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Abstract

Background

Recently, neoadjuvant chemotherapy with docetaxel/cisplatin/5-fluorouracil (NAC-DCF)

was identified as a novel strong regimen with a high rate of pathological complete response

(pCR) in advanced esophageal cancer in Japan. Predicting pCR will contribute to the thera-

peutic strategy and the prevention of surgical invasion. However, a predictor of pCR after

NAC-DCF has not yet been developed. The aim of this study was to identify a novel predic-

tor of pCR in locally advanced esophageal cancer treated with NAC-DCF.

Patients and methods

A total of 32 patients who received NAC-DCF followed by esophagectomy between June

2013 and March 2016 were enrolled in this study. We divided the patients into the following

2 groups: pCR group (9 cases) and non-pCR group (23 cases), and compared gene expres-

sions between these groups using DNA microarray data and KeyMolnet. Subsequently, a

validation study of candidate molecular expression was performed in 7 additional cases.

Results

Seventeen molecules, including transcription factor E2F, T-cell-specific transcription factor,

Src (known as “proto-oncogene tyrosine-protein kinase of sarcoma”), interferon regulatory

factor 1, thymidylate synthase, cyclin B, cyclin-dependent kinase (CDK) 4, CDK, caspase-1,

vitamin D receptor, histone deacetylase, MAPK/ERK kinase, bcl-2-associated X protein,

runt-related transcription factor 1, PR domain zinc finger protein 1, platelet-derived growth

factor receptor, and interleukin 1, were identified as candidate molecules. The molecules

were mainly associated with pathways, such as transcriptional regulation by SMAD, RB/
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E2F, and STAT. The validation study indicated that 12 of the 17 molecules (71%) matched

the trends of molecular expression.

Conclusions

A 17-molecule set that predicts pCR after NAC-DCF for locally advanced esophageal can-

cer was identified.

Introduction

Esophageal cancer is a malignant tumor with a poor prognosis. It is considered that esopha-

gectomy is the main strategy for esophageal cancer; however, the survival benefit with surgery

alone is unsatisfactory, and the survival rates have been reported to be about 20%–30% at 2

years [1] and 10%–20% at 5 years [2]. In Western countries, neoadjuvant chemoradiotherapy

is a standard treatment for resectable esophageal cancer [3–5]. In Japan, a randomized phase

III trial (JCOG9204) showed that disease-free survival with adjuvant chemotherapy (AC)

involving cisplatin/5-fluorouracil (5-FU) therapy (CF) was superior to that with surgery alone.

In addition, a subsequent randomized phase III trial (JCOG9907) mentioned that the pro-

gnostic benefit of neoadjuvant chemotherapy (NAC) involving CF (NAC-CF) was superior to

that of AC involving CF [6]. Accordingly, NAC-CF has become the standard preoperative

treatment for locally advanced esophageal cancer in Japan. However, the survival benefit of

NAC-CF is unsatisfactory. Recently, docetaxel/cisplatin/5-FU therapy (DCF) was presented as

a novel strong regimen for esophageal cancer, and several studies have reported the safety of

NAC involving DCF (NAC-DCF) [7, 8]. Studies have reported that the pathological complete

response (pCR) rates of NAC-DCF and NAC-CF in locally advanced esophageal cancer were

12%–18% and 4%–6%, respectively [7–9]. Accordingly, NAC-DCF is a powerful regimen and

is expected to achieve pCR in locally advanced esophageal cancer. Moreover, it was indicated

that the prognoses of pCR cases with NAC-DCF for esophageal cancer were satisfactory [10,

11]. The prediction of pCR will have a great impact on the therapeutic strategy, such as avoid-

ance of surgical treatment. However, biomarkers for clinical application in the prediction of

pCR with NAC-DCF for esophageal cancer have not been identified.

Responsiveness to chemotherapeutic agents has been reported to be partly associated with

genetic variations in pharmacokinetic and pharmacodynamic action [12]. The molecular back-

ground of regulating therapeutic effectiveness in esophageal cancer remains largely unclear.

