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Abstract Sarcopenia, broadly defined as the age-
related decline in skeletal muscle mass, quality, and
function, is associated with chronic low-grade inflam-
mation and an increased likelihood of adverse health
outcomes. The regulation of skeletal muscle mass with
ageing is complex and necessitates a delicate balance
between muscle protein synthesis and degradation. The
secretion and transfer of cytokines, long non-coding
RNAs (lncRNAs) and microRNAs (miRNAs), both
discretely and within extracellular vesicles, have
emerged as important communication channels be-
tween tissues. Some of these factors have been im-
plicated in regulating skeletal muscle mass, function,
and pathologies and may be perturbed by excessive
adiposity. Indeed, adipose tissue participates in a
broad spectrum of inter-organ communication and
obesity promotes the accumulation of macrophages,
cellular senescence, and the production and secretion
of pro-inflammatory factors. Pertinently, age-related
sarcopenia has been reported to be more prevalent in
obesity; however, such effects are confounded by
comorbidities and physical activity level. In this re-
view, we provide evidence that adiposity may

exacerbate age-related sarcopenia and outline some
emerging concepts of adipose-skeletal muscle com-
munication including the secretion and processing of
novel myokines and adipokines and the role of ex-
tracellular vesicles in mediating inter-tissue cross
talk via lncRNAs and miRNAs in the context of
sarcopenia, ageing, and obesity. Further research
using advances in proteomics, transcriptomics, and
techniques to investigate extracellular vesicles, with
an emphasis on translational, longitudinal human
studies, is required to better understand the physio-
logical significance of these factors, the impact of
obesity upon them, and their potential as therapeutic
targets in combating muscle wasting.
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IL Interleukin
IMP2 Insulin-like growth factor 2 mRNA-

binding protein 2
IRS Insulin receptor substrate
JAK Janus kinase
Lcn2 Lipocalin-2
lncMyoD Long non-coding myoblast determination

protein
lncRNA Long non-coding RNA
MAFbx Muscle atrophy F-box gene/atrogin-1
MALAT1 Metastasis-associated lung adenocarcino-

ma transcript 1
MHC Myosin heavy chain
miRNA MicroRNA
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
MuRF-1 Muscle ring finger-1
MyoD Myoblast determination protein
NF-κβ Nuclear factor-kappa beta
P38
MAPK

P38 mitogen-activated kinase

Pax7 Paired box 7
PGC1-α Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha
PI3K Phosphatidylinositol-3-kinase
Pre-
miRNA

Precursor-microRNA

Pri-
miRNA

Primary-microRNA

PVT1 Plasmacytoma variant translocation 1
SASP Senescence-associated secretory

phenotype
SAT Subcutaneous adipose tissue
SMAD Small mothers against decapentaplegic
SRF Serum response factor
STAT Signal transducer and activator of

transcription
T2D Type 2 diabetes mellitus
TGF-β Transforming growth factor-beta
TNF-α Tumour necrosis factor-alpha
VAT Visceral adipose tissue
WAT White adipose tissue

Introduction

Beyond middle-age, skeletal muscle mass, and strength
decline by 1–2% and 1–5% per year, respectively [1–3].

Skeletal muscle tissue is the human body’s principle
protein bank, and given the absence of a protein pool
for storage, it is critical for maintaining protein status via
the delicate regulation of its turnover [4, 5]. Indeed, the
maintenance of skeletal muscle mass, quality, and func-
tion with ageing is multifactorial and necessitates a
balance of regulatory processes in response to inherent
biological ageing, physical in/activity, injury, or illness
[6]. These processes include the generation of muscle
via adult myogenesis (comprising the activation of mus-
cle satellite cells, the proliferation of myoblasts; the
withdrawal of myoblasts from the cell cycle, their sub-
sequent differentiation and fusion into multinucleated
myofibres) [7, 8], the repair and remodelling of muscle
tissue [9] and its inter- and intracellular content [10], the
interaction between skeletal muscle and the nervous
system via motor neurones [11], and the interplay be-
tween synthesis and breakdown of muscle protein [12,
13].

Sarcopenia, broadly defined as the age-related de-
cline in skeletal muscle mass, quality, and function, is
the product of a negative balance of these muscle regu-
latory processes and is associated with an increased
likelihood of adverse health outcomes [14]. Sarcopenia
has been reported to be more prevalent in adults with
obesity [15]. Adiposity exacerbates sarcopenia, in-
creases fat infiltration in muscle, and reduces physical
function [14, 16, 17]. The state of concurrent obesity
and sarcopenia is considered by some to constitute a
discrete condition, termed sarcopenic obesity; however,
there is a lack of consensus surroundings its definition
and diagnostic criteria [18–20]. Individuals presenting
with sarcopenic obesity may have greater absolute mus-
cle mass than is typical of individuals with sarcopenia,
but the quality and function of that muscle (including
muscle strength) are reduced, which may exacerbate
muscle deterioration with ageing [21–24].

Critically, as our population becomes increasingly
aged and obese, the ramifications of obesity on the mass
and function of skeletal muscle with age warrant rigor-
ous investigation [25, 26]. In this review, we outline
some emerging conduits of adipose-skeletal muscle
communication in the context of sarcopenia and obesity
including the secretion and processing of novel
myokines and adipokines, as well as the significance
of cellular senescence on the adipose tissue secretome,
and the role of extracellular vesicles and non-coding
RNAs in mediating inter-tissue cross talk. We principal-
ly focus on sarcopenia and obesity as two distinct but
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often converging conditions. We also present evidence
investigating the phenomenon of sarcopenic obesity and
discuss the myriad ways that obesity may interact with
sarcopenia to the detriment of muscle mass, quality, and
function.

Adipose tissue as an endocrine organ

Once considered a passive energy reservoir, the discov-
ery of the adipose-secreted factors adipsin and leptin
confirmed adipose tissue as an endocrine organ
[27–29]. Following the initial observation that obese
adipose tissue has increased expression and secretion of
tumour necrosis factor-alpha (TNF-α), it has been shown
that obesity leads to the accumulation of macrophages
within adipose tissue, which promote the production and
secretion of several pro-inflammatory cytokines [30, 31].
Moreover, cellular senescence in adipose tissue, common
to both ageing and obesity, is now understood to contrib-
ute to inflammation, aberrant cytokine production, and
metabolic dysfunction [32]. Adipose tissue is now
known to participate in a broad spectrum of inter-organ
communication [33] and excessive adiposity conveys
pleiotropic effects on its endocrine and metabolic func-
tion, contributing to pathophysiological consequences
with ageing [34, 35]. Importantly, this has to be consid-
ered in the context of evidence from studies that demon-
strated a capacity for healthy adipose tissue to exert
favourable effects on skeletal muscle that further supports
the physiological importance of cross talk between the
two tissues [36].

Inter-tissue communication via multiple means

Historically, communication between cells was thought
to bemediated by cell-cell contact or by the extracellular
secretion of molecules, principally cytokines, a broad
family of small secreted proteins, which can confer
autocrine, paracrine, and endocrine effects on multiple
tissues [37]. While cytokines can be secreted discretely,
accumulating evidence has demonstrated that they may
also be transported by the secretion and transfer of
extracellular vesicles (EVs) and that certain cytokines
may also serve to regulate the packaging and trafficking
of these EVs [38]. EVs, principally divided into
exosomes and microvesicles, are respectively released
into the extracellular environment from endosomal and

plasma membrane origins and are reviewed elsewhere
[39, 40]. Alongside cytokines, EVs contain a broad
array of cargo including proteins, lipids, organelle com-
ponents, and myriad non-coding RNAs, which have
emerged as an important communication channel be-
tween tissues [41]. Pertinently, the discrete and EV-
mediated secretion and processing of novel cytokines,
long non-coding RNAs (lncRNAs), and microRNAs
(miRNAs), from adipose and skeletal muscle tissue,
have been implicated in the regulation of skeletal muscle
mass, function, and pathologies, in the context of obe-
sity and ageing [42, 43] (Table 1).

Senescence-associated secretory phenotype

Cellular senescence is an evolutionarily conserved age-
ing mechanism characterised by upregulation of cyclin-
dependent kinase inhibitor genes, which in turn activate
retinoblastoma protein to block cell cycle progression
[92–94]. Senescence arises in response to cellular stress
and damage, including metabolic insults [95, 96]. While
this serves to restrain harmful growth and replication of
damaged cells, senescent cells also secrete an array of
cytokines, chemokines, growth factors, and matrix-
remodelling proteases, collectively termed the
senescence-associated secretory phenotype (SASP)
[97, 98]. Senescent cells are resistant to apoptosis and
are ordinarily cleared by the immune system but accu-
mulate with ageing [99, 100]. Conditioned media from
primary human pre-adipocytes with induced senescence
via serial passage or irradiation demonstrate a SASP that
is rich in pro-inflammatory interleukins, interferon gam-
ma (IFN-γ), and TNF-α, which could negatively impact
upon muscle regulation [101].

Accumulation of senescent cells within metabolic
tissues, such as adipose and skeletal muscle, is deleteri-
ous to metabolic homeostasis [95, 102–104], and obe-
sity may promote the senescent state [105]. Indeed, the
adipose tissue of individuals with obesity displays ele-
vated oxidative stress and accelerated telomere shorten-
ing [106, 107], which are purported to induce and pro-
mote senescence [108, 109]. It has been proposed that
obesity and ageing drive excessive turnover of adipose
progenitors which may contribute to the onset of their
senescence and subsequent SASP, conveying both local
and systemic adipose tissue dysfunction and inflamma-
tion [110].
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The potential benefit of modulating cellular se-
nescence has been recently investigated. Adminis-
tration of Dasatinib and Quercetin, which target
and eliminate senescent cells, to omental adipose
tissue explants from middle-aged adults with obe-
sity reduced the abundance of senescent cells and
decreased pro-inflammatory cytokine secretion
[111]. No study to date has directly investigated
whether adipose tissue senescence is implicated in
sarcopenia and whether this is amplified by obesity.
However, the accumulation of intramuscular adipose
tissue that is common to both ageing and obesity [112,
113], the pro-inflammatory adipose SASP observed in
those states, and the ability of senescent cells to confer
senescence to their microenvironment suggest that this
relationship is plausible [17, 114]. To this effect, long-
term studies into the implications of adipose senescence
and the viability of anti-senescent therapeutics in
sarcopenia are needed. It must be considered, however,
that the human lifespan is vastly different to that of
rodents, fromwhommost existing data is derived. Thus,
any deleterious effects of cytotoxic therapies to remove
senescent cells may be amplified over the course of
human ageing [92].

Cytokines as mediators of adipose-muscle cross talk

The decline of skeletal muscle mass in various inflam-
matory states is associated with elevated production of
classical pro-inflammatory cytokines, including TNF-α,
interleukin (IL)-1 beta (IL-1β), IL-6, and IFN-γ [115].
The low-grade inflammation associated with ageing,
termed “inflammaging,” is influenced not only by over-
production of pro-inflammatory mediators but also by
perturbation of anti-inflammatory factors, such as IL-10
[116–119]. While far from being fully understood, the
roles of such classical cytokines in ageing muscle have
been reviewed elsewhere [115, 120–122]. Accordingly,
here we focus on cytokines which are implicated in
adipose-muscle cross talk with emerging significance
in the regulation of skeletal muscle mass, namely
resistin, IL-15, adiponectin, leptin, lipocalin-2, and
myostatin (Fig. 1; Table 1).

Resistin

Resistin was first identified in rodents as an adipocyte-
secreted factor that is upregulated in obesity and impairs

glucose tolerance, insulin action, and fatty acid handling
in skeletal muscle [123–126]. While the significance
and even existence of resistin in human adipocytes
has been contentious [127], by analysing conditioned
medium from subcutaneous adipose tissue (SAT)
from lean and obese humans, rather than isolated
adipocytes, we recently found it to be secreted from
SAT and increased with obesity [47]. This highlights
the importance of stromal and infiltrating immune
cells to the inflammatory in vivo phenotype of adi-
pose tissue [128].

Notably, incubation of primary human myotubes
from lean individuals with SAT-conditioned media
obtained from obese subjects produced thinner, less
multinucleated myotubes than those exposed to lean
SAT secretome, which is concordant with findings
using co-culture systems of human myotubes and
adipocytes isolated from visceral adipose tissue
(VAT) [47, 129]. Pertinently, the deleterious effects
of the obese SAT secretome were more pronounced in
myotubes derived from older than younger individ-
uals, suggesting ageing impairs the ability of muscle
to withstand inflammatory challenges. Since resistin
was prolifically secreted from obese SAT, further
investigation revealed that a physiologically relevant
concentration of resistin (5 ng mL−1) impaired myo-
blast differentiation through activation of the classical
nuclear factor-kappa beta (NF-κβ) pathway, similarly
producing thinner myotubes with reduced nuclear
fusion [47]. This adverse effect of resistin was con-
firmed in experiments showing that its depletion from
obese SAT secretome restored myogenesis [47]. Con-
sistent with these findings, overexpression of resistin
impairs C2C12 myoblast differentiation, resulting in
thinner myotubes with reduced expression of desmin
and myoglobin [44].

In vivo research on the effects of resistin on regu-
lating skeletal muscle mass and function is scant.
However, human plasma resistin concentrations cor-
relate with inflammatory markers [130], have been
reported to correlate with age [45], and in the elderly
are inversely associated with quadriceps torque [46]
and computed tomography determinants of abdomi-
nal muscle density (a marker of muscle quality and
composition) [131]. Collectively, the limited litera-
ture suggests an emerging role for resistin in sup-
pressing myogenic differentiation, particularly in
older skeletal muscle, which appears to be driven by
inflammation and obesity.
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Interleukin-15

IL-15, a four-helix bundle family cytokine, is produced
by a variety of tissues, including skeletal muscle and
adipose. Its mRNA expression is upregulated during the
differentiation of C2C12 myoblasts and it is also
expressed in pre- and post-differentiated 3T3-L1 adipo-
cytes, albeit at a comparatively much lower level [132].
IL-15 mRNA expression in mouse epididymal adipose
tissue and adipose tissue macrophages is increased in
response to a high-fat diet (HFD) [133]. IL-15 was

originally observed to have pro-myogenic effects on
murine C2 skeletal muscle cells by promoting the accu-
mulation of contractile proteins [134, 135]. Such effects
may be mediated by supressing muscle proteolytic path-
ways. Indeed, ex vivo incubation of rat muscle tissue
with recombinant IL-15 decreased the rate of proteoly-
sis, without a change in total protein synthesis or tissue
amino acid uptake [136]. Similarly, in vivo studies
showed that septic mice pre-treated with IL-15 had
lower expression of the proteolytic E3 ubiquitin ligases
muscle atrophy F-box gene/atrogin-1 (MAFbx) and

Fig. 1 Cytokines secreted from skeletal muscle and adipose tis-
sues with emerging significance in muscle-adipose cross talk and
the regulation of skeletal muscle mass. The expression, secretion,
extracellular-vesicle-mediated transport, and function of these cy-
tokines may be perturbed by ageing and obesity, impairing normal
muscle regulatory pathways. Processes regulating skeletal muscle
mass have been condensed into four fundamental levels: activation
of the muscle satellite cell pool; proliferation of myoblasts; differ-
entiation of myoblasts into myotubes; and the ubiquitin (Ub)
catabolic processes involved in the breakdown of muscle protein.
Regardless of colour, arrows and block (inhibitory) lines indicate
stimulatory and inhibitory effects, respectively, of a particular
cytokine on these regulatory levels. Red lines (whether arrows or
block lines) indicate pro-myogenic effects, which may act to
preserve muscle mass, while black lines (whether arrows or block

lines) indicate anti-myogenic effects which may confer adverse
effects on muscle mass. The effects of ageing without obesity
(silhouetted figure on the left) and ageing combined with obesity
(silhouetted figure on the right) to increase or decrease the secre-
tion and/or circulating abundance of these cytokines is indicated
by thick black upward or downward-pointing arrows, respectively.
Two upward arrows indicate a greater effect of obesity than the
lean state on the relevant cytokine with ageing. A question mark
indicates an unknown effect. An inhibitory line extending from a
running person indicates that the proposed effect of ageing is offset
when physical activity level is maintained with ageing. An inhib-
itory line extending to a cytokine receptor indicates that an in-
creased abundance of that cytokine is associated with a reduction
in expression of its receptor in skeletal muscle. Created with
BioRender.com
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muscle ring finger-1 (MuRF-1), and IL-15 treatment of
cachexic rats decelerated protein degradation and sup-
pressed expression of ubiquitin proteolysis pathway
components [48, 137].

