was purified by flash column chromatography (petroleum ether/ethyl acetate) to provide
the corresponding sulfonyl chloride 3 or sulfonyl bromide 4.

4.3. Large-Scale Reaction for the Synthesis of Sulfonyl Chloride 3a

N-Chlorosuccinimide 2a (12 mmol, 2.0 equiv, 1.6 g) was added to a solution of 4-
methylbenzenesulfonhydrazide 1a (6 mmol, 1.12 g) in CH3CN (10 mL) in one portion.
The mixture was stirred at room temperature for 2 h. The solvent was removed, and the
residue was purified by flash column chromatography (PE/EA = 20:1) to provide the
corresponding p-toluenesulfonyl chloride 3a (white solid, 1.14 g, 94%).
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4.4. General Procedure for One-Port Reaction with Nucleophile

N-Chlorosuccinimide 2a (0.6 mmol, 2.0 equiv) was added to a solution of 4-
methylbenzenesulfonhydrazide 1a (0.3 mmol) in CH3CN (2 mL) in one portion. The
mixture was stirred at room temperature for 2 h. Then, Et3N (0.6 mmol, 2.0 equiv) and
nucleophile (0.6 mmol, 2.0 equiv) were added to the above reaction system, and the mix-
ture was stirred at room temperature for 2 h. The solvent was removed, and the residue
was purified by flash column chromatography (PE/EA) to provide the corresponding
sulfonamides and sulfonate 7.

4.5. Large-Scale Reaction for the Synthesis of 7a

N-Chlorosuccinimide 2a (12 mmol, 2.0 equiv) was added to a solution of 4-
methylbenzenesulfonhydrazide 1a (6 mmol, 1.12 g) in CH3CN (10 mL) in one portion. The
mixture was stirred at room temperature for 2 h. Then, Et3N (12 mmol, 2.0 equiv) and
aniline (12 mmol, 2.0 equiv) were added to the above reaction system, and the mixture was
stirred at room temperature for 2 h. The solvent was removed, and the residue was purified
by flash column chromatography (PE/EA) to provide the corresponding sulfonamide 7a
(brown solid, 1.39 g, 94%).

5. Conclusions

In conclusion, we successfully developed an efficient, simple, practical approach for
the construction of sulfonyl chlorides/bromides from sulfonyl hydrazide. This method-
ology allows a wide substrate scope, utilizes readily available starting materials, and
provides operational simplicity. Efforts to develop more direct applications in the chemical
community are in progress in our laboratory.
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