Some molecular markers have been reported for the tailored treatment of esophageal cancer,

such as cisplatin-related markers (interferon-induced transmembrane protein 1 [IFITM1],

breast cancer susceptibility gene 1 [BRCA1], and kallikrein-related peptidase 10 [KLK-10])

[13–15], 5-FU-related markers (thymidylate synthase [TSase] and dihydropyrimidine dehy-

drogenase [DPD]) [16–18], and docetaxel-related markers (BRCA1 and identified beta 1 integ-

rin [ITGB1]) [14, 19]. It has been reported that the serum p53 antibody might be a predictor of

pathological tumor response to NAC-DCF in esophageal cancer [20]. However, these single

molecular markers are still not used for clinical application. An intricate mechanism of drug

sensitivity is the most difficult obstacle for the prediction of therapeutic efficacy [13]. Multiple

factors are involved in drug response mechanisms. Additionally, key determinants of the

response significantly vary among individuals, and the factors intricately interact. The multi-

factorial mechanisms limit the prediction of an individual drug response with any single

marker [21–23]. We considered that the use of many molecules was more appropriate to pre-

dict pCR than the use of a single molecular biomarker. In fact, we have reported an 80-gene set

Predictor of pCR to neoadjuvant chemotherapy in esophageal cancer
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to predict the response to NAC-radiotherapy (RT) in rectal cancer [24]. We considered explor-

ing a gene set to predict pCR after NAC-DCF for esophageal cancer in this study.

The aim of this study was to identify the predictors of pCR after NAC-DCF for locally

advanced esophageal cancer. We investigated gene expressions in clinical esophageal cancer

samples and performed comparisons between pCR cases and non-pCR cases using DNA

microarray data and KeyMolnet.

Materials and methods

Patients and human tissue samples

This cohort study included esophageal cancer patients treated with NAC-DCF followed by

surgery at Oita University Hospital between June 2013 and March 2016. Thirty-two patients

met the following inclusion criteria: (i) histological diagnosis of primary esophageal squamous

cell carcinoma; (ii) stage IB/II/III according to UICC 7th edition; (iii) age� 80 years; (iv) per-

formance status of 0–1; and (v) no previous chemotherapy, thoracic RT, or thoracic surgery.

Esophageal cancer tissue samples were collected at biopsy during endoscopic examination

before the administration of the first course of chemotherapy. The biopsy specimen was col-

lected from an elevated part at the proximal side of the tumor in a unified manner. The speci-

mens were frozen and preserved in a freezer maintained at −80˚C. This study was approved by

the Ethics Committee of Oita University Faculty of Medicine, and all patients included in this

study provided written informed consent.

Therapy

The NAC-DCF regimen consisted of a 1-h i.v. infusion of docetaxel (70 mg/m2) on day 1, a 2-h

infusion of cisplatin (70 mg/m2) on day 1, and continuous i.v. infusion of 5-FU (750 mg/m2) on

days 1–5. This regimen was administered every 3 weeks, and 3 scheduled courses were adminis-

tered before esophagectomy. Surgery was scheduled to be carried out within 4–6 weeks after the

last day of preoperative chemotherapy, when curative resection was considered possible.

Response evaluation

The pathological response was evaluated according to the Japanese Classification of Esoph-

ageal Cancer 11th edition as follows: grade 0, no recognizable cytological or histological thera-

peutic effect; grade 1a, viable cancer cells account for two-thirds or more of the tumor tissue;

grade 1b, viable cancer cells account for between one-third and two-thirds of the tumor tissue;

grade 2, viable cancer cells account for less than one-third of the tumor tissue; grade 3, no via-

ble cancer cells are apparent (pCR) [25, 26]. Patients were divided into 2 groups (pCR and

non-pCR) according to the pathological response.