We also reported that exposing primary myogenic
cultures from young and elderly adults to recombinant
IL-15 during differentiation resulted in thicker
myotubes that were protected against differentiation
impairment by TNF-α [49]. However, subcutaneous
administration of recombinant IL-15 in rats for 7 days
did not impact upon net muscle mass or protein content,
although it increased turnover by accelerating both pro-
tein synthesis and breakdown rates and decreased white
adipose tissue (WAT) mass by 33% [138]. Taken to-
gether, the literature supports a muscle-sparing effect of
IL-15, particularly in conditions of dysregulated protein
turnover such as cancer cachexia and possibly
sarcopenia, through the suppression of muscle protein
catabolism. However, IL-15 appears to have limited
effects on muscle anabolism, particularly in healthy
states.

We recently demonstrated in healthy older adults that
IL-15 muscle mRNA expression and plasma concentra-
tion are elevated 2-fold and 1.5-fold, respectively, rela-
tive to younger adults [49]. However, IL-15 receptor
signalling subunit IL2RB expression was 80% lower in
older muscle, suggesting that the intracellular pro-
myogenic effects of IL-15 may be blunted in the elderly.
In a separate study, plasma IL-15 concentrations were
found to be lower in sarcopenic compared to non-
sarcopenic older adults and inversely correlated with
sarcopenic state and body mass index (BMI) [50]. With
regard to adiposity and IL-15 expression, obese individ-
uals present with lower serum IL-15 than normal-weight
individuals and IL-15 knockout inmice results in weight
gain [139]. Interestingly, the aforementioned study that
examined the effect of recombinant IL-15 administra-
tion in rats reported a decline in WAT mass [138].

It is important to note that levels of tissue IL-15
mRNA are not necessarily concordant with IL-15 pro-
tein expression and secretion, on account of inefficient
translation due to multiple AUG initiation sites in the 5′-
untranslated region [140]. Furthermore, alternative
splicing produces two mature isoforms, only one of
which follows the secretory pathway [141]. The seem-
ingly contradictory observations of increased IL-15
mRNA expression in ageing and reduced circulating
IL-15 abundance in sarcopenia may therefore demon-
strate a transcriptional attempt to offset some impaired

translational or secretory capacity that may occur with
inflammaging, in an attempt to mitigate the catabolic
effects of declining circulating IL-15.

Collectively, the literature suggest that IL-15 expres-
sion and function is tightly regulated at multiple levels
and plays a significant role in the preservation of skeletal
muscle mass. Its significance appears greatest within an
atrophic, inflammatory state, such as that commonly
observed with ageing, where it may have therapeutic
potential through amelioration of processes involved in
protein degradation.

Adiponectin

Adiponectin is the most abundant peptide secreted by
adipocytes and plays a key role in energy homeostasis
[142–144]. Adiponectin functions through the binding
of the adaptor protein APPL1 (phosphotyrosine
interacting with PH domain and leucine zipper 1), to
the AdipoR1 and AdipoR2 receptors, and promotes
interaction between the insulin receptor (IR) and its
substrates IRS1/2, consequently priming the
phosphatidylinositol-3-kinase (PI3K) pathway
[145–147]. In skeletal muscle, adiponectin enhances
p38 mitogen-activated kinase (MAPK)/peroxisome
proliferator-activated receptor gamma coactivator 1-
alpha (PGC-1α) signalling and mitochondrial biogene-
sis [148, 149], and stimulates activation of adenosine
monophosphate-activated protein kinase (AMPK) and
acetyl-CoA carboxylase [150–152].

Unlike many adipocyte-secreted factors, adiponectin
expression and secretion are greatest from healthy adi-
pocytes of lean individuals and are inhibited by pro-
inflammatory agents [124, 153, 154]. Accordingly,
adiponectin levels decrease with obesity and type 2
diabetes mellitus (T2D) and correlate positively with
insulin sensitivity and negatively with visceral adiposity
[155–157]. Pertinently, circulating adiponectin is lower
in sarcopenic than non-sarcopenic older adults [51] but
does not differ between physical activity-matched non-
sarcopenic older and younger adults, suggesting that it is
not ageing per se driving reduced adiponectin concen-
tration, but rather an age-associated decline in habitual
physical activity level [52]. Conversely, circulating
adiponectin was found to be higher in cardiovascular
disease (CVD) patients with sarcopenia than without.
However, the sarcopenic CVD group were predomi-
nantly female (66% female compared to a 28% female
non-sarcopenic group) who typically present with
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higher adiponectin concentrations [158–160]. Neverthe-
less, some studies have suggested that elevated
adiponectin may predict reduced muscle strength and
function in older adults [161, 162]. Therefore, the higher
levels of adiponectin in sarcopenic individuals reported
in some studies could reflect a compensatory adaptation.
Such a compensatory induction could be an attempt to
preserve the p38 MAPK translational initiation path-
way, the activation of which is dysregulated in human
ageing [163], thus protecting against age-related impair-
ment of protein synthetic pathways.

Globular adiponectin activates muscle satellite cells,
promotes their motility, induces muscle gene expression
including myosin heavy chain (MHC), myogenin, and
p21, and drives myoblasts to exit the cell cycle, promot-
ing differentiation [53–55]. Adiponectin overexpression
increased regenerating myotubes in a mouse model of
ageing and heart failure [164]. Adiponectin was found
to accumulate on the myofibre plasma membrane and
intracellularly co-localised with endosomes positive for
the multivesicular/exosome marker cluster of
differentiation-63 in regenerating, but not intact, fibres.
However, in T-cadherin-null mice myotube regenera-
tion was not increased by adiponectin overexpression,
suggesting an essential role of T-cadherin in mediating
these effects [164]. The authors demonstrated that both
globular adiponectin and a small molecule mimetic
(GTDF) induced differentiation and supressed MURF1
and MAFbx in various atrophy models, preventing the
loss of myotube area [165]. Crossing degenerative
muscle-diseased mice with mice overexpressing
adiponectin improved expression of the myogenic dif-
ferentiation markers myogenic regulatory factor-4 and
myogenin, while reducing muscle inflammation and
oxidative stress, resulting in higher muscle force and
endurance [166]. Although this appears to contradict
findings from human studies [161, 162], it supports
the aforementioned possibility of a protective role of
adiponectin on skeletal muscle mass in dysregulated
states.

Confoundedly, stimulation of C2C12 cells with an
adiponectin receptor agonist (AdipoRon) reduced cellu-
lar protein content, myotube diameter, and myotube
multinucleation in a dose-dependent fashion (5–
20 μM). However, the relevance of the dose utilised to
physiologically elevate adiponectin concentrations is
not well understood [167]. In mice, the extensor
digitorum longus (fast twitch), but not soleus (slow
twitch) muscle, exhibited increased adiponectin

expression with ageing, though adiponectin receptor
expression was unchanged [167]. The authors proposed
that excessively high circulating adiponectin may in-
duce skeletal muscle atrophy within fast-type muscle.
However, neither serum AdipoRon nor adiponectin
were measured in this study, limiting extrapolation and
comparison to humans. Given that adiponectin activates
AMPK, and AMPK activity has an inhibitive effect on
mammalian target of rapamycin (mTOR), which plays a
central role in protein synthesis, it is plausible that
highly elevated adiponectin could exert negative effects
on muscle mass regulation by excessive activation of
AMPK [168–171]. Thus, it has been speculated that
there is a healthy circulating adiponectin range required
to maintain normal adiponectin signalling, though this
purported range has not yet been clearly defined [171].

Leptin

Leptin is a cytokine-like hormone that is abundantly
secreted by adipocytes but is also expressed in skeletal
muscle [172]. Leptin conveys satiety-promoting effects
and plays a significant role in the regulation of energy
balance and body mass, as well as lipolysis and insulin
sensitivity, which has been reviewed elsewhere
[173–176]. Circulating leptin concentration increases
with obesity, correlates with BMI and adipose tissue
mass [81, 177–180], and is reduced with weight loss
[181–184]. Pertinent to the regulation of skeletal muscle
mass, leptin administration increases hindlimb muscle
mass and fibre size in aged mice [56], and prevents
muscle atrophy in leptin-deficient mice [57]. Mechanis-
tically, the binding of leptin to the long form of its
receptor, activates Janus kinase 2 (JAK2), subsequently
promoting PI3K activity and phosphorylation of protein
kinase B (Akt) and p38 MAPK [58, 185–188]. Leptin
promotes C2C12 myoblast proliferation but suppresses
expression of myogenin and myoblast determination
protein (MyoD), which is mediated by JAK-STAT (sig-
nal transducer and activator of transcription) andMAPK
pathways [59]. Despite the propensity for leptin to pro-
mote pathways involved in muscle regulation, its
obesity-mediated upregulation is associated with resis-
tance to its action [176, 189–191]. Central leptin recep-
tor expression may be reduced as a direct result of
increased leptin abundance [192–194]. Concordantly,
skeletal muscle protein expression of the long leptin
receptor is lower in adults with obesity, suggesting one
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mechanism by which peripheral leptin resistance may
occur [60].

While circulating leptin is elevated in animal models
of ageing in the absence of obesity [195], it has been
reported to decline in elderly adults with severe frailty,
but not in community-dwellers [61]. This decline may
reflect not only the low abundance of adipose tissue
often seen in frail older adults but also the diminishing
mass of skeletal muscle, which is also a significant
source of leptin [196–198]. Conversely, in community
dwelling older adults, appendicular skeletal muscle
mass and thigh muscle cross-sectional area have been
negatively associated with plasma leptin concentration,
even after adjustments for bodyweight or body fat per-
centage [62, 63]. In these studies, circulating leptin
abundance was greater in those presenting with either
sarcopenia or obesity, and greater still in individuals
presenting with sarcopenic obesity. Interestingly, phys-
ical inactivity in the form of bed rest, which is often
characteristic of frail older adults, also increases leptin
levels independent of changes in fat mass [199]. It could
be argued that physical inactivity increases leptin secre-
tion in an attempt to preserve muscle mass, which may
be ineffective in an aged-obese environment due to
existing leptin resistance. Collectively, the literature
suggests that both sarcopenia and obesity may promote
a hyperleptinaemic environment that drives peripheral
leptin resistance via the downregulation of its receptor.
Thus, obesity may amplify resistance to the muscle-
preserving effects of leptin in ageing and contribute to
the sarcopenic-obese state.

Lipocalin 2

Lipocalin 2 (Lcn2) is a secretory glycoprotein first iden-
tified in human neutrophils and later noted for its abun-
dant expression in adipocytes [200–202]. Both Lcn2
and its cell surface receptor (24p3R) have also been
found to be expressed in skeletal muscle [64, 203].
Lipocalins bind and transport small hydrophobic mole-
cules such as fatty acids, steroids, and retinol [200].
Lcn2 is induced by factors that drive insulin resistance
and inflammatory stimuli, with transactivation by the
pro-inflammatory transcription factor NF-κβ [65, 204].
Circulating Lcn2 is elevated with obesity and correlates
with adiposity, adipose distribution, and inflammatory
markers, though the significance of this relationship is
contestable and not necessarily causal, with Liu et al.
observing circulating Lcn2 to neither correlate with nor

predict the incidence of insulin resistance or cardiovas-
cular risk factors [66, 202, 205, 206].

Adipose Lcn2 mRNA and protein expression is
greater in humans and rodents that are obese, compared
to those of normal-weight [67, 200, 202]. Catalán et al.
found plasma Lcn2 concentration was not affected by
obesity; however, circulating Lcn2/matrix metallopro-
teinase (MMP) complex abundance and VAT MMP-2
and MMP-9 activity were elevated [67]. Given the role
of the MMP system in adipocyte differentiation and
SAT and VAT remodelling, this may implicate Lcn2
in the development of obesity [207–209]. On the other
hand, it has recently been argued that rather than being
causal of metabolic dysfunction, elevated Lcn2 may
instead provide a protective mechanism to mitigate
obesity-induced dysregulation and preserve pancreatic
β-cell function [210]. Indeed, global Lcn2 knockout in
mice was recently shown to accelerate age-dependent
weight gain and visceral fat deposition in female mice,
although curiously this was not the case in male mice
[211].

Rebalka et al. investigated the role of Lcn2 in
regenerating skeletal muscle and the effects of Lcn2
deletion [64]. While Lcn2 protein was lowly expressed
in uninjured mouse skeletal muscle, its expression in
Pax7+ muscle satellite cells was increased in response to
cardiotoxin injury. In contrast, global Lcn2 knockout
mice had reduced satellite cell activation and diminished
muscle regeneration, with decreased embryonic MHC
expression and smaller myofibre areas. However, the
effects on adipose tissue were not studied. Finally, con-
sistent with the role of Lcn2 in MMP regulation, Lcn2
knockout mice displayed greater fibrosis and lower
MMP-9 activity during muscle regeneration.

The relationship between adipose-derived Lcn2 and
skeletal muscle regulation is not yet fully understood,
with reports of global Lnc2 knockout in C57BL/6 mice
conferring both protection from, and potentiation of,
diet- and ageing-induced metabolic dysregulation
[212–214]. Initial investigations have shown that anti-
diabetic drugs can counteract obesity-upregulated Lcn2
expression and circulating abundance in rats, T2Dmice,
and humans with T2D [200, 206]. However, reports of
acute, but not chronic, exercise elevating circulating
Lcn2 abundance in obese adults suggests that the rela-
tionship between Lcn2 and metabolic health is complex
[215, 216]. Furthermore, it is not yet clear how modu-
lation of circulating Lcn2 might impact skeletal muscle
regulation. Therefore, studies employing muscle and
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adipose tissue-specific deletion as well as overexpres-
sion or administration of recombinant Lcn2 within ro-
dent models of ageing and muscle wasting are
warranted.

Myostatin

Myostatin is a transforming growth factor-beta (TGF-β)
superfamily member that negatively regulates muscle
mass and whose disruption produces hyper-
muscularity [68]. Myostatin signals through activin-
responsive type II receptors (ACTRIIA and ACTRIIB)
and the type I receptors, activin-like kinases, triggering
activation of small mothers against decapentaplegic
(SMAD)2 and SMAD3 transcription factors, resulting
in the inhibition of hypertrophic and activation of atro-
phic pathways [69, 217–221]. Recombinant myostatin
impairs myogenesis through suppression of satellite cell
activation and myoblast proliferation and differentia-
tion, while genetic inactivation impairs myotube forma-
tion in vitro [70–72, 222, 223]. Myostatin expression
and abundance is reportedly, though not universally,
elevated with obesity, advancing age and muscle
wasting, and decreased by weight loss [73, 224–229].

Whether the deleterious association of obesity and
myostatin expression reflects an effect of excessive
adipose tissue per se, or the product of an obesogenic
muscle environment, remains unclear. Similarly, exer-
cise is a potent suppressor of myostatin expression
[230–232], and thus physical activity status adds a fur-
ther confounding variable that is not always controlled
for. Nevertheless, primary myotubes generated from
morbidly obese individuals exhibit ~ 2-fold greater
myostatin protein content and ~ 3-fold greater secretion
thanmyotubes from lean donors, and mRNA expression
is similarly elevated in morbidly obese muscle [73,
233].

Myostatin is also expressed in adipose tissue; how-
ever, data from ob/ob mice suggest mRNA expression is
50–100-fold lower than in skeletal muscle [234]. Impor-
tantly, myostatin expression was assessed in the tibialis
anterior, a muscle comprised almost exclusively of fast
fibres [235]. Since MHC IIb (a fast twitch myosin)
expression correlates withmyostatinmRNA expression,
this may in part explain the magnitude of difference
reported between muscle and adipose myostatin expres-
sion [236]. Nevertheless, both myostatin and ActRIIB
mRNA expression were 50–100-fold higher in ob/ob
than wild-type adipose tissue. Conversely, despite

elevated serum abundance, myostatin expression in
SAT and VAT was not different between age-matched
severely obese, lean, and overweight humans [237]. It is
plausible that the contradictory findings between obese
human and murine adipose tissue myostatin expression
reflect fundamental differences between human and
murine adipose expression profiles and brown adipocyte
abundance [238, 239].

Adipose tissue-specific deletion of myostatin in mice
fed a HFD did not affect muscle weight nor body
composition; however, whole-body knockout partially
supressed HFD-induced fat accumulation [77, 240].
Conversely, muscle-specific inhibition of myostatin sig-
nalling increased lean mass and decreased fat mass in
both chow and high-fat diets [77]. These studies suggest
that secretion and signalling of myostatin in skeletal
muscle influence the regulation of muscle and adipose
mass. However, myostatin secretion and its signalling in
adipose tissue have little impact on either adipose or
muscle regulation, reflecting its vastly lower expression
in adipose tissue.

Ageing appears to upregulate myostatin expression
independent of adiposity, which if translated to in-
creased myostatin protein secretion could contribute to
sarcopenia by promoting atrophic and inhibiting hyper-
trophic pathways via canonical TGF-β signalling. Mus-
cle myostatin mRNA and protein expression was 2.0-
fold and 1.4-fold higher, respectively, in older than
younger males [224] and myostatin mRNA expression
was 56% greater in elderly than young women [74].
Older males matched with younger males for total- and
lean-body mass and body fat percentage tended to have
higher basal muscle myostatin mRNA expression and
significantly greater muscle myostatin protein content
[75]. Whether elevated myostatin expression with ad-
vancing age is a function of ageing per se or a product of
age-associated physical inactivity, systemic inflamma-
tion, or nutritional status remains poorly investigated.
Interestingly, muscle myostatin mRNA was found to be
lower in both ambulatory and non-ambulatory elderly
women than young women [76]. Myostatin protein
content was greatest in the old ambulatory group, with
no difference in plasma concentrations between groups.
Similarly, higher concentrations of serum myostatin
have been reported in non-frail compared to frail nursing
home residents, and its abundance was increased in
male residents, of both frail and non-frail status, follow-
ing chronic exercise [241]. Evidently, further research is
necessary to characterise and delineate between the
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effects of advancing age, adiposity, and physical inac-
tivity on human myostatin expression and function
in vivo.

Long non-coding RNAs: emerging roles in skeletal
muscle regulation

Only ~ 1% of the human genome is translated into
proteins; however, much is transcribed into non-
protein-coding RNAs [242, 243]. Of these, lncRNAs,
with transcripts of > 200 nucleotides, are the largest
group and have been implicated in the regulation of
RNA transcription, splicing, and trafficking, miRNA
regulation, and RNA stability [84, 244–248]. lncRNAs
have been implicated in obesity and in obesity-
associated disorders including muscle wasting [249,
250]. Sequencing of SAT from females with and with-
out obesity identified 86 lncRNAs that were differen-
tially expressed [251]. Skeletal muscle from individuals
with inclusion body and anti-Jo-1-associated myositis, a
collection of diseases characterised by chronic muscle
inflammation and weakening, revealed a similar number
of differentially expressed lncRNAs, relative to healthy
controls [78]. Of these, 16 lncRNAs were differentially
expressed in both myositis groups, including H19,
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), plasmacytoma variant translocation 1
(PVT1), and long non-coding myoblast determination
protein (lncMyoD), which have been previously
characterised and implicated in skeletal muscle regula-
tion [84, 252, 253] (Table 1).

H19

H19 is upregulated during myoblast differentiation and
its inhibition impairs skeletal muscle differentiation
[254]. Pertinently, two miRNAs encoded by H19 ex-
on1, miR-675-3p and miR-675-5p, which are induced
during differentiation, can rescue the effects of H19
depletion through suppression of the TGF-β/bone mor-
phogenetic protein pathway. H19 expression in SAT
and VAT negatively correlates with BMI; however,
whether an obesity-associated decline in adipose H19
affects the regulation of skeletal muscle mass remains to
be investigated [255]. Given the aforementioned differ-
ential skeletal muscle expression of H19 in myositis
patients, its potential involvement in age-related muscle
wasting also warrants investigation.

MALAT1

MALAT1 expression increases during differentiation of
primary human myoblasts and its knockdown is associ-
ated with impaired proliferation and differentiation [79,
256]. Treatment of mice with recombinant myostatin
drastically reduced MALAT1 expression, which given
the positive impact of myostatin deficiency on muscle
function with ageing suggests MALAT1 may be an
important downstream target of myostatin and regulator
of myogenesis with ageing that deserves examination
[256–258]. MALAT1 can competetively bind miR-133,
de-repressing the transcription factor serum response
factor (SRF) in myoblasts, facilitating upregulation of
muscle-specific gene expression [79]. Conversely, it has
been reported that MALAT1 is downregulated during
early myogenesis and regulates differentiation through
modulation of MyoD [80]. The impact of adiposity on
MALAT1 expression in skeletal muscle and on
myogenesis has not yet been explored.

PVT1

PVT1 is activated during muscle atrophy, affecting
myofibre size, apoptosis, and mitochondrial function
[252]. Downexpression of PVT1 in muscle induces
resistance to atrophic processes in response to a dener-
vation model of muscle wasting, by modulating apopto-
sis and autophagy. PVT1 is implicated in a variety of
disease states characterised by inflammation, including
obesity where its expression in murine adipose tissue is
increased and promotes adipogenesis [82] and in osteo-
arthritis, where its suppression may ameliorate disease
progression through the repression of catabolism and
inflammation [83, 259]. However, PVT1 in ageing has
not yet received much attention and its role in the cross
talk between adipose tissue and skeletal muscle remains
unknown.

lncMyoD

Encoded next to the MyoD gene, lncMyoD is activated
by MyoD during myoblast differentiation and binds to
insulin-like growth factor (IGF) mRNA-binding protein
2 (IMP2), blocking IMP-mediated shuttling of
proliferation-promoting RNAs, inhibiting their transla-
tion and thus proliferation [84, 85]. The MyoD-
lncMyoD-IMP2 pathway demonstrates a mechanism
involved in the proliferation-inhibitive effects of MyoD,
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promoting a permissive state for differentiation. In
mice, skeletal muscle lncMyoD expression is upreg-
ulated during models of disuse atrophy including
denervation, casting, and tail suspension, but not in
models of systemic muscle wasting including dexa-
methasone administration, cancer cachexia, and
fasting [260]. Given the prevalence of physical inac-
tivity and immobilisation amongst the elderly, such
findings warrant investigations into the role and ther-
apeutic potential of lncMyoD in human muscle
ageing.

MicroRNAs: novel candidate factors
in adipose-muscle cross talk

The non-coding miRNAs are well established as key
mediators of gene expression through post-
transcriptional downregulation, translational repression,
and deadenylation-dependent decay and are abundant
within EVs [261–268]. Most miRNAs are first tran-
scribed into primary miRNAs (pri-miRNAs), processed
by the RNase III enzymes Drosha, forming precursor
miRNAs (pre-miRNAs), and Dicer, yielding mature
miRNAs [269–271]. Recent reviews and systematic
analyses of microarrays and next-generation sequencing
have highlighted a plethora of miRNAs that are differ-
entially expressed in skeletal muscle and/or plasma with
ageing and muscle wasting, though the functional roles
of many of these novel miRNAs remain to be elucidated
[89, 272–275]. Similarly, within metabolic tissues and
the circulation, numerous miRNAs have been implicat-
ed in the pathological development of obesity and may
serve important functions in metabolic organ cross talk
[276–281].

Whether obesity exacerbates sarcopenia through
miRNA-mediated adipose-muscle cross talk is unclear.
However, the capacity for adipose tissue to mediate
metabolic cross talk with skeletal muscle via miRNAs
is evident. Indeed, Wang et al. showed that miR-130b is
secreted from adipocytes during adipogenesis; its WAT
mRNA expression is increased with obesity; its circu-
lating abundance is elevated in human and murine obe-
sity, correlates with BMI, and predicts the metabolic
syndrome; and it is able to target muscle cells,
supressing expression of its target gene, PGC-1α [282].

While direct investigations of possible miRNA-
mediated cross talk in the context of age-related muscle
wasting and obesity remain to be undertaken, separate

investigations have uncovered differentially expressed
miRNAs common to both ageing and obesity, including
miR-31, miR-223, and miR-33a [283, 284]. Such
miRNAs may present candidate mediators of the ad-
verse effects of obesity on muscle mass regulation
(Table 1).

miR-31, miR-223, and miR-33a

Administration of leptin to aged mice increased muscle
mass and expression of miR-31 and miR-223, which are
known to be elevated during muscle regeneration and
repair [56]. Given the aforementioned (“Leptin” section)
potential role of leptin in the regulation of skeletal
muscle mass, this suggests a channel by which miRNAs
may be involved in mediating a beneficial effect of
leptin in ageing muscle [56, 284].

miR-33a is expressed in both human skeletal muscle
and adipose tissue [285] and encoded within sterol
regulatory element-binding protein 2, a transcription
factor involved in lipid biosynthesis and trafficking
[286]. The circulating level of miR-33a is lower in older
than younger adults in both the presence and absence of
insulin resistance [283]. It has been shown that miR-33a
knockout mice develop obesity with increased prolifer-
ation of pre-adipocytes, increased lipid uptake, and im-
paired lipolysis [287, 288]; however, the effect of obe-
sity per se on miR-33a expression and abundance is not
known. Administration of a miR-33a mimetic to prima-
ry duck myoblasts impaired proliferation, while a miR-
33a inhibitor enhanced proliferation, and it was demon-
strated that miR-33a may directly target IGF-1,
follistatin, and cyclin-D1 to inhibit myoblast prolifera-
tion by suppressing the PI3K/Akt/mTOR signalling
pathway [289]. Taken together, these data suggest that
miR-33a is essential for normal adipocyte development
and function; however, its excessive abundance may
impair myogenesis. Thus, the declining levels of circu-
lating miR-33a seen with ageing may act to offset the
otherwise declining myogenic capacity of skeletal mus-
cle. However, more research is needed to unravel the
role of miR-33a in regulatingmuscle mass in the context
of ageing and obesity.

MyomiRs

Numerous muscle-enriched miRNAs (myomiRs) have
been implicated in myogenesis through their involve-
ment with myogenic regulatory factors [290–293].
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Using microarrays, miR-133a and miR-133b, which
promote myoblast proliferation through repression of
SRF [86], were found to be downregulated in muscle
from healthy older men [89]. Conversely, elevated
levels of pri-miRNA-1-1, pri-miRNA-1-2, pri-miRNA-
133a-1, and pri-miRNA-133a-2 were found in the mus-
cle from elderly men, relative to younger men [90].
However, these differences did not exist at the mature
miRNA level, suggesting differential processing of pri-
and pre-miRNAs with ageing, although dissimilar to
prior findings, Drosha and Dicer protein or mRNA
expression were not different between young and older
men [90, 294].

Combined injection of miR-1, miR-133, and miR-
206 accelerates muscle regeneration in vivo, induces
myogenic expression, and promotes myoblast differen-
tiation in vitro [87, 293]. miR-1 promotes myogenesis
through targeting of the muscle gene transcriptional
repressor histone deacetylase 4 (HDAC4), and its ex-
pression and circulating abundance are suppressed by
HFD in mice [295, 296]; however, skeletal muscle
miR-1 mRNA expression was elevated in a murine
model of progeroid ageing [88]. miR-206 promotes
myoblast differentiation and directly represses
follistatin-like-1 and utrophin; however, its mRNA
expression was also found to be elevated in aged
mouse muscle [56, 91]. Pertinently, miR-206 ex-
pression in plasma was found to be downregulated
0.5-fold in children with overweight/obesity relative
to normal-weight children, suggesting a potential
mechanism by which obesity might adversely affect
myogenesis independent of ageing [297]. Similarly,
obesity is associated with downregulation of miR-
133a-3p in human SAT [298] and in mice HFD-
induced obesity downregulates miR-133b in WAT
[299]. Conversely, HFD-induced obesity upregulates
miR-133a in mouse muscle [295]; however, the
functional significance of these observations in the
context of regulating skeletal muscle mass remains
unclear.

It is growing ever more apparent that miRNAs play
vital roles in myogenesis and preliminary studies have
identified both interacting and diverging effects of obe-
sity and ageing on their expression and function. The
lack of consensus between these studies highlights the
need for further research, with an emphasis on transla-
tional studies to confirm findings from sequencing and
microarray studies, to delineate the impact of ageing and
obesity per se on the miRNA-mediated regulation of

skeletal muscle mass. The subsequent identification and
confirmation of differentially regulated adipose-muscle
cross talking miRNAs will doubtless present novel po-
tential therapeutic targets for muscle wasting conditions.

Conclusions and future directions

The regulation of skeletal muscle mass with ageing is
complex and delicately balanced, involving many se-
creted molecules (including proteins and RNAs), which
often display pleiotropic effects. Many of these factors
appear perturbed by excessive adiposity, but effects are
confounded by age, physical activity status, and comor-
bidities, frequently resulting in conflicting findings and
limited reproducibility. Indeed, the potent beneficial
effects of exercise on muscle-remodelling are a stark
contrast to the rapid deterioration of muscle mass and
function observed during periods of physical inactivity
and immobilisation, which feature in the lives of some,
but not all, elders. It is imperative therefore that every
effort is taken to control for physical activity status when
conducting human studies. Advances in proteomics and
transcriptomics are enabling greater investigation of the
secretomes of human muscle and adipose tissue in
healthy, dysfunctional, and senescent states. There is a
need, however, to extend the application of these tech-
niques beyond the cross-sectional studies that have
identified the differences in these secretomes, and to
apply them to longitudinal studies of human ageing.
Similarly, co-culture techniques using human primary
cells from well-characterised donors are improving
our understanding of these factors across the spec-
trums of health and ageing and offer greater relevance
to the human condition. Finally, advances in tech-
niques to investigate extracellular vesicles, to identify
novel non-coding RNAs, and to establish their func-
tional significance in regulating skeletal muscle mass
may identify novel therapeutic targets for preserving
muscle mass with ageing and increasing adiposity and
may enhance our understanding of the sarcopenic-
obese phenomenon.

Funding PhD Studentship (AW) funded by the MRC Versus
Arthritis Centre for Musculoskeletal Ageing Research.

Compliance with ethical standards

Conflicts The authors declare that they have no conflicts of
interest.

98



GeroScience (2021) 43:85–110

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB,
Nevitt M, Schwartz AV, et al. The loss of skeletal muscle
strength, mass, and quality in older adults: the health, aging
and body composition study. J Gerontol A Biol Sci Med
Sci. 2006;61(10):1059–64.

2. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA,
Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr
longitudinal study. J Appl Physiol. 2000;88(4):1321–6.
https://doi.org/10.1152/jappl.2000.88.4.1321.

3. Rantanen T, Masaki K, Foley D, Izmirlian G, White L,
Guralnik JM. Grip strength changes over 27 yr in Japanese-
American men. Journal of applied physiology (Bethesda,
Md : 1985). 1998;85(6):2047–53. https://doi.org/10.1152
/jappl.1998.85.6.2047.

4. Guillet C, Boirie Y, Walrand S. An integrative approach to
in-vivo protein synthesis measurement: from whole tissue
to specific proteins. Curr Opin Clin Nutr Metab Care.
2004;7(5):531–8.

5. Poortmans JR, Carpentier A, Pereira-Lancha LO, Lancha
A. Protein turnover, amino acid requirements and recom-
mendations for athletes and active populations. Braz J Med
Biol Res. 2012;45(10):875–90. https://doi.org/10.1590
/S0100-879X2012007500096.

6. McCormick R, Vasilaki A. Age-related changes in skeletal
muscle: changes to life-style as a therapy. Biogerontology.
2018;19(6):519–36. https://doi.org/10.1007/s10522-018-
9775-3.

7. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells
and adult myogenesis. Curr Opin Cell Biol. 2007;19(6):
628–33. https://doi.org/10.1016/j.ceb.2007.09.012.

8. Yamakawa H, Kusumoto D, Hashimoto H, Yuasa S. Stem
cell aging in skeletal muscle regeneration and disease. Int J
Mol Sci. 2020;21(5):1830. https://doi.org/10.3390
/ijms21051830.

9. Carosio S, Berardinelli MG, Aucello M,Musarò A. Impact
of ageing on muscle cell regeneration. Ageing research
reviews. 2011;10(1):35–42. https://doi.org/10.1016/j.
arr.2009.08.001.

10. Addison O, Drummond MJ, LaStayo PC, Dibble LE,
Wende AR, McClain DA, et al. Intramuscular fat and
inflammation differ in older adults: the impact of frailty

and inactivity. J Nutr Health Aging. 2014;18(5):532–8.
https://doi.org/10.1007/s12603-014-0019-1.