Preparation of RNA and DNA

Frozen specimens were homogenized, and total RNA was extracted using QIAampTM DNA

Mini Kit (QIAGEN Inc., Valencia, CA) and QIAGEN RNeasyTM mini kit (QIAGEN), accord-

ing to the manufacture’s protocol. Total RNA (200 ng) was reverse transcribed to cDNA using

murine leukemia virus reverse transcriptase (Invitrogen Crop., Carlsbad, CA). Our laboratory

protocols are deposited in protocols.io (https://dx.doi.org/10.17504/protocols.io.kahcsb6).

Gene expression analysis using microarray analysis

A human 8 × 60 K whole genome oligo DNA microarray chip (SurePrint G3 Human Gene

Expression v3 Microarray Kit, G4851C, Agilent Technologies, Santa Clara, CA) was used for
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global gene expression analysis, according to the manufacturer’s protocol. Cyanine (Cy)-

labeled cRNA was prepared using T7 linear amplification, according to the Agilent Low RNA

Input Fluorescent Linear Amplification Manual (Agilent Technologies). Labeled cRNA was

fragmented and hybridized to the same oligonucleotide microarray (Agilent Technologies).

The fluorescent intensities were determined with an Agilent DNA Microarray Scanner and

analyzed as described using Feature Extraction v.10.7.3.1 (Agilent Technologies). Expression

levels were converted into log2 values and normalized to the median of the entire spot array

using GeneSpringTM GX11 (Agilent Technologies). Following normalization, log2 fold change

(log2FC) in gene expression was calculated using Microsoft Excel1 2016 (Microsoft Corp.,

Redmond, WA), and the formula was as follows:

log2FC ¼
log2ðmolecular expression of pCRÞ

log2ðmolecular expression of Non � pCRÞ

Further analysis was performed using KeyMolnet.

Molecular expression analysis using KeyMolnet

The molecular networks and pathways were analyzed using the KeyMolnet Viewer program

version 6.1 (KM Data; www.km-data.jp). KeyMolnet, another commercial knowledge base,

has manually curated content on 164,000 relationships among human genes and proteins,

small molecules, diseases, pathways, and drugs. It includes core content collected from selected

review articles with the highest reliability [27].

KeyMolnet automatically provides corresponding molecules as a node on the networks,

by importing the list of Entrez Gene ID and signal intensity data [28, 29]. In this study, gene

data, for which expressions were significantly different between the pCR group and non-pCR

group, were imported into KeyMolnet. Subsequently, the molecular expressions were calcu-

lated and the molecules, which were included in the canonical networks of cancer chemother-

apy, were isolated as candidate molecules.

Molecular pathway analysis using KeyMolnet

To identify the relations of the candidate molecules and canonical pathways, pathway analyses

were performed. An algorithm that counts the number of overlapping molecular relations

between the extracted network and the canonical pathway allows the identification of the

canonical pathway showing the most significant contribution to the extracted network. The

significance in the similarity between both was scored using the following formula:

Score ðpÞ ¼
XMinðC;V Þ

x¼O

f ðxÞ

ðf ðxÞ ¼ CCx � T� CCV � x=TCVÞ

Score ¼ � log
2
ðScore ðpÞÞ

where O = the number of overlapping molecular relations between the extracted network and

the canonical pathway, V = the number of molecular relations located in the extracted net-

work, C = the number of molecular relations located in the canonical pathway, T = the number

of total molecular relations (approximately 90,000 sets), and X = the sigma variable that defines

incidental agreements [29, 30].

Predictor of pCR to neoadjuvant chemotherapy in esophageal cancer
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This calculation formula contained the hypergeometric distribution, and the score of more

than 20 was considered statistically significant.

Validation study

To validate the feasibility of the expression of candidate genes, a validation study was con-

ducted in another cohort. This was a cohort study of locally advanced esophageal cancer

patients treated with NAC-DCF followed by surgery at Oita University Hospital between April

and October 2016. Seven cases were enrolled in this study. The cases were divided into the fol-

lowing 2 groups: pCR group and non-pCR group, and we investigated candidate molecular

expression using DNA microarray data and KeyMolnet.