11. Wilkinson DJ, Piasecki M, Atherton PJ. The age-related
loss of skeletal muscle mass and function: measurement
and physiology of muscle fibre atrophy and muscle fibre
loss in humans. Ageing research reviews. 2018;47:123–32.
https://doi.org/10.1016/j.arr.2018.07.005.

12. Breen L, Phillips SM. Skeletal muscle protein metabolism
in the elderly: interventions to counteract the 'anabolic
resistance' of ageing. Nutr Metab (Lond). 2011;8(1):68.
https://doi.org/10.1186/1743-7075-8-68.

13. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen
BB, Verdijk LB, et al. Aging is accompanied by a blunted
muscle protein synthetic response to protein ingestion.
PLoS One. 2015;10(11):e0140903. https: //doi.
org/10.1371/journal.pone.0140903.

14. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O,
Cederholm T, et al. Sarcopenia: revised European consen-
sus on definition and diagnosis. Age Ageing. 2018:afy169-
afy. https://doi.org/10.1093/ageing/afy169.

15. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia
exacerbates obesity-associated insulin resistance and
dysglycemia: findings from the National Health and
Nutrition Examination Survey III. PLoS One. 2010;5(5):
e10805. https://doi.org/10.1371/journal.pone.0010805.

16. Roh E, Choi KM. Health consequences of sarcopenic
obesity: a narrative review. Front Endocrinol (Lausanne).
2020;11(332). https://doi.org/10.3389/fendo.2020.00332.

17. Kalinkovich A, Livshits G. Sarcopenic obesity or obese
sarcopenia: a cross talk between age-associated adipose
tissue and skeletal muscle inflammation as a main mecha-
nism of the pathogenesis. Ageing research reviews.
2017 ; 35 : 200–21 . h t t p s : / / d o i . o r g / 10 . 1016 / j .
arr.2016.09.008.

18. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair
KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43.
https://doi.org/10.1067/mlc.2001.113504.

19. ROUBENOFF R. Sarcopenic obesity: does muscle loss
cause fat gain?: lessons from rheumatoid arthritis and
osteoarthritisa. Ann N Y Acad Sci. 2000;904(1):553–557.
https://doi.org/10.1111/j.1749-6632.2000.tb06515.x.

20. Batsis JA, Villareal DT. Sarcopenic obesity in older adults:
aetiology, epidemiology and treatment strategies. Nature
reviews Endocrinology. 2018;14(9):513–37. https://doi.
org/10.1038/s41574-018-0062-9.

21. Villareal DT, Banks M, Siener C, Sinacore DR, Klein S.
Physical frailty and body composition in obese elderly men
and women. Obes Res. 2004;12(6):913–20. https://doi.
org/10.1038/oby.2004.111.

22. Roubenoff R. Sarcopenic obesity: the confluence of two
epidemics. Obes Res. 2004;12(6):887–8. https://doi.
org/10.1038/oby.2004.107.

23. Stephen WC, Janssen I. Sarcopenic-obesity and cardiovas-
cular disease risk in the elderly. J Nutr Health Aging.
2009;13(5):460–6. https://doi.org/10.1007/s12603-009-
0084-z.

24. Chen L, Nelson DR, Zhao Y, Cui Z, Johnston JA.
Relationship between muscle mass and muscle strength,
and the impact of comorbidities: a population-based, cross-
sectional study of older adults in the United States. BMC

99

https://doi.org/
https://doi.org/10.1152/jappl.2000.88.4.1321
https://doi.org/10.1152/jappl.1998.85.6.2047
https://doi.org/10.1152/jappl.1998.85.6.2047
https://doi.org/10.1590/S0100-879X2012007500096
https://doi.org/10.1590/S0100-879X2012007500096
https://doi.org/10.1007/s10522-018-9775-3
https://doi.org/10.1007/s10522-018-9775-3
https://doi.org/10.1016/j.ceb.2007.09.012
https://doi.org/10.3390/ijms21051830
https://doi.org/10.3390/ijms21051830
https://doi.org/10.1016/j.arr.2009.08.001
https://doi.org/10.1016/j.arr.2009.08.001
https://doi.org/10.1007/s12603-014-0019-1
https://doi.org/10.1016/j.arr.2018.07.005
https://doi.org/10.1186/1743-7075-8-68
https://doi.org/10.1371/journal.pone.0140903
https://doi.org/10.1371/journal.pone.0140903
https://doi.org/10.1093/ageing/afy169
https://doi.org/10.1371/journal.pone.0010805
https://doi.org/10.3389/fendo.2020.00332
https://doi.org/10.1016/j.arr.2016.09.008
https://doi.org/10.1016/j.arr.2016.09.008
https://doi.org/10.1067/mlc.2001.113504
https://doi.org/10.1111/j.1749-6632.2000.tb06515.x
https://doi.org/10.1038/s41574-018-0062-9
https://doi.org/10.1038/s41574-018-0062-9
https://doi.org/10.1038/oby.2004.111
https://doi.org/10.1038/oby.2004.111
https://doi.org/10.1038/oby.2004.107
https://doi.org/10.1038/oby.2004.107
https://doi.org/10.1007/s12603-009-0084-z
https://doi.org/10.1007/s12603-009-0084-z


GeroScience (2021) 43:85–110

Geriatr. 2013;13(1):74. https://doi.org/10.1186/1471-
2318-13-74.

25. Han TS, Tajar A, Lean MEJ. Obesity and weight manage-
ment in the elderly. Br Med Bull. 2011;97(1):169–96.
https://doi.org/10.1093/bmb/ldr002.

26. Christensen K, Doblhammer G, Rau R, Vaupel JW.
Ageing populations: the challenges ahead. Lancet
(London, England). 2009;374(9696):1196–208.
https://doi.org/10.1016/S0140-6736(09)61460-4.

27. Siiteri PK. Adipose tissue as a source of hormones. Am J
Clin Nutr. 1987;45(1 Suppl):277–82. https://doi.
org/10.1093/ajcn/45.1.277.

28. Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS,
Hunt CR, et al. Adipsin: a circulating serine protease ho-
molog secreted by adipose tissue and sciatic nerve.
Science. 1987;237(4813):402–5. https://doi.org/10.1126
/science.3299705.

29. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L,
Friedman JM. Positional cloning of the mouse obese gene
and its human homologue. Nature. 1994;372(6505):425–
32. https://doi.org/10.1038/372425a0.

30. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose
expression of tumor necrosis factor-α: direct role in
obesity-linked insulin resistance. Science. 1993;259(5091):
87–91. https://doi.org/10.1126/science.7678183.

31. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel
RL, Ferrante AW Jr. Obesity is associated with macro-
phage accumulation in adipose tissue. J Clin Invest.
2003;112(12):1796–808. https://doi.org/10.1172/jci19246.

32. Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of
adipose tissue senescence in obesity- and ageing-related
metabolic disorders. Clin Sci. 2020;134(2):315–30.
https://doi.org/10.1042/cs20190966.

33. Funcke JB, Scherer PE. Beyond adiponectin and leptin:
adipose tissue-derived mediators of inter-organ communi-
cation. J Lipid Res. 2019;60(10):1648–84. https://doi.
org/10.1194/jlr.R094060.

34. Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell
MA. The adipocyte: a model for integration of endocrine
and metabolic signaling in energy metabolism regulation.
American Journal of Physiology-Endocrinology and
Metabolism. 2001;280(6):E827–E47. https://doi.
org/10.1152/ajpendo.2001.280.6.E827.

35. Mathus-Vliegen EMH, Basdevant A, Finer N, Hainer V,
Hauner H, Micic D, et al. Prevalence, pathophysiology,
health consequences and treatment options of obesity in the
elderly: a guideline. Obesity Facts. 2012;5(3):460–83.
https://doi.org/10.1159/000341193.

36. Stanford KI, Middelbeek RJW, Townsend KL, Lee M-Y,
Takahashi H, So K, et al. A novel role for subcutaneous
adipose tissue in exercise-induced improvements in glu-
cose homeostasis. Diabetes. 2015;64(6):2002–14.
https://doi.org/10.2337/db14-0704.

37. Zhang J-M, An J. Cytokines, inflammation, and pain. Int
Anesthesiol Clin. 2007;45(2):27–37. https://doi.
org/10.1097/AIA.0b013e318034194e.

38. Barnes BJ, Somerville CC. Modulating cytokine produc-
tion via select packaging and secretion from extracellular
vesicles. Front Immunol. 2020;11(1040). https://doi.
org/10.3389/fimmu.2020.01040.

39. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes,
microvesicles, and friends. The Journal of cell biology.
2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

40. Rome S, Forterre A, Mizgier ML, Bouzakri K. Skeletal
muscle-released extracellular vesicles: state of the art. Front
Physiol. 2019;10(929). https:/ /doi .org/10.3389
/fphys.2019.00929.

41. Tkach M, Théry C. Communication by extracellular vesi-
cles: where we are and where we need to go. Cell.
2016;164(6):1226–32. https://doi.org/10.1016/j.
cell.2016.01.043.

42. Wang H, Wang B. Extracellular vesicle microRNAs medi-
ate skeletal muscle myogenesis and disease. Biomed Rep.
2016;5(3):296–300. https://doi.org/10.3892/br.2016.725.

43. Bittel DC, Jaiswal JK. Contribution of extracellular vesi-
cles in rebuilding injured muscles. Front Physiol. 2019;10:
828. https://doi.org/10.3389/fphys.2019.00828.

44. Sheng CH, Du ZW, Song Y, Wu XD, Zhang YC, Wu M,
et al. Human resistin inhibits myogenic differentiation and
induces insulin resistance in myocytes. BioMed Research
International. 2013;2013:804632. https://doi.org/10.1155
/2013/804632.

45. Won JC, Park C-Y, Lee WY, Lee ES, Oh SW, Park SW.
Association of plasma levels of resistin with subcutaneous
fat mass and markers of inflammation but not with meta-
bolic determinants or insulin resistance. J Korean Med Sci.
2009;24(4) :695–700. h t tps : / /do i .o rg /10 .3346
/jkms.2009.24.4.695.

46. Bucci L, Yani SL, Fabbri C, Bijlsma AY, Maier AB,
Meskers CG, et al. Circulating levels of adipokines and
IGF-1 are associated with skeletal muscle strength of
young and old healthy subjects. Biogerontology.
2013;14(3):261–72. https://doi.org/10.1007/s10522-013-
9428-5.

47. O’Leary MF, Wallace GR, Davis ET, Murphy DP,
Nicholson T, Bennett AJ, et al. Obese subcutaneous adi-
pose tissue impairs human myogenesis, particularly in old
skeletal muscle, via resistin-mediated activation of NFκB.
Sci Rep. 2018;8(1):15360. https://doi.org/10.1038
/s41598-018-33840-x.

48. Kim HC, Cho H-Y, Hah Y-S. Role of IL-15 in sepsis-
induced skeletal muscle atrophy and proteolysis. Tuberc
Respir Dis. 2012;73(6):312–9. https://doi.org/10.4046
/trd.2012.73.6.312.

49. O’Leary MF, Wallace GR, Bennett AJ, Tsintzas K, Jones
SW. IL-15 promotes human myogenesis and mitigates the
detrimental effects of TNFα on myotube development. Sci
Rep. 2017;7(1):12997. https://doi.org/10.1038/s41598-
017-13479-w.

50. Yalcin A, Silay K, Balik AR, Avcioğlu G, Aydin AS. The
relationship between plasma interleukin-15 levels and
sarcopenia in outpatient older people. Aging Clin Exp
Res. 2018;30(7):783–90. https://doi.org/10.1007/s40520-
017-0848-y.

51. Can B, Kara O, Kizilarslanoglu MC, Arik G, Aycicek GS,
Sumer F, et al. Serum markers of inflammation and oxida-
tive stress in sarcopenia. Aging Clin Exp Res. 2017;29(4):
745–52. https://doi.org/10.1007/s40520-016-0626-2.

52. Hioki M, Kanehira N, Koike T, Saito A, Takahashi H,
Shimaoka K, et al. Associations of intramyocellular lipid
in vastus lateralis and biceps femoris with blood free fatty

100

https://doi.org/10.1186/1471-2318-13-74
https://doi.org/10.1186/1471-2318-13-74
https://doi.org/10.1093/bmb/ldr002
https://doi.org/10.1016/S0140-6736(09)61460-4
https://doi.org/10.1093/ajcn/45.1.277
https://doi.org/10.1093/ajcn/45.1.277
https://doi.org/10.1126/science.3299705
https://doi.org/10.1126/science.3299705
https://doi.org/10.1038/372425a0
https://doi.org/10.1126/science.7678183
https://doi.org/10.1172/jci19246
https://doi.org/10.1042/cs20190966
https://doi.org/10.1194/jlr.R094060
https://doi.org/10.1194/jlr.R094060
https://doi.org/10.1152/ajpendo.2001.280.6.E827
https://doi.org/10.1152/ajpendo.2001.280.6.E827
https://doi.org/10.1159/000341193
https://doi.org/10.2337/db14-0704
https://doi.org/10.1097/AIA.0b013e318034194e
https://doi.org/10.1097/AIA.0b013e318034194e
https://doi.org/10.3389/fimmu.2020.01040
https://doi.org/10.3389/fimmu.2020.01040
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.3389/fphys.2019.00929
https://doi.org/10.3389/fphys.2019.00929
https://doi.org/10.1016/j.cell.2016.01.043
https://doi.org/10.1016/j.cell.2016.01.043
https://doi.org/10.3892/br.2016.725
https://doi.org/10.3389/fphys.2019.00828
https://doi.org/10.1155/2013/804632
https://doi.org/10.1155/2013/804632
https://doi.org/10.3346/jkms.2009.24.4.695
https://doi.org/10.3346/jkms.2009.24.4.695
https://doi.org/10.1007/s10522-013-9428-5
https://doi.org/10.1007/s10522-013-9428-5
https://doi.org/10.1038/s41598-018-33840-x
https://doi.org/10.1038/s41598-018-33840-x
https://doi.org/10.4046/trd.2012.73.6.312
https://doi.org/10.4046/trd.2012.73.6.312
https://doi.org/10.1038/s41598-017-13479-w
https://doi.org/10.1038/s41598-017-13479-w
https://doi.org/10.1007/s40520-017-0848-y
https://doi.org/10.1007/s40520-017-0848-y
https://doi.org/10.1007/s40520-016-0626-2


GeroScience (2021) 43:85–110

acid and muscle strength differ between young and elderly
adults. Clin Physiol Funct Imaging. 2016;36(6):457–63.
https://doi.org/10.1111/cpf.12250.

53. Fiaschi T, Giannoni E, Taddei ML, Chiarugi P. Globular
adiponectin activates motility and regenerative traits of
muscle satellite cells. PLoS One. 2012;7(5):e34782.
https://doi.org/10.1371/journal.pone.0034782.

54. Fiaschi T, Cirelli D, Comito G, Gelmini S, Ramponi G,
Serio M, et al. Globular adiponectin induces differentiation
and fusion of skeletal muscle cells. Cell Res. 2009;19(5):
584–97. https://doi.org/10.1038/cr.2009.39.

55. Fiaschi T, Tedesco FS, Giannoni E, Diaz-Manera J, Parri
M, Cossu G, et al. Globular adiponectin as a complete
mesoangioblast regulator: role in proliferation, survival,
motility, and skeletal muscle differentiation. Mol Biol
Cell. 2010;21(6):848–59. https://doi.org/10.1091/mbc.
e09-04-0310.

56. Hamrick MW, Herberg S, Arounleut P, He HZ, Shiver A,
Qi RQ, et al. The adipokine leptin increases skeletal muscle
mass and significantly alters skeletal muscle miRNA ex-
pression profile in aged mice. Biochem Biophys Res
Commun. 2010;400(3):379–83. https://doi.org/10.1016/j.
bbrc.2010.08.079.

57. Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B,
Gómez-Ambrosi J, et al. Leptin administration favors mus-
cle mass accretion by decreasing FoxO3a and increasing
PGC-1α in ob/ob mice. PLoS One. 2009;4(9):e6808.
https://doi.org/10.1371/journal.pone.0006808.

58. Kellerer M, Koch M, Metzinger E, Mushack J, Capp E,
Häring HU. Leptin activates PI-3 kinase in C2C12
myotubes via janus kinase-2 (JAK-2) and insulin receptor
substrate-2 (IRS-2) dependent pathways. Diabetologia.
1997;40(11):1358–62. ht tps: / /doi .org/10.1007
/s001250050832.

59. Pijet M, Pijet B, Litwiniuk A, Pajak B, Gajkowska B,
Orzechowski A. Leptin impairs myogenesis in C2C12 cells
through JAK/STAT and MEK signaling pathways.
Cytokine. 2013;61(2):445–54. https://doi.org/10.1016/j.
cyto.2012.11.002.

60. Fuentes T, Ara I, Guadalupe-Grau A, Larsen S, Stallknecht
B, Olmedillas H, et al. Leptin receptor 170 kDa (OB-R170)
protein expression is reduced in obese human skeletal
muscle: a potential mechanism of leptin resistance. Exp
Physiol. 2010;95(1):160–71. https://doi.org/10.1113
/expphysiol.2009.049270.

61. Hubbard RE, O'MahonyMS, Calver BL,Woodhouse KW.
Nutrition, inflammation, and leptin levels in aging and
frailty. J Am Geriatr Soc. 2008;56(2):279–84. https://doi.
org/10.1111/j.1532-5415.2007.01548.x.

62. Kohara K, Ochi M, Tabara Y, Nagai T, Igase M, Miki T.
Leptin in sarcopenic visceral obesity: possible link between
adipocytes and myocytes. PLoS One. 2011;6(9):e24633.
https://doi.org/10.1371/journal.pone.0024633.

63. Waters DL, Qualls CR, Dorin RI, Veldhuis JD,
Baumgartner RN. Altered growth hormone, cortisol, and
leptin secretion in healthy elderly persons with sarcopenia
and mixed body composition phenotypes. The Journals of
Gerontology: Series A. 2008;63(5):536–41. https://doi.
org/10.1093/gerona/63.5.536.

64. Rebalka IA, Monaco CMF, Varah NE, Berger T, D’souza
DM, Zhou S, et al. Loss of the adipokine lipocalin-2

impairs satellite cell activation and skeletal muscle regen-
eration. American Journal of Physiology-Cell Physiology.
2018;315(5):C714–C21. https://doi.org/10.1152
/ajpcell.00195.2017.

65. Cowland JB, Muta T, Borregaard N. IL-1beta-specific up-
regulation of neutrophil gelatinase-associated lipocalin is
controlled by IkappaB-zeta. J Immunol. 2006;176(9):
5559–66. https://doi.org/10.4049/jimmunol.176.9.5559.

66. Auguet T, Quintero Y, Terra X, Martínez S, Lucas A,
Pellitero S, et al. Upregulation of lipocalin 2 in adipose
tissues of severely obese women: positive relationship with
proinflammatory cytokines. Obesity (Silver Spring).
2011;19(12):2295–300. https://doi.org/10.1038
/oby.2011.61.

67. Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B,
Silva C, Rotellar F, et al. Increased adipose tissue expres-
sion of lipocalin-2 in obesity is related to inflammation and
matrix metalloproteinase-2 and metalloproteinase-9 activi-
ties in humans. J Mol Med. 2009;87(8):803. https://doi.
org/10.1007/s00109-009-0486-8.

68. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal
muscle mass in mice by a new TGF-beta superfamily
member. Nature. 1997;387(6628):83–90. https://doi.
org/10.1038/387083a0.

69. Lee S-J, McPherron AC. Regulation of myostatin activity
and muscle growth. Proceedings of the National Academy
of Sciences. 2001;98(16):9306–11. https://doi.org/10.1073
/pnas.151270098.

70. McCroskery S, Thomas M, Maxwell L, Sharma M,
Kambadur R. Myostatin negatively regulates satellite cell
activation and self-renewal. The Journal of cell biology.
2003;162(6):1135–47. ht tps: / /doi .org/10.1083
/jcb.200207056.

71. ThomasM, Langley B, Berry C, SharmaM, Kirk S, Bass J,
et al. Myostatin, a negative regulator of muscle growth,
functions by inhibiting myoblast proliferation. J Biol
Chem. 2000;275(51):40235–43. https://doi.org/10.1074
/jbc.M004356200.

72. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S,
Kambadur R. Myostatin inhibits myoblast differentiation
by down-regulating MyoD expression. J Biol Chem.
2002;277(51):49831–40. https://doi.org/10.1074/jbc.
M204291200.

73. Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA.
Increased secretion and expression of myostatin in skeletal
muscle from extremely obese women. Diabetes.
2009;58(1):30–8. https://doi.org/10.2337/db08-0943.

74. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S.
Myogenic gene expression at rest and after a bout of
resistance exercise in young (18–30 yr) and old (80–89
yr) women. Journal of applied physiology (Bethesda, Md :
1985). 2006;101(1):53–9. https://doi.org/10.1152
/japplphysiol.01616.2005.

75. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA,
Parise G. Myostatin is associated with age-related human
muscle stem cell dysfunction. FASEB J. 2012;26(6):2509–
21. https://doi.org/10.1096/fj.11-198663.

76. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA,
Milan G, et al. Signalling pathways regulating muscle mass
in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-

101

https://doi.org/10.1111/cpf.12250
https://doi.org/10.1371/journal.pone.0034782
https://doi.org/10.1038/cr.2009.39
https://doi.org/10.1091/mbc.e09-04-0310
https://doi.org/10.1091/mbc.e09-04-0310
https://doi.org/10.1016/j.bbrc.2010.08.079
https://doi.org/10.1016/j.bbrc.2010.08.079
https://doi.org/10.1371/journal.pone.0006808
https://doi.org/10.1007/s001250050832
https://doi.org/10.1007/s001250050832
https://doi.org/10.1016/j.cyto.2012.11.002
https://doi.org/10.1016/j.cyto.2012.11.002
https://doi.org/10.1113/expphysiol.2009.049270
https://doi.org/10.1113/expphysiol.2009.049270
https://doi.org/10.1111/j.1532-5415.2007.01548.x
https://doi.org/10.1111/j.1532-5415.2007.01548.x
https://doi.org/10.1371/journal.pone.0024633
https://doi.org/10.1093/gerona/63.5.536
https://doi.org/10.1093/gerona/63.5.536
https://doi.org/10.1152/ajpcell.00195.2017
https://doi.org/10.1152/ajpcell.00195.2017
https://doi.org/10.4049/jimmunol.176.9.5559
https://doi.org/10.1038/oby.2011.61
https://doi.org/10.1038/oby.2011.61
https://doi.org/10.1007/s00109-009-0486-8
https://doi.org/10.1007/s00109-009-0486-8
https://doi.org/10.1038/387083a0
https://doi.org/10.1038/387083a0
https://doi.org/10.1073/pnas.151270098
https://doi.org/10.1073/pnas.151270098
https://doi.org/10.1083/jcb.200207056
https://doi.org/10.1083/jcb.200207056
https://doi.org/10.1074/jbc.M004356200
https://doi.org/10.1074/jbc.M004356200
https://doi.org/10.1074/jbc.M204291200
https://doi.org/10.1074/jbc.M204291200
https://doi.org/10.2337/db08-0943
https://doi.org/10.1152/japplphysiol.01616.2005
https://doi.org/10.1152/japplphysiol.01616.2005
https://doi.org/10.1096/fj.11-198663


GeroScience (2021) 43:85–110

FoxO pathway. Biogerontology. 2013;14(3):303–23.
https://doi.org/10.1007/s10522-013-9432-9.

77. Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O,
McPherron AC. myostatin inhibition in muscle, but not
adipose tissue, decreases fat mass and improves insulin
sensitivity. PLoS One. 2009;4(3):e4937. https://doi.
org/10.1371/journal.pone.0004937.

78. Hamann PD, Roux BT, Heward JA, Love S, McHugh NJ,
Jones SW, et al. Transcriptional profiling identifies differ-
ential expression of long non-coding RNAs in Jo-1 associ-
ated and inclusion bodymyositis. Sci Rep. 2017;7(1):8024.
https://doi.org/10.1038/s41598-017-08603-9.

79. Han X, Yang F, Cao H, Liang Z. Malat1 regulates serum
response factor through miR-133 as a competing endoge-
nous RNA in myogenesis. The FASEB Journal.
2015;29(7):3054–64. https://doi.org/10.1096/fj.14-
259952.

80. Chen X, He L, Zhao Y, Li Y, Zhang S, Sun K, et al. Malat1
regulates myogenic differentiation and muscle regeneration
through modulating MyoD transcriptional activity. Cell
Discov. 2017;3:17002. https:/ /doi.org/10.1038
/celldisc.2017.2.

81. van Dielen FMH, van't Veer C, Schols AM, Soeters PB,
Buurman WA, Greve JWM. Increased leptin concentra-
tions correlate with increased concentrations of inflamma-
tory markers in morbidly obese individuals. Int J Obes.
2001;25(12):1759–66. https://doi.org/10.1038/sj.
ijo.0801825.

82. Zhang L, Zhang D, Qin Z-Y, Li J, Shen Z-Y. The role and
possible mechanism of long noncoding RNA PVT1 in
modulating 3T3-L1 preadipocyte proliferation and differ-
entiation. IUBMB life. 2020;72(7):1460–7. https://doi.
org/10.1002/iub.2269.

83. Zhao Y, Zhao J, Guo X, She J, Liu Y. Long non-coding
RNA PVT1, a molecular sponge for miR-149, contributes
aberrant metabolic dysfunction and inflammation in IL-1β-
simulated osteoarthritic chondrocytes. Biosci Rep.
2018;38(5):BSR20180576. https://doi.org/10.1042
/BSR20180576.

84. Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-
Brachat S, et al. A long non-coding RNA, LncMyoD,
regulates skeletal muscle differentiation by blocking
IMP2-mediated mRNA translation. Dev Cell. 2015;34(2):
181–91. https://doi.org/10.1016/j.devcel.2015.05.009.

85. Boudoukha S, Cuvellier S, Polesskaya A. Role of the
RNA-binding protein IMP-2 in muscle cell motility. Mol
Cell Biol. 2010;30(24):5710–25. https://doi.org/10.1128
/MCB.00665-10.

86. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE,
Hammond SM, et al. The role of microRNA-1 and
microRNA-133 in skeletal muscle proliferation and differ-
entiation. Nat Genet. 2006;38(2):228–33. https://doi.
org/10.1038/ng1725.

87. Nakasa T, IshikawaM, Shi M, Shibuya H, Adachi N, Ochi
M. Acceleration of muscle regeneration by local injection
of muscle-specific microRNAs in rat skeletal muscle injury
model. J Cell Mol Med. 2010;14(10):2495–505.
https://doi.org/10.1111/j.1582-4934.2009.00898.x.

88. Mariño G, Ugalde AP, Fernández ÁF, Osorio FG, Fueyo
A, Freije JMP, et al. Insulin-like growth factor 1 treatment
extends longevity in a mouse model of human premature

aging by restoring somatotroph axis function. Proceedings
of the National Academy of Sciences. 2010;107(37):
16268–73. https://doi.org/10.1073/pnas.1002696107.

89. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi
E, Esser KA, et al. Aging and microRNA expression in
human skeletal muscle: a microarray and bioinformatics
analysis. Physiol Genomics. 2011;43(10):595–603.
https://doi.org/10.1152/physiolgenomics.00148.2010.

90. Drummond MJ, McCarthy JJ, Fry CS, Esser KA,
Rasmussen BB. Aging differentially affects human skele-
tal muscle microRNA expression at rest and after an ana-
bolic stimulus of resistance exercise and essential amino
acids. Am J Physiol Endocrinol Metab. 2008;295(6):
E1333–40. https://doi.org/10.1152/ajpendo.90562.2008.

91. RosenbergMI, Georges SA, Asawachaicharn A, Analau E,
Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by
inducing transcription of miR-206. J Cell Biol.
2006 ;175 (1 ) : 77–85 . h t t p s : / / do i . o rg / 10 . 1083
/jcb.200603039.

92. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular
senescence in aging and age-related disease: from mecha-
nisms to therapy. Nat Med. 2015;21(12):1424–35.
https://doi.org/10.1038/nm.4000.

93. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H,
Nakayama K, et al. Mitogenic signalling and the
p16INK4a-Rb pathway cooperate to enforce irreversible
cellular senescence. Nat Cell Biol. 2006;8(11):1291–7.
https://doi.org/10.1038/ncb1491.

94. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D,
Barrett JC. Involvement of the cyclin-dependent kinase
inhibitor p16 (INK4a) in replicative senescence of normal
human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):
13742–7. https://doi.org/10.1073/pnas.93.24.13742.

95. Schafer MJ, Miller JD, LeBrasseur NK. Cellular senes-
cence: implications for metabolic disease. Mol Cell
Endocrinol. 2017;455:93–102. https://doi.org/10.1016/j.
mce.2016.08.047.

96. Baar MP, Perdiguero E, Muñoz-Cánoves P, de Keizer PLJ.
Musculoskeletal senescence: a moving target ready to be
eliminated. Curr Opin Pharmacol. 2018;40:147–55.
https://doi.org/10.1016/j.coph.2018.05.007.

97. Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP,
Goldstein J, et al. Senescence-associated secretory pheno-
types reveal cell-nonautonomous functions of oncogenic
RAS and the p53 tumor suppressor. PLoS Biol.
2008;6(12):e301. https://doi.org/10.1371/journal.
pbio.0060301.

98. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The
senescence-associated secretory phenotype: the dark side
of tumor suppression. Annu Rev Pathol. 2010;5:99–118.
https://doi.org/10.1146/annurev-pathol-121808-102144.

99. Salminen A, Ojala J, Kaarniranta K. Apoptosis and aging:
increased resistance to apoptosis enhances the aging pro-
cess. Cell Mol Life Sci. 2011;68(6):1021–31. https://doi.
org/10.1007/s00018-010-0597-y.

100. Kale A, Sharma A, Stolzing A, Desprez P-Y, Campisi J.
Role of immune cells in the removal of deleterious senes-
cent cells. Immun Ageing. 2020;17(1):16. https://doi.
org/10.1186/s12979-020-00187-9.

101. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER,
Pirtskhalava T, et al. JAK inhibition alleviates the cellular

102

https://doi.org/10.1007/s10522-013-9432-9
https://doi.org/10.1371/journal.pone.0004937
https://doi.org/10.1371/journal.pone.0004937
https://doi.org/10.1038/s41598-017-08603-9
https://doi.org/10.1096/fj.14-259952
https://doi.org/10.1096/fj.14-259952
https://doi.org/10.1038/celldisc.2017.2
https://doi.org/10.1038/celldisc.2017.2
https://doi.org/10.1038/sj.ijo.0801825
https://doi.org/10.1038/sj.ijo.0801825
https://doi.org/10.1002/iub.2269
https://doi.org/10.1002/iub.2269
https://doi.org/10.1042/BSR20180576
https://doi.org/10.1042/BSR20180576
https://doi.org/10.1016/j.devcel.2015.05.009
https://doi.org/10.1128/MCB.00665-10
https://doi.org/10.1128/MCB.00665-10
https://doi.org/10.1038/ng1725
https://doi.org/10.1038/ng1725
https://doi.org/10.1111/j.1582-4934.2009.00898.x
https://doi.org/10.1073/pnas.1002696107
https://doi.org/10.1152/physiolgenomics.00148.2010
https://doi.org/10.1152/ajpendo.90562.2008
https://doi.org/10.1083/jcb.200603039
https://doi.org/10.1083/jcb.200603039
https://doi.org/10.1038/nm.4000
https://doi.org/10.1038/ncb1491
https://doi.org/10.1073/pnas.93.24.13742
https://doi.org/10.1016/j.mce.2016.08.047
https://doi.org/10.1016/j.mce.2016.08.047
https://doi.org/10.1016/j.coph.2018.05.007
https://doi.org/10.1371/journal.pbio.0060301
https://doi.org/10.1371/journal.pbio.0060301
https://doi.org/10.1146/annurev-pathol-121808-102144
https://doi.org/10.1007/s00018-010-0597-y
https://doi.org/10.1007/s00018-010-0597-y
https://doi.org/10.1186/s12979-020-00187-9
https://doi.org/10.1186/s12979-020-00187-9


GeroScience (2021) 43:85–110

senescence-associated secretory phenotype and frailty in
old age. Proceedings of the National Academy of
Sciences. 2015;112(46):E6301–E10. https://doi.
org/10.1073/pnas.1515386112.

102. Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, XuM,
Kirkland JL. Cellular senescence in type 2 diabetes: a
therapeutic opportunity. Diabetes. 2015;64(7):2289–98.
https://doi.org/10.2337/db14-1820.

103. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama
M, Ito T, et al. A crucial role for adipose tissue p53 in the
regulation of insulin resistance. Nat Med. 2009;15(9):
1082–7. https://doi.org/10.1038/nm.2014.

104. Farah H, Young SP, Mauro C, Jones SW. Metabolic dys-
function and inflammatory disease: the role of stromal
fibroblasts. The FEBS journal. n/a(n/a). https://doi.
org/10.1111/febs.15644.

105. Burton DGA, Faragher RGA. Obesity and type-2 diabetes
as inducers of premature cellular senescence and ageing.
Biogerontology. 2018;19(6):447–59. https://doi.
org/10.1007/s10522-018-9763-7.

106. Matsuda M, Shimomura I. Increased oxidative stress in
obesity: implications for metabolic syndrome, diabetes,
hypertension, dyslipidemia, atherosclerosis, and cancer.
Obes Res Clin Pract. 2013;7(5):e330–e41. https://doi.
org/10.1016/j.orcp.2013.05.004.

107. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E,
Cherkas LF, et al. Obesity, cigarette smoking, and telomere
length in women. Lancet. 2005;366(9486):662–4.
https://doi.org/10.1016/s0140-6736(05)66630-5.

108. Passos JF, Simillion C, Hallinan J, Wipat A, von Zglinicki
T. Cellular senescence: unravelling complexity. Age
(Dordr). 2009;31(4):353–63. https://doi.org/10.1007
/s11357-009-9108-1.

109. Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis
DP, Perrea DN. "Is obesity linked to aging?": adipose tissue
and the role of telomeres. Ageing research reviews.
2012;11(2 ) :220–9 . h t tps : / /do i .o rg /10 .1016/ j .
arr.2011.12.003.

110. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen
J, Lustgarten J, Scrable H, et al. Fat tissue, aging, and
cellular senescence. Aging cell. 2010;9(5):667–84.
https://doi.org/10.1111/j.1474-9726.2010.00608.x.

111. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK,
Weivoda MM, et al. Senolytics improve physical function
and increase lifespan in old age. Nat Med. 2018;24(8):
1246–56. https://doi.org/10.1038/s41591-018-0092-9.

112. Study HAC. Longitudinal study of muscle strength, quali-
ty, and adipose tissue infiltration. The American Journal of
Clinical Nutrition. 2009;90(6):1579–85. https://doi.
org/10.3945/ajcn.2009.28047.

113. Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose
tissue distribution is associated with insulin resistance in
obesity and in type 2 diabetes mellitus. The American
Journal of Clinical Nutrition. 2000;71(4):885–92.
https://doi.org/10.1093/ajcn/71.4.885.

114. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P,
Morton JP, et al. A complex secretory program orchestrated
by the inflammasome controls paracrine senescence. Nat
Cell Biol. 2013;15(8):978–90. https://doi.org/10.1038
/ncb2784.

115. Costamagna D, Costelli P, Sampaolesi M, Penna F. Role of
inflammation in muscle homeostasis and myogenesis.
Mediators Inflamm. 2015;2015:805172. https://doi.
org/10.1155/2015/805172.

116. Dagdeviren S, Jung DY, Lee E, Friedline RH, Noh HL,
Kim JH, et al. Altered interleukin-10 signaling in skeletal
muscle regulates obesity-mediated inflammation and insu-
lin resistance. Mol Cell Biol. 2016;36(23):2956–66.
https://doi.org/10.1128/MCB.00181-16.

117. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A.
Inflammaging: a new immune–metabolic viewpoint for
age-related diseases. Nature Reviews Endocrinology.
2018;14(10):576–90. https://doi.org/10.1038/s41574-018-
0059-4.

118. Franceschi C, Campisi J. Chronic inflammation
(inflammaging) and its potential contribution to age-
associated diseases. J Gerontol A Biol Sci Med Sci.
2014;69(Suppl 1):S4–9. https://doi.org/10.1093
/gerona/glu057.

119. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F,
Sevini F, et al. Inflammaging and anti-inflammaging: a
systemic perspective on aging and longevity emerged from
studies in humans. Mech Ageing Dev. 2007;128(1):92–
105. https://doi.org/10.1016/j.mad.2006.11.016.

120. Peake J, Gatta PD, Cameron-Smith D. Aging and its effects
on inflammation in skeletal muscle at rest and following
exercise-induced muscle injury. American Journal of
Physiology-Regulatory, Integrative and Comparative
Physiology. 2010;298(6):R1485–R95. https://doi.
org/10.1152/ajpregu.00467.2009.

121. Degens H. The role of systemic inflammation in age-
related muscle weakness and wasting. Scand J Med Sci
Sports. 2010;20(1):28–38. https://doi.org/10.1111/j.1600-
0838.2009.01018.x.

122. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C,
Vellas B, et al. Proinflammatory cytokines, aging, and age-
related diseases. J Am Med Dir Assoc. 2013;14(12):877–
82. https://doi.org/10.1016/j.jamda.2013.05.009.

123. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR,
Wright CM, et al. The hormone resistin links obesity to
diabetes. Nature. 2001;409(6818):307–12. https://doi.
org/10.1038/35053000.

124. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in
inflammation and metabolic disease. Nature Reviews
Immunology. 2011;11(2):85–97. https://doi.org/10.1038
/nri2921.

125. Palanivel R, Sweeney G. Regulation of fatty acid uptake
and metabolism in L6 skeletal muscle cells by resistin.
FEBS Lett. 2005;579(22):5049–54. https://doi.
org/10.1016/j.febslet.2005.08.011.

126. Palanivel R, Maida A, Liu Y, Sweeney G. Regulation of
insulin signalling, glucose uptake and metabolism in rat
skeletal muscle cells upon prolonged exposure to resistin.
Diabetologia. 2006;49(1):183–90. https://doi.org/10.1007
/s00125-005-0060-z.

127. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig
A, Considine RV, et al. Resistin / Fizz3 expression in
relation to obesity and peroxisome proliferator-activated
receptor-gamma action in humans. Diabetes. 2001;50(10):
2199–202. https://doi.org/10.2337/diabetes.50.10.2199.

103

https://doi.org/10.1073/pnas.1515386112
https://doi.org/10.1073/pnas.1515386112
https://doi.org/10.2337/db14-1820
https://doi.org/10.1038/nm.2014
https://doi.org/10.1111/febs.15644
https://doi.org/10.1111/febs.15644
https://doi.org/10.1007/s10522-018-9763-7
https://doi.org/10.1007/s10522-018-9763-7
https://doi.org/10.1016/j.orcp.2013.05.004
https://doi.org/10.1016/j.orcp.2013.05.004
https://doi.org/10.1016/s0140-6736(05)66630-5
https://doi.org/10.1007/s11357-009-9108-1
https://doi.org/10.1007/s11357-009-9108-1
https://doi.org/10.1016/j.arr.2011.12.003
https://doi.org/10.1016/j.arr.2011.12.003
https://doi.org/10.1111/j.1474-9726.2010.00608.x
https://doi.org/10.1038/s41591-018-0092-9
https://doi.org/10.3945/ajcn.2009.28047
https://doi.org/10.3945/ajcn.2009.28047
https://doi.org/10.1093/ajcn/71.4.885
https://doi.org/10.1038/ncb2784
https://doi.org/10.1038/ncb2784
https://doi.org/10.1155/2015/805172
https://doi.org/10.1155/2015/805172
https://doi.org/10.1128/MCB.00181-16
https://doi.org/10.1038/s41574-018-0059-4
https://doi.org/10.1038/s41574-018-0059-4
https://doi.org/10.1093/gerona/glu057
https://doi.org/10.1093/gerona/glu057
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.1152/ajpregu.00467.2009
https://doi.org/10.1152/ajpregu.00467.2009
https://doi.org/10.1111/j.1600-0838.2009.01018.x
https://doi.org/10.1111/j.1600-0838.2009.01018.x
https://doi.org/10.1016/j.jamda.2013.05.009
https://doi.org/10.1038/35053000
https://doi.org/10.1038/35053000
https://doi.org/10.1038/nri2921
https://doi.org/10.1038/nri2921
https://doi.org/10.1016/j.febslet.2005.08.011
https://doi.org/10.1016/j.febslet.2005.08.011
https://doi.org/10.1007/s00125-005-0060-z
https://doi.org/10.1007/s00125-005-0060-z
https://doi.org/10.2337/diabetes.50.10.2199


GeroScience (2021) 43:85–110

128. Blaber SP, Webster RA, Hill CJ, Breen EJ, Kuah D, Vesey
G, et al. Analysis of in vitro secretion profiles from adipose-
derived cell populations. J Transl Med. 2012;10:172.
https://doi.org/10.1186/1479-5876-10-172.

129. Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V,
Edom-Vovard F, Vidal-Puig A, et al. Human adipocytes
induce inflammation and atrophy in muscle cells during
obesity. Diabetes. 2015;64(9):3121–34. https://doi.
org/10.2337/db14-0796.

130. Qi Q,Wang J, Li H, Yu Z, YeX, Hu FB, et al. Associations
of resistin with inflammatory and fibrinolytic markers,
insulin resistance, and metabolic syndrome in middle-
aged and older Chinese. Eur J Endocrinol. 2008;159(5):
585–93. https://doi.org/10.1530/eje-08-0427.

131. VAN HOLLEBEKE RB, CUSHMAN M, SCHLUETER
EF, ALLISON MA. Abdominal muscle density is inverse-
ly related to adiposity inflammatory mediators. Med Sci
Sports Exerc. 2018;50(7):1495–501. https://doi.
org/10.1249/mss.0000000000001570.

132. Quinn LS, Strait-Bodey L, Anderson BG, Argilés JM,
Havel PJ. Interleukin-15 stimulates adiponectin secretion
by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat
signaling pathway. Cell Biol Int. 2005;29(6):449–57.
https://doi.org/10.1016/j.cellbi.2005.02.005.

133. Lee B-C, Kim M-S, Pae M, Yamamoto Y, Eberlé D,
Shimada T, et al. Adipose natural killer cells regulate
adipose tissue macrophages to promote insulin resistance
in obesity. Cell Metab. 2016;23(4):685–98. https://doi.
org/10.1016/j.cmet.2016.03.002.

134. Grabstein KH, Eisenman J, Shanebeck K, Rauch C,
Srinivasan S, Fung V, et al. Cloning of a T cell growth
factor that interacts with the beta chain of the interleukin-2
receptor. Science. 1994;264(5161):965–8. https://doi.
org/10.1126/science.8178155.

135. Quinn LS, Haugk KL, Grabstein KH. Interleukin-15: a
novel anabol ic cytokine for skele ta l muscle .
Endocrinology. 1995;136(8):3669–72. https://doi.
org/10.1210/endo.136.8.7628408.

136. Busquets S, Figueras MT, Meijsing S, Carbó N, Quinn LS,
Almendro V, et al. Interleukin-15 decreases proteolysis in
skeletal muscle: a direct effect. Int J Mol Med. 2005;16(3):
471–6.

137. Carbó N, López-Soriano J, Costelli P, Busquets S, Alvarez
B, Baccino FM, et al. Interleukin-15 antagonizes muscle
protein waste in tumour-bearing rats. Br J Cancer.
2000 ;83 (4 ) : 526–31 . h t t p s : / / do i . o rg / 10 .1054
/bjoc.2000.1299.

138. Carbó N, López-Soriano J, Costelli P, Alvarez B, Busquets
S, Baccino FM, et al. Interleukin-15 mediates reciprocal
regulation of adipose and muscle mass: a potential role in
body weight control . Biochim Biophys Acta.
2001;1526(1):17–24. https://doi.org/10.1016/s0304-4165
(00)00188-4.

139. Barra NG, Reid S, MacKenzie R,Werstuck G, Trigatti BL,
Richards C, et al. Interleukin-15 contributes to the regula-
tion of murine adipose tissue and human adipocytes.
Obesity. 2010;18(8):1601–7. https://doi.org/10.1038
/oby.2009.445.

140. Waldmann TA, Tagaya Y. The multifaceted regulation of
interleukin-15 expression and the role of this cytokine in
NK cell differentiation and host response to intracellular

pathogens. Annu Rev Immunol. 1999;17:19–49.
https://doi.org/10.1146/annurev.immunol.17.1.19.

141. Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/
IL-15 receptor biology: a guided tour through an expanding
universe. Cytokine Growth Factor Rev. 2006;17(4):259–
80. https://doi.org/10.1016/j.cytogfr.2006.05.001.

142. Chandran M, Phillips SA, Ciaraldi T, Henry RR.
Adiponectin: more than just another fat cell hormone?
Diabetes Care. 2003;26(8):2442–50. https://doi.
org/10.2337/diacare.26.8.2442.

143. Maeda K, Okubo K, Shimomura I, Funahashi T,
Matsuzawa Y, Matsubara K. cDNA cloning and expres-
sion of a novel adipose specific collagen-like factor, apM1
(AdiPose Most abundant Gene transcript 1). Biochem
Biophys Res Commun. 1996;221(2):286–9. https://doi.
org/10.1006/bbrc.1996.0587.

144. Achari AE, Jain SK. Adiponectin, a therapeutic target for
obesity, diabetes, and endothelial dysfunction. Int J Mol
Sci . 2017;18(6):1321. ht tps: / /doi .org/10.3390
/ijms18061321.

145. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T,
Kita S, et al. Cloning of adiponectin receptors that mediate
antidiabetic metabolic effects. Nature. 2003;423(6941):
762–9. https://doi.org/10.1038/nature01705.

146. Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura
Y, Hosaka T, et al. Crystal structures of the human
adiponectin receptors. Nature. 2015;520(7547):312–6.
https://doi.org/10.1038/nature14301.

147. Ryu J, Galan AK, Xin X, Dong F, Abdul-Ghani MA, Zhou
L, et al. APPL1 potentiates insulin sensitivity by facilitating
the binding of IRS1/2 to the insulin receptor. Cell Rep.
2014;7(4) :1227–38. ht tps: / /doi .org/10.1016/ j .
celrep.2014.04.006.

148. Xin X, Zhou L, Reyes CM, Liu F, Dong LQ. APPL1
mediates adiponectin-stimulated p38 MAPK activation by
scaffolding the TAK1-MKK3-p38 MAPK pathway.
American Journal of Physiology-Endocrinology and
Metabolism. 2011;300(1):E103–E10. https://doi.
org/10.1152/ajpendo.00427.2010.

149. Qiao L, Kinney B. Yoo Hs, Lee B, Schaack J, Shao J.
Adiponectin increases skeletal muscle mitochondrial bio-
genesis by suppressing mitogen-activated protein kinase
phosphatase-1. Diabetes. 2012;61(6):1463–70. https://doi.
org/10.2337/db11-1475.

150. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C,
Itani SI, et al. Enhanced muscle fat oxidation and glucose
transport by ACRP30 globular domain: acetyl-CoA car-
boxylase inhibition and AMP-activated protein kinase ac-
tivation. Proc Natl Acad Sci U S A. 2002;99(25):16309–
13. https://doi.org/10.1073/pnas.222657499.

151. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H,
Uchida S, et al. Adiponectin stimulates glucose utilization
and fatty-acid oxidation by activating AMP-activated pro-
tein kinase. Nat Med. 2002;8(11):1288–95. https://doi.
org/10.1038/nm788.

152. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson
MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa
adipocyte complement-related protein increases fatty acid
oxidation in muscle and causes weight loss in mice. Proc
Natl Acad Sci U S A. 2001;98(4):2005–10. https://doi.
org/10.1073/pnas.041591798.