Statistical analysis

Quantitative clinical data are presented as medians and ranges. The difference between groups

was assessed using the chi-square test, Fisher’s exact test, or Mann–Whitney U test, as appro-

priate. These analyses were carried out using EZR (Saitama Medical Center, Jichi Medical Uni-

versity, Saitama, Japan version 1.33) [31], which is a graphical user interface for R (version

3.3.1; The R Foundation for Statistical Computing, Vienna, Austria). More precisely, EZR is a

modified version of R commander (version 2.3–0) designed to add statistical functions fre-

quently used in biostatistics. A P-value < 0.05 was considered statistically significant.

Quantitative gene expression data are presented as means. The difference in gene expres-

sion between groups was assessed using Student’s t-test and Excel 2016 (Microsoft). A P-

value < 0.05 was considered statistically significant.

Results

Patient characteristics

This study enrolled 32 consecutive cases. Clinicopathological characteristics are shown in

Table 1. Of the 32 cases, 9 were included in the pCR group and 23 were included in the non-

pCR group, according to the histopathological response grade (S1 Table). There were no dif-

ferences between the 2 groups in terms of age, sex, cT, cN, cStage, pN, residual tumor, NAC

adverse events, procedure, and postoperative complications. However, significant differences

were observed in pT (P< 0.01) and pStage (P< 0.01) between the 2 groups. With regard to

NAC, 1 case received only 2 courses, because cancer progression was observed during preoper-

ative treatment. With regard to NAC adverse events, 27 of the 32 cases showed grade 3 or 4

events, according to the CTCAE ver. 4.0 classification. Twenty-four cases showed myelosup-

pression (6 cases in the pCR group and 18 cases in the non-pCR group). Other events included

oral mucositis, appetite loss, and eruption. No mortality cases associated with NAC-DCF and

surgery were noted among all the study cases. With regard to postoperative complications, 2

cases in the pCR group and 1 case in the non-pCR group showed grade 3 or 4 events, accord-

ing to the Clavien-Dindo classification system. Of the 2 cases in the pCR group, 1 had a

necrotic bronchus and the other had a diaphragmatic hernia. The 1 case from the non-pCR

group had anastomotic leakage.

Molecular expression to predict pCR after NAC-DCF for esophageal

cancer

Significant differences in the gene expressions of 1,891 genes were observed between the pCR

and non-pCR groups (S2 Table). On importing data of the 1,891 gene expressions into Key-

Molnet and evaluating the molecular expressions associated with the canonical networks of

Predictor of pCR to neoadjuvant chemotherapy in esophageal cancer
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Table 1. Clinicopathological data.

pCR Non-pCR P-value

(n = 9) (n = 23)

Age (years); mean ± SD 67 ± 10 64 ± 8 0.454

Sex 0.49

Male 8 22

Female 1 1

cT 0.13

1b 2 0

2 2 5

3 4 16

4 1 2

cN 0.142

0 5 5

1 2 12

2 2 6

3 0 0

cStage 0.242

IB 2 2

II 3 4

III 4 17

pT <0.01

0 (CR) 9 0

1a/1b 0 9

2 0 4

3 0 7

4 0 3

pN 0.054

0 9 7

1 0 7

2 0 5

3 0 4

pStage <0.01

0 (pCR) 9 0

IA/IB 0 5

II 0 8

III 0 10

Residual tumor 0.303

R0 9 19

R1/R2 0 4

Histopathological response grade <0.01

0 0 1

1a/1b 0 14

2 0 8

3 9 0

Accomplishment of NAC 1.00

Complete 9 22

Incomplete 0 1

Adverse events of NACa 0.604

(Continued)
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cancer chemotherapy, 17 molecules were isolated as candidate molecules. They included tran-

scription factor E2F (E2F), T-cell-specific transcription factor (TCF), Src (known as “proto-

oncogene tyrosine-protein kinase of sarcoma”), interferon regulatory factor 1 (IRF-1), thymi-

dylate synthase (TSase), cyclin B, cyclin-dependent kinase (CDK) 4, CDK, caspase-1, vitamin