104

https://doi.org/10.1186/1479-5876-10-172
https://doi.org/10.2337/db14-0796
https://doi.org/10.2337/db14-0796
https://doi.org/10.1530/eje-08-0427
https://doi.org/10.1249/mss.0000000000001570
https://doi.org/10.1249/mss.0000000000001570
https://doi.org/10.1016/j.cellbi.2005.02.005
https://doi.org/10.1016/j.cmet.2016.03.002
https://doi.org/10.1016/j.cmet.2016.03.002
https://doi.org/10.1126/science.8178155
https://doi.org/10.1126/science.8178155
https://doi.org/10.1210/endo.136.8.7628408
https://doi.org/10.1210/endo.136.8.7628408
https://doi.org/10.1054/bjoc.2000.1299
https://doi.org/10.1054/bjoc.2000.1299
https://doi.org/10.1016/s0304-4165(00)00188-4
https://doi.org/10.1016/s0304-4165(00)00188-4
https://doi.org/10.1038/oby.2009.445
https://doi.org/10.1038/oby.2009.445
https://doi.org/10.1146/annurev.immunol.17.1.19
https://doi.org/10.1016/j.cytogfr.2006.05.001
https://doi.org/10.2337/diacare.26.8.2442
https://doi.org/10.2337/diacare.26.8.2442
https://doi.org/10.1006/bbrc.1996.0587
https://doi.org/10.1006/bbrc.1996.0587
https://doi.org/10.3390/ijms18061321
https://doi.org/10.3390/ijms18061321
https://doi.org/10.1038/nature01705
https://doi.org/10.1038/nature14301
https://doi.org/10.1016/j.celrep.2014.04.006
https://doi.org/10.1016/j.celrep.2014.04.006
https://doi.org/10.1152/ajpendo.00427.2010
https://doi.org/10.1152/ajpendo.00427.2010
https://doi.org/10.2337/db11-1475
https://doi.org/10.2337/db11-1475
https://doi.org/10.1073/pnas.222657499
https://doi.org/10.1038/nm788
https://doi.org/10.1038/nm788
https://doi.org/10.1073/pnas.041591798
https://doi.org/10.1073/pnas.041591798


GeroScience (2021) 43:85–110

153. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K.
Obesity, adiponectin and vascular inflammatory disease.
Curr Opin Lipidol. 2003;14(6):561–6. https://doi.
org/10.1097/00041433-200312000-00003.

154. Berg AH, Scherer PE. Adipose tissue, inflammation, and
cardiovascular disease. Circ Res. 2005;96(9):939–49.
https://doi.org/10.1161/01.Res.0000163635.62927.34.

155. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K,
Miyagawa J, et al. Paradoxical decrease of an adipose-
specific protein, adiponectin, in obesity. Biochem
Biophys Res Commun. 1999;257(1):79–83. https://doi.
org/10.1006/bbrc.1999.0255.

156. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M,
Okamoto Y, et al. Plasma concentrations of a novel,
adipose-specific protein, adiponectin, in type 2 diabetic
patients. Arterioscler Thromb Vasc Biol. 2000;20(6):
1595–9. https://doi.org/10.1161/01.atv.20.6.1595.

157. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S,
Takahashi M, et al. Adiponectin as a biomarker of the
metabolic syndrome. Circ J. 2004;68(11):975–81.
https://doi.org/10.1253/circj.68.975.

158. Harada H, Kai H, Shibata R, Niiyama H, Nishiyama Y,
Murohara T, et al. New diagnostic index for sarcopenia in
patients with cardiovascular diseases. PLoS One.
2017;12(5):e0178123. https://doi.org/10.1371/journal.
pone.0178123.

159. Song HJ, Oh S, Quan S, Ryu O-H, Jeong J-Y, Hong K-S,
et al. Gender differences in adiponectin levels and body
composition in older adults: Hallym aging study. BMC
Geriatr. 2014;14(1):8. https://doi.org/10.1186/1471-2318-
14-8.

160. Eglit T, Ringmets I, Lember M. Obesity, high-molecular-
weight (HMW) adiponectin, and metabolic risk factors:
prevalence and gender-specific associations in Estonia.
PLoS One. 2013;8(9):e73273. https://doi.org/10.1371
/journal.pone.0073273.

161. Huang C, Tomata Y, Kakizaki M, Sugawara Y, Hozawa A,
Momma H, et al. High circulating adiponectin levels pre-
dict decreased muscle strength among older adults aged 70
years and over: a prospective cohort study. Nutr Metab
Cardiovasc Dis. 2015;25(6):594–601. https://doi.
org/10.1016/j.numecd.2015.03.010.

162. Karvonen-Gutierrez CA, Zheng H, Mancuso P, Harlow
SD. Higher leptin and adiponectin concentrations predict
poorer performance-based physical functioning in midlife
women: the Michigan Study of Women’s Health Across
the Nation. J Gerontol A Biol Sci Med Sci. 2016;71(4):
508–14. https://doi.org/10.1093/gerona/glv123.

163. Williamson D, Gallagher P, HarberM, Hollon C, Trappe S.
Mitogen-activated protein kinase (MAPK) pathway activa-
tion: effects of age and acute exercise on human skeletal
muscle. The Journal of physiology. 2003;547(Pt 3):977–
87. https://doi.org/10.1113/jphysiol.2002.036673.

164. Tanaka Y, Kita S, Nishizawa H, Fukuda S, Fujishima Y,
Obata Y, et al. Adiponectin promotes muscle regeneration
through binding to T-cadherin. Sci Rep. 2019;9(1):16.
https://doi.org/10.1038/s41598-018-37115-3.

165. Singh AK, Shree S, Chattopadhyay S, Kumar S, Gurjar A,
Kushwaha S, et al. Small molecule adiponectin receptor
agonist GTDF protects against skeletal muscle atrophy.

Mol Cell Endocrinol. 2017;439:273–85. https://doi.
org/10.1016/j.mce.2016.09.013.

166. Abou-Samra M, Lecompte S, Schakman O, Noel L, Many
MC, Gailly P, et al. Involvement of adiponectin in the
pathogenesis of dystrophinopathy. Skeletal Muscle.
2015;5(1):25. https://doi.org/10.1186/s13395-015-0051-9.

167. Ito R, Higa M, Goto A, Aoshima M, Ikuta A, Ohashi K,
et al. Activation of adiponectin receptors has negative
impact on muscle mass in C2C12 myotubes and fast-type
mouse skeletal muscle. PLoS One. 2018;13(10):e0205645.
https://doi.org/10.1371/journal.pone.0205645.

168. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW.
Control of the size of the human muscle mass. Annu Rev
Physiol. 2004;66(1):799–828. https://doi.org/10.1146
/annurev.physiol.66.052102.134444.

169. Xu J, Ji J, Yan XH. Cross-talk between AMPK and mTOR
in regulating energy balance. Crit Rev Food Sci Nutr.
2012 ;52 (5 ) : 373–81 . h t t p s : / / do i . o rg / 10 .1080
/10408398.2010.500245.

170. Wang X, Proud CG. The mTOR pathway in the control of
protein synthesis. Physiology. 2006;21(5):362–9.
https://doi.org/10.1152/physiol.00024.2006.

171. Krause MP, Milne KJ, Hawke TJ. Adiponectin-
consideration for its role in skeletal muscle health. Int J
Mol Sci. 2019;20(7):1528. https://doi.org/10.3390
/ijms20071528.

172. Guerra B, Santana A, Fuentes T, Delgado-Guerra S,
Cabrera-Socorro A, Dorado C et al. Leptin receptors in
human skeletal muscle. Journal of applied physiology
(Bethesda, Md : 1985). 2007;102(5):1786–92. https://doi.
org/10.1152/japplphysiol.01313.2006.

173. Harris RBS. Leptin—much more than a satiety signal.
Annu Rev Nutr. 2000;20(1):45–75. https://doi.
org/10.1146/annurev.nutr.20.1.45.

174. Park HK, Ahima RS. Physiology of leptin: energy homeo-
stasis, neuroendocrine function and metabolism.
Metabolism. 2015;64(1):24–34. https://doi.org/10.1016/j.
metabol.2014.08.004.

175. Cui H, López M, Rahmouni K. The cellular and molecular
bases of leptin and ghrelin resistance in obesity. Nature
Reviews Endocrinology. 2017;13(6):338–51. https://doi.
org/10.1038/nrendo.2016.222.

176. Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC.
Leptin, obesity, and leptin resistance: where are we 25
years later? Nutrients. 2019;11(11):2704. https://doi.
org/10.3390/nu11112704.

177. Considine RV, Sinha MK, Heiman ML, Kriauciunas A,
Stephens TW, Nyce MR, et al. Serum immunoreactive-
leptin concentrations in normal-weight and obese humans.
N Engl J Med. 1996;334(5):292–5. https://doi.org/10.1056
/nejm199602013340503.

178. Liuzzi A, Savia G, Tagliaferri M, Lucantoni R, Berselli
ME, Petroni ML, et al. Serum leptin concentration in
moderate and severe obesity: relationship with clinical,
anthropometric and metabolic factors. Int J Obes Relat
Metab Disord. 1999;23(10):1066–73. https://doi.
org/10.1038/sj.ijo.0801036.

179. Schwartz MW, Prigeon RL, Kahn SE, Nicolson M, Moore
J, Morawiecki A, et al. Evidence that plasma leptin and
insulin levels are associated with body adiposity via

105

https://doi.org/10.1097/00041433-200312000-00003
https://doi.org/10.1097/00041433-200312000-00003
https://doi.org/10.1161/01.Res.0000163635.62927.34
https://doi.org/10.1006/bbrc.1999.0255
https://doi.org/10.1006/bbrc.1999.0255
https://doi.org/10.1161/01.atv.20.6.1595
https://doi.org/10.1253/circj.68.975
https://doi.org/10.1371/journal.pone.0178123
https://doi.org/10.1371/journal.pone.0178123
https://doi.org/10.1186/1471-2318-14-8
https://doi.org/10.1186/1471-2318-14-8
https://doi.org/10.1371/journal.pone.0073273
https://doi.org/10.1371/journal.pone.0073273
https://doi.org/10.1016/j.numecd.2015.03.010
https://doi.org/10.1016/j.numecd.2015.03.010
https://doi.org/10.1093/gerona/glv123
https://doi.org/10.1113/jphysiol.2002.036673
https://doi.org/10.1038/s41598-018-37115-3
https://doi.org/10.1016/j.mce.2016.09.013
https://doi.org/10.1016/j.mce.2016.09.013
https://doi.org/10.1186/s13395-015-0051-9
https://doi.org/10.1371/journal.pone.0205645
https://doi.org/10.1146/annurev.physiol.66.052102.134444
https://doi.org/10.1146/annurev.physiol.66.052102.134444
https://doi.org/10.1080/10408398.2010.500245
https://doi.org/10.1080/10408398.2010.500245
https://doi.org/10.1152/physiol.00024.2006
https://doi.org/10.3390/ijms20071528
https://doi.org/10.3390/ijms20071528
https://doi.org/10.1152/japplphysiol.01313.2006
https://doi.org/10.1152/japplphysiol.01313.2006
https://doi.org/10.1146/annurev.nutr.20.1.45
https://doi.org/10.1146/annurev.nutr.20.1.45
https://doi.org/10.1016/j.metabol.2014.08.004
https://doi.org/10.1016/j.metabol.2014.08.004
https://doi.org/10.1038/nrendo.2016.222
https://doi.org/10.1038/nrendo.2016.222
https://doi.org/10.3390/nu11112704
https://doi.org/10.3390/nu11112704
https://doi.org/10.1056/nejm199602013340503
https://doi.org/10.1056/nejm199602013340503
https://doi.org/10.1038/sj.ijo.0801036
https://doi.org/10.1038/sj.ijo.0801036


GeroScience (2021) 43:85–110

different mechanisms. Diabetes Care. 1997;20(9):1476–
81. https://doi.org/10.2337/diacare.20.9.1476.

180. Perry HM, Morley JE, Horowitz M, Kaiser FE, Miller DK,
Wittert G. Body composition and age in african-american
and caucasian women: relationship to plasma leptin levels.
Metabolism. 1997;46(12):1399–405. https://doi.
org/10.1016/S0026-0495(97)90138-4.

181. Rissanen P, Mäkimattila S, Vehmas T, Taavitsainen M,
Rissanen A. Effect of weight loss and regional fat distribu-
tion on plasma leptin concentration in obese women. Int J
Obes. 1999;23(6):645–9. https://doi.org/10.1038/sj.
ijo.0800896.

182. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH,
Zhang Y, et al. Leptin levels in human and rodent: mea-
surement of plasma leptin and ob RNA in obese and
weight-reduced subjects. Nat Med. 1995;1(11):1155–61.
https://doi.org/10.1038/nm1195-1155.

183. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR,
Gingerich RL, Stern JS. Relationship of plasma leptin to
plasma insulin and adiposity in normal weight and over-
weight women: effects of dietary fat content and sustained
weight loss. J Clin Endocrinol Metab. 1996;81(12):4406–
13. https://doi.org/10.1210/jcem.81.12.8954050.

184. Thong FSL, Hudson R, Ross R, Janssen I, Graham TE.
Plasma leptin in moderately obese men: independent ef-
fects of weight loss and aerobic exercise. American Journal
of Physiology-Endocrinology and Metabolism.
2000;279(2):E307–E13. https://doi.org/10.1152
/ajpendo.2000.279.2.E307.

185. Kamikubo Y, Dellas C, Loskutoff DJ, Quigley JP, Ruggeri
ZM. Contribution of leptin receptor N-linked glycans to
leptin binding. Biochem J. 2008;410(3):595–604.
https://doi.org/10.1042/bj20071137.

186. Bjørbaek C, Kahn BB. Leptin signaling in the central
nervous system and the periphery. Recent Prog Horm
Res. 2004;59:305–31. https://doi.org/10.1210/rp.59.1.305.

187. Maroni P, Bendinelli P, Piccoletti R. Early intracellular
events induced by in vivo leptin treatment inmouse skeletal
muscle. Mol Cell Endocrinol. 2003;201(1–2):109–21.
https://doi.org/10.1016/s0303-7207(02)00427-6.

188. Maroni P, Bendinelli P, Piccoletti R. Intracellular signal
transduction pathways induced by leptin in C2C12 cells.
Cell Biol Int. 2005;29(7):542–50. https://doi.org/10.1016/j.
cellbi.2005.03.008.

189. Frederich RC, Hamann A, Anderson S, Löllmann B,
Lowell BB, Flier JS. Leptin levels reflect body lipid con-
tent in mice: evidence for diet-induced resistance to leptin
action. Nat Med. 1995;1(12):1311–4. https://doi.
org/10.1038/nm1295-1311.

190. BanksWA, DiPalma CR, Farrell CL. Impaired transport of
leptin across the blood-brain barrier in obesity. Peptides.
1999;20(11):1341–5. https://doi.org/10.1016/s0196-9781
(99)00139-4.

191. El-Haschimi K, Pierroz DD, Hileman SM, Bjørbaek C,
Flier JS. Two defects contribute to hypothalamic leptin
resistance in mice with diet-induced obesity. J Clin
Invest. 2000;105(12):1827–32. https://doi.org/10.1172
/jci9842.

192. Wilsey J, Scarpace PJ. Caloric restriction reverses the def-
icits in leptin receptor protein and leptin signaling capacity
associated with diet-induced obesity: role of leptin in the

regulation of hypothalamic long-form leptin receptor ex-
pression. J Endocrinol. 2004;181(2):297–306. https://doi.
org/10.1677/joe.0.1810297.

193. Scarpace PJ, Matheny M, Tümer N. Hypothalamic leptin
resistance is associated with impaired leptin signal trans-
duction in aged obese rats. Neuroscience. 2001;104(4):
1111–7. https://doi.org/10.1016/s0306-4522(01)00142-7.

194. Martin SS, Qasim A, Reilly MP. Leptin resistance: a pos-
sible interface of inflammation and metabolism in obesity-
related cardiovascular disease. J Am Coll Cardiol.
2008;52(15):1201–10. https://doi.org/10.1016/j.
jacc.2008.05.060.

195. Guadalupe-Grau A, Larsen S, Guerra B, Calbet JAL, Dela
F, Helge JW. Influence of age on leptin induced skeletal
muscle signalling. Acta Physiologica. 2014;211(1):214–
28. https://doi.org/10.1111/apha.12273.

196. Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A
nutrient-sensing pathway regulates leptin gene expression
in muscle and fat. Nature. 1998;393(6686):684–8.
https://doi.org/10.1038/31474.

197. Fernández-Real JM, Vayreda M, Casamitjana R,
Gonzalez-Huix F, Ricart W. The fat-free mass compart-
ment influences serum leptin in men. Eur J Endocrinol.
2000;142(1):25–9. https://doi.org/10.1530/eje.0.1420025.

198. Wolsk E, Mygind H, Grøndahl TS, Pedersen BK, van Hall
G. Human skeletal muscle releases leptin in vivo. Cytokine.
2012;60(3) :667–73. ht tps: / /doi .org/10.1016/ j .
cyto.2012.08.021.