D receptor (VDR), histone deacetylase (HDAC), MAPK/ERK kinase (MEK), bcl-2-associated

X protein (Bax), runt-related transcription factor 1 (RUNX1), PR domain zinc finger protein 1

(BLIMP-1), platelet-derived growth factor receptor (PDGFR), and interleukin 1 (IL-1). The

color mapping of these 17 molecules on KeyMolnet of canonical molecular networks associ-

ated with cancer chemotherapy are displayed in Fig 1. A red node indicated higher expression

in the pCR group than in the non-pCR group, while a blue node indicated lower expression in

the pCR group than in the non-pCR group. The expressions of the 17 molecules are summa-

rized in Table 2. The putative molecular functions were referred to UniProt (http://www.

uniprot.org).

Molecular pathway associated with pCR after NAC-DCF for esophageal

cancer

On analyzing the relationships between canonical pathways and extracted molecules using the

score of hypergeometric distribution, 47 pathways scored more than 20 and were considered

to be significantly associated with the extracted molecules (S3 Table). The 3 pathways with the

highest scores were transcriptional regulation by SMAD (score 96.054), retinoblastoma pro-

tein (RB)/E2F (score 77.067), and signal transducer and activator of transcription (STAT)

(score 76.942).

Validation study of candidate molecules to predict pCR after NAC-DCF

for esophageal cancer

Of the 7 validation cases, 1 case was classified in the pCR group and 6 cases were classified in

the non-pCR group (S1 Table). The clinicopathological characteristics of the validation cases

are summarized in Table 3. The comparison of molecular expressions between extracted cases

and validation cases is presented in Fig 2 (S4 Table). Of the 17 molecules, 12 (71%) matched

the trends of molecular expression, including E2F, TCF, TSase, cyclin B, CDK4, CDK, cas-

pase-1, MEK, Bax, RUNX1, BLIMP-1, and IL-1.

Table 1. (Continued)

pCR Non-pCR P-value

(n = 9) (n = 23)

Absent 2 3

Present 7 20

Procedure 0.541

Subtotal esophagectomy 9 20

Others 0 3

Postoperative complicationsb 0.184

Absent 7 22

Present 2 1

aGrade 3/4 according to CTCAE ver. 4.0
bGrade 3/4 according to the Clavien-Dindo classification system

TNM stage was classified according to UICC 7th edition

https://doi.org/10.1371/journal.pone.0188098.t001
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Discussion

We observed a high pCR rate (28%) on treatment with NAC-DCF for locally advanced esoph-

ageal cancer. We explored the predictors of pCR using biopsy specimens of locally advanced

esophageal cancer patients treated with NAC-DCF. In the present study, 17 molecules were

identified as predictors of pCR after NAC-DCF for locally advanced esophageal cancer, using

DNA microarray and KeyMolnet. The validation study indicated that 12 of 17 molecules

(71%) matched the trends of molecular expression. These 17 molecules are expected to be a

predictor set of pCR after NAC-DCF for locally advanced esophageal cancer.

So far, several predictors of chemosensitivity in esophageal cancer have been reported; how-

ever, no biomarkers have been developed for clinical application in esophageal cancer. Our

identified molecules involved several biomarkers of chemosensitivity or therapeutic target in

esophageal cancer. TSase is commonly known as a target molecule of 5-FU in malignant

tumors, and it was reported that the expression of TSase was correlated with 5-FU sensitivity

in esophageal cancer [32]. Accordingly, our data was considered credible, because well-known

molecules, such as TSase, were included in our set of candidate molecules. Additionally, it was

reported that the expression of E2F1 was associated with prognosis in esophageal cancer, and

it might be a candidate target molecule for chemosensitivity of esophageal cancer [33]. It was

reported that the expression of IRF-1 inhibited the growth of esophageal cancer cells and that

Fig 1. Color mapping of molecular expressions on KeyMolnet. Seventeen molecules were included in

KeyMolnet. Red nodes indicate higher expression in the pCR group. Blue nodes indicate lower expression in

the pCR group. The color shades are correlated with the expression levels of the molecules.

https://doi.org/10.1371/journal.pone.0188098.g001
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IRF-1 had a potential effect as a tumor suppressor in esophageal cancer [34]. However, we

could not identify reports investigating chemosensitivity with regard to TCF, Src, caspase-1,

VDR, BLIMP-1, PDGFR, and IL-1 in esophageal cancer. Accordingly, we consider that our

identified 17 molecules are possible novel biomarkers of chemosensitivity in esophageal can-

cer. A previous study showed that multiple factors are involved in drug response mechanisms

[13]; therefore, we hypothesized that our identified 17 molecules might intricately interact.

Therefore, we analyzed the relationships between canonical pathways and extracted molecules

using KeyMolnet and determined the relationship score based on hypergeometric

distribution.

According to the pathway analysis results, 17 molecules were considered to be associated

with 47 pathways, and the following 3 pathways had the highest scores: SMAD, RB/E2F, and

STAT. SMAD is a TCF in the transforming growth factor-β (TGF-β) signaling pathway (TGF-

β/SMAD signaling pathway), which promotes cell proliferation. SMAD is associated with carci-

nogenesis, cancer proliferation, and invasion. Several studies have reported that 5-FU inhibited

this pathway and that cell proliferation was inhibited by 5-FU in TGF-β negative cases [35, 36].

The RB/E2F pathway is critical for regulating the initiation of DNA replication. It is known

that the control of this pathway is disrupted in virtually all human cancers. A previous study

reported that inhibition of the RB/E2F pathway suppressed tumor growth and increased the

effect of gemcitabine in pancreatic cancer [37]. On the other hand, several reports have indi-

cated that inhibition of the RB/E2F pathway decreased the effect of CDDP in lung cancer and

breast cancer [38, 39] and decreased the effect of paclitaxel in lung cancer [40]. STAT is a TCF

activated by JAK in the JAK/STAT pathway. Activation of this pathway is associated with T-cell

activation and tumor immunity. It has been reported that inactivation of the JAK/STAT path-

way inhibited tumor proliferation in esophageal cancer [41]. However, it has been reported that

activation of the JAK/STAT pathway increased CDDP sensitivity in head and neck squamous

cell carcinoma [42]. On investigating the molecular associations of these pathways, we found

Table 2. Fold change (FC) of the 17 identified molecules.

Molecule Putative molecular function log2FC P-value

E2F Transcription activator associated with cell cycle regulation or DNA replication. 0.767 <0.001

TCF Transcription activator involved in T-cell lymphocyte differentiation. 0.761 0.025

Src Non-receptor protein tyrosine kinase that activates many different classes of cellular receptors. 0.755 0.011

IRF-1 Transcriptional regulator that displays functional diversity in the regulation of cellular responses. 0.675 0.01

TSase Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. 0.655 0.006

Cyclin B Essential for the control of the cell cycle at the G2/M (mitosis) transition. 0.604 0.027

CDK4 Ser/Thr-kinase component that phosphorylates and inhibits members of the RB protein and regulates the cell cycle during

G1/S transition.

0.523 0.03

CDK Appears to play multiple roles in cell cycle progression, cytokinesis, and apoptosis. −0.042 0.03

Caspase-

1

Thiol protease involved in a variety of inflammatory processes. −0.231 0.019

VDR Transcription factor that mediates the action of vitamin D3. −0.529 0.031

HDAC Responsible for the deacetylation of lysine residues on the N-terminal part of core histones. −0.565 0.007

MEK Dual specificity protein kinase of the MAP kinase signal transduction pathway. −0.603 0.034

Bax Accelerates programmed cell death by binding to and antagonizing the apoptosis repressor. −0.609 0.015

RUNX1 Transcriptional factor associated with the differentiation of the hematopoietic system. −0.760 0.014

BLIMP-1 Transcription factor that mediates a transcriptional program in various immune tissue-resident lymphocyte T-cell types. −0.810 0.007

PDGFR Tyrosine-protein kinase associated with the regulation of embryonic development, cell proliferation, survival, and

chemotaxis.

−1.147 0.002

IL-1 Involved in the inflammatory response and stimulates the release of prostaglandin and collagenase from synovial cells. −1.173 0.024

https://doi.org/10.1371/journal.pone.0188098.t002
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that CDK4, HDAC, RUNX1, and VDR were associated with SMAD through the TGF-β/SMAD

signaling pathway. Additionally, CDK4, E2F, TSase, and HDAC were associated with the RB/

E2F pathway. Moreover, Src and IRF-1 were associated with the JAK/STAT pathway. These

pathways were mainly associated with chemosensitivity with regard to pCR in our study.

Several reports revealed the survival benefit in pCR cases after neoadjuvant therapy for

esophageal cancer and suggested the necessity of a useful predictor of pCR [10, 11]. Further-

more, studies have reported some examination methods and biomarkers to predict pCR after

neoadjuvant therapy for esophageal cancer, although no predictors of pCR have been devel-

oped for clinical application in esophageal cancer [43–45]. A previous study found no sig-

nificant differences in the oncological outcomes of clinical complete response (cCR) cases

between a no treatment group and a radical surgery group after neoadjuvant chemoradiother-

apy or radiotherapy for advanced esophageal cancer [46], and the data suggested a “watch and

wait” policy for cases with cCR in order to avoid the morbidity associated with radical surgery.

We expect that our identified 17-molecule set will contribute to the prediction of pCR and will

help with the “watch and wait” policy in cases of esophageal cancer. We intend to further eval-

uate the feasibility of the predictive value of our identified predictor set.

The present study has several limitations. First, conception of heterogeneity among cancer

tissues should be considered. Therefore, we ensured that biopsy specimens were uniformly col-

lected from an elevated part at the proximal side of the tumor. Second, the expressions of can-

didate molecules were not confirmed using PCR, western blotting, and immunostaining.

Fig 2. Comparison of candidate molecular expressions between extracted cases and validation

cases. Of the 17 molecules, 12 (71%) (bold) matched the trends of molecular expression.

https://doi.org/10.1371/journal.pone.0188098.g002

Table 3. Clinicopathological data of the validation study.

Case no. Histopathological response grade Age (years) Sex cStage pStage Accomplishment of NAC

1 1a 78 Male IB IIA Complete

2 2 63 Male IIIA IA Complete

3 1a 67 Male IIIA IIIA Complete

4 2 68 Male IIB X* Complete

5 1a 80 Male IIA IIIA Complete

6 2 66 Male IIIA IA Complete

7 3 62 Male IIIC 0 (pCR) Complete

*Case no. 4 was diagnosed with pStage X, because the primary lesion was pCR, although viable cancer cells were observed in the lymph node lesion.

https://doi.org/10.1371/journal.pone.0188098.t003
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Therefore, we intend to perform further research on these molecules. Third, the present study

has a small sample size and is retrospective in design, including the validation cohort. The vali-

dation method only compared the trends of molecular expression between pCR and non-pCR

cases, and did not evaluate the predictive values of the candidate molecules. Next, we intend to

collect more samples and evaluate the predictive values. The biological functions should also

be investigated. Fourth, the present retrospective data were likely influenced by selection bias,

which did not merely include difficult lesions for resection, such as large tumors. Hence, the

present observations require confirmation in prospective studies.

In conclusion, a 17-molecule set that can predict pCR after NAC-DCF for locally advanced

esophageal cancer was identified using pretreatment biopsy samples. We intend to perform

further research on these molecules and their pathways, and conduct a prospective study to

evaluate the feasibility of the predictive value of this molecule set.
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