199. Guerra B, Ponce-González JG, Morales-Alamo D,
Guadalupe-Grau A, Kiilerich K, Fuentes T, et al. Leptin
signaling in skeletal muscle after bed rest in healthy
humans. Eur J Appl Physiol. 2014;114(2):345–57.
https://doi.org/10.1007/s00421-013-2779-4.

200. Zhang J, Wu Y, Zhang Y, LeRoith D, Bernlohr DA, Chen
X. The role of lipocalin 2 in the regulation of inflammation
in adipocytes and macrophages. Mol Endocrinol.
2008;22(6):1416–26. https://doi.org/10.1210/me.2007-
0420.

201. Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N.
Isolation and primary structure of NGAL, a novel protein
associated with human neutrophil gelatinase. J Biol Chem.
1993;268(14):10425–32.

202. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z,
et al. The adipokine lipocalin 2 is regulated by obesity and
promotes insulin resistance. Diabetes. 2007;56(10):2533–
40. https://doi.org/10.2337/db07-0007.

203. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface
receptor for lipocalin 24p3 selectively mediates apoptosis
and iron uptake. Cell. 2005;123(7):1293–305. https://doi.
org/10.1016/j.cell.2005.10.027.

204. Shen F, Hu Z, Goswami J, Gaffen SL. Identification of
common transcriptional regulatory elements in interleukin-
17 target genes. J Biol Chem. 2006;281(34):24138–48.
https://doi.org/10.1074/jbc.M604597200.

205. Liu X, Hamnvik OP, Petrou M, Gong H, Chamberland JP,
Christophi CA, et al. Circulating lipocalin 2 is associated
with body fat distribution at baseline but is not an indepen-
dent predictor of insulin resistance: the prospective Cyprus
Metabolism Study. Eur J Endocrinol. 2011;165(5):805–12.
https://doi.org/10.1530/eje-11-0660.

106

https://doi.org/10.2337/diacare.20.9.1476
https://doi.org/10.1016/S0026-0495(97)90138-4
https://doi.org/10.1016/S0026-0495(97)90138-4
https://doi.org/10.1038/sj.ijo.0800896
https://doi.org/10.1038/sj.ijo.0800896
https://doi.org/10.1038/nm1195-1155
https://doi.org/10.1210/jcem.81.12.8954050
https://doi.org/10.1152/ajpendo.2000.279.2.E307
https://doi.org/10.1152/ajpendo.2000.279.2.E307
https://doi.org/10.1042/bj20071137
https://doi.org/10.1210/rp.59.1.305
https://doi.org/10.1016/s0303-7207(02)00427-6
https://doi.org/10.1016/j.cellbi.2005.03.008
https://doi.org/10.1016/j.cellbi.2005.03.008
https://doi.org/10.1038/nm1295-1311
https://doi.org/10.1038/nm1295-1311
https://doi.org/10.1016/s0196-9781(99)00139-4
https://doi.org/10.1016/s0196-9781(99)00139-4
https://doi.org/10.1172/jci9842
https://doi.org/10.1172/jci9842
https://doi.org/10.1677/joe.0.1810297
https://doi.org/10.1677/joe.0.1810297
https://doi.org/10.1016/s0306-4522(01)00142-7
https://doi.org/10.1016/j.jacc.2008.05.060
https://doi.org/10.1016/j.jacc.2008.05.060
https://doi.org/10.1111/apha.12273
https://doi.org/10.1038/31474
https://doi.org/10.1530/eje.0.1420025
https://doi.org/10.1016/j.cyto.2012.08.021
https://doi.org/10.1016/j.cyto.2012.08.021
https://doi.org/10.1007/s00421-013-2779-4
https://doi.org/10.1210/me.2007-0420
https://doi.org/10.1210/me.2007-0420
https://doi.org/10.2337/db07-0007
https://doi.org/10.1016/j.cell.2005.10.027
https://doi.org/10.1016/j.cell.2005.10.027
https://doi.org/10.1074/jbc.M604597200
https://doi.org/10.1530/eje-11-0660


GeroScience (2021) 43:85–110

206. Wang Y, Lam KSL, Kraegen EW, Sweeney G, Zhang J,
Tso AW, et al. Lipocalin-2 is an inflammatory marker
closely associated with obesity, insulin resistance, and hy-
perglycemia in humans. Clin Chem. 2007;53(1):34–41.
https://doi.org/10.1373/clinchem.2006.075614.

207. Bouloumié A, Sengenès C, Portolan G, Galitzky J,
Lafontan M. Adipocyte produces matrix metalloprotein-
ases 2 and 9: involvement in adipose differentiation.
Diabetes. 2001;50(9):2080–6. https://doi.org/10.2337
/diabetes.50.9.2080.

208. Christiaens V, Scroyen I, Lijnen HR. Role of proteolysis in
development of murine adipose tissue. Thromb Haemost.
2008;99(2):290–4. https://doi.org/10.1160/th07-10-0589.

209. Berg G, Barchuk M, Miksztowicz V. Behavior of metallo-
proteinases in adipose tissue, liver and arterial wall: an
update of extracellular matrix remodeling. Cells.
2019;8(2):158. https://doi.org/10.3390/cells8020158.

210. Mosialou I, Shikhel S, Luo N, Petropoulou PI, Panitsas K,
Bisikirska B, et al. Lipocalin-2 counteracts metabolic dys-
regulation in obesity and diabetes. J Exp Med.
2020;217(10). https://doi.org/10.1084/jem.20191261.

211. Meyers K, López M, Ho J, Wills S, Rayalam S, Taval S.
Lipocalin-2 deficiency may predispose to the progression
of spontaneous age-related adiposity in mice. Sci Rep.
2020;10(1):14589. https://doi.org/10.1038/s41598-020-
71249-7.

212. Ishii A, Katsuura G, Imamaki H, Kimura H, Mori KP,
Kuwabara T, et al. Obesity-promoting and anti-
thermogenic effects of neutrophil gelatinase-associated
lipocalin in mice. Sci Rep. 2017;7(1):15501. https://doi.
org/10.1038/s41598-017-15825-4.

213. Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman
DA, et al. Lipocalin-2 deficiency impairs thermogenesis
and potentiates diet-induced insulin resistance in mice.
Diabetes. 2010;59(6):1376–85. https://doi.org/10.2337
/db09-1735.

214. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte
PM, et al. Lipocalin-2 deficiency attenuates insulin resis-
tance associated with aging and obesity. Diabetes.
2010;59(4):872–82. https://doi.org/10.2337/db09-1541.

215. Choi KM,KimTN, YooHJ, LeeKW,ChoGJ, Hwang TG,
et al. Effect of exercise training on A-FABP, lipocalin-2
and RBP4 levels in obese women. Clin Endocrinol (Oxf).
2009;70(4):569–74. https://doi.org/10.1111/j.1365-
2265.2008.03374.x.

216. Damirchi A, Rahmani-Nia F, Mehrabani J. Lipocalin-2:
response to a progressive treadmill protocol in obese and
normal-weight men. Asian J SportsMed. 2011;2(1):44–50.
https://doi.org/10.5812/asjsm.34821.

217. de Caestecker M. The transforming growth factor-beta
superfamily of receptors. Cytokine Growth Factor Rev.
2004;15(1):1–11.

218. Breitbart A, Auger-Messier M, Molkentin JD, Heineke J.
Myostatin from the heart: local and systemic actions in
cardiac failure and muscle wasting. Am J Physiol Heart
Circ Physiol. 2011;300(6):H1973–82. https://doi.
org/10.1152/ajpheart.00200.2011.

219. Chen Y, Mironova E, Whitaker LL, Edwards L, Yost HJ,
Ramsdell AF. ALK4 functions as a receptor for multiple
TGF beta-related ligands to regulate left-right axis determi-
nation and mesoderm induction in Xenopus. Dev Biol.

2004;268(2):280–94. https: / /doi.org/10.1016/j .
ydbio.2003.12.035.

220. Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y,
Ageta H, et al. Activin signaling as an emerging target for
therapeutic interventions. Cell communication and signal-
ing : CCS. 2009;7:15. https://doi.org/10.1186/1478-811x-
7-15.

221. Braun T, Gautel M. Transcriptional mechanisms regulating
skeletal muscle differentiation, growth and homeostasis.
Nat Rev Mol Cell Biol. 2011;12(6):349–61. https://doi.
org/10.1038/nrm3118.

222. Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G,
Bruhn KW, et al. Myostatin genetic inactivation inhibits
myogenesis by muscle-derived stem cells in vitro but not
when implanted in the mdx mouse muscle. Stem Cell Res
Ther. 2013;4(1):4. https://doi.org/10.1186/scrt152.

223. Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R,
Groome NP, et al. Myostatin inhibits myogenesis and
promotes adipogenesis in C3H 10T(1/2) mesenchymal
multipotent cells. Endocrinology. 2005;146(8):3547–57.
https://doi.org/10.1210/en.2005-0362.

224. Leger B, Derave W, De Bock K, Hespel P, Russell AP.
Human sarcopenia reveals an increase in SOCS-3 and
myostatin and a reduced efficiency of Akt phosphorylation.
Rejuvenation research. 2008;11(1):163-75b. https://doi.
org/10.1089/rej.2007.0588.

225. Allen DL, Hittel DS, McPherron AC. Expression and
function of myostatin in obesity, diabetes, and exercise
adaptation. Med Sci Sports Exerc. 2011;43(10):1828–35.
https://doi.org/10.1249/MSS.0b013e3182178bb4.

226. Milan G, Dalla Nora E, Pilon C, Pagano C, Granzotto M,
MancoM, et al. Changes in muscle myostatin expression in
obese subjects after weight loss. J Clin Endocrinol Metab.
2004;89(6):2724–7. https://doi.org/10.1210/jc.2003-
032047.

227. Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C,
Tommasi AM, et al. Serum concentrations of myostatin
and myostatin-interacting proteins do not differ between
young and sarcopenic elderly men. J Gerontol A Biol Sci
Med Sci. 2011;66(6):620–6. https://doi.org/10.1093
/gerona/glr025.

228. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-
Hikim I, Ma K, Ezzat S, et al. Organization of the human
myostatin gene and expression in healthy men and HIV-
infected men with muscle wasting. Proc Natl Acad Sci U S
A. 1998;95(25):14938–43.

229. Elkina Y, von Haehling S, Anker SD, Springer J. The role
of myostatin in muscle wasting: an overview. Journal of
cachexia, sarcopenia and muscle. 2011;2(3):143–51.
https://doi.org/10.1007/s13539-011-0035-5.

230. Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time
course of proteolytic, cytokine, and myostatin gene expres-
sion after acute exercise in human skeletal muscle. J Appl
Physiol. 2007;103(5):1744–51. https://doi.org/10.1152
/japplphysiol.00679.2007.

231. Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM,
Kraus WE. Myostatin decreases with aerobic exercise and
associates with insulin resistance. Med Sci Sports Exerc.
2010;42(11):2023–9. https://doi.org/10.1249/MSS.0b013
e3181e0b9a8.

107

https://doi.org/10.1373/clinchem.2006.075614
https://doi.org/10.2337/diabetes.50.9.2080
https://doi.org/10.2337/diabetes.50.9.2080
https://doi.org/10.1160/th07-10-0589
https://doi.org/10.3390/cells8020158
https://doi.org/10.1084/jem.20191261
https://doi.org/10.1038/s41598-020-71249-7
https://doi.org/10.1038/s41598-020-71249-7
https://doi.org/10.1038/s41598-017-15825-4
https://doi.org/10.1038/s41598-017-15825-4
https://doi.org/10.2337/db09-1735
https://doi.org/10.2337/db09-1735
https://doi.org/10.2337/db09-1541
https://doi.org/10.1111/j.1365-2265.2008.03374.x
https://doi.org/10.1111/j.1365-2265.2008.03374.x
https://doi.org/10.5812/asjsm.34821
https://doi.org/10.1152/ajpheart.00200.2011
https://doi.org/10.1152/ajpheart.00200.2011
https://doi.org/10.1016/j.ydbio.2003.12.035
https://doi.org/10.1016/j.ydbio.2003.12.035
https://doi.org/10.1186/1478-811x-7-15
https://doi.org/10.1186/1478-811x-7-15
https://doi.org/10.1038/nrm3118
https://doi.org/10.1038/nrm3118
https://doi.org/10.1186/scrt152
https://doi.org/10.1210/en.2005-0362
https://doi.org/10.1089/rej.2007.0588
https://doi.org/10.1089/rej.2007.0588
https://doi.org/10.1249/MSS.0b013e3182178bb4
https://doi.org/10.1210/jc.2003-032047
https://doi.org/10.1210/jc.2003-032047
https://doi.org/10.1093/gerona/glr025
https://doi.org/10.1093/gerona/glr025
https://doi.org/10.1007/s13539-011-0035-5
https://doi.org/10.1152/japplphysiol.00679.2007
https://doi.org/10.1152/japplphysiol.00679.2007
https://doi.org/10.1249/MSS.0b013e3181e0b9a8
https://doi.org/10.1249/MSS.0b013e3181e0b9a8


GeroScience (2021) 43:85–110

232. MacKenzieMG,HamiltonDL, PepinM, Patton A, Baar K.
Inhibition of myostatin signaling through Notch activation
following acute resistance exercise. PLoS One. 2013;8(7):
e68743-e. https://doi.org/10.1371/journal.pone.0068743.

233. Hulver MW, Berggren JR, Cortright RN, Dudek RW,
Thompson RP, Pories WJ, et al. Skeletal muscle lipid
metabolism with obesity. Am J Physiol Endocrinol
Metab. 2003;284(4):E741–7. https://doi.org/10.1152
/ajpendo.00514.2002.

234. Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Uyenishi J,
Reed JM, et al. Myostatin, activin receptor IIb, and
follistatin-like-3 gene expression are altered in adipose
tissue and skeletal muscle of obese mice. Am J Physiol
Endocrinol Metab. 2008;294(5):E918–27. https://doi.
org/10.1152/ajpendo.00798.2007.

235. Kammoun M, Cassar-Malek I, Meunier B, Picard B. A
simplified immunohistochemical classification of skeletal
muscle fibres inmouse. European journal of histochemistry
: EJH. 2014;58(2):2254. https://doi.org/10.4081
/ejh.2014.2254.

236. Carlson CJ, Booth FW, Gordon SE. Skeletal muscle
myostatin mRNA expression is fiber-type specific and
increases during hindlimb unloading. Am J Physiol.
1999;277(2 Pt 2):R601–6. https://doi.org/10.1152
/ajpregu.1999.277.2.r601.

237. Amor M, Itariu BK, Moreno-Viedma V, Keindl M, Jurets
A, Prager G, et al. Serum myostatin is upregulated in
obesity and correlates with insulin resistance in humans.
Exp Clin Endocrinol Diabetes. 2019;127(8):550–6.
https://doi.org/10.1055/a-0641-5546.

238. Baboota RK, Sarma SM, Boparai RK, Kondepudi KK,
Mantri S, Bishnoi M. Microarray based gene expression
analysis of murine brown and subcutaneous adipose tissue:
significance with human. PLoS One. 2015;10(5):
e0127701. https://doi.org/10.1371/journal.pone.0127701.

239. Zuriaga MA, Fuster JJ, Gokce N, Walsh K. Humans and
mice display opposing patterns of “browning” gene expres-
sion in visceral and subcutaneous white adipose tissue
depots. Frontiers in Cardiovascular Medicine. 2017;4(27).
https://doi.org/10.3389/fcvm.2017.00027.

240. McPherron AC, Lee SJ. Suppression of body fat accumu-
lation in myostatin-deficient mice. J Clin Invest.
2002;109(5):595–601. https://doi.org/10.1172/jci13562.

241. Arrieta H, Hervás G, Rezola-Pardo C, Ruiz-Litago F,
Iturburu M, Yanguas JJ, et al. Serum myostatin levels are
higher in fitter, more active, and non-frail long-term nurs-
ing home residents and increase after a physical exercise
intervention. Gerontology. 2019;65(3):229–39. https://doi.
org/10.1159/000494137.

242. Mattick JS. The central role of RNA in human develop-
ment and cognition. FEBS Lett. 2011;585(11):1600–16.
https://doi.org/10.1016/j.febslet.2011.05.001.

243. Pertea M. The human transcriptome: an unfinished story.
Genes (Basel). 2012;3(3):344–60. https://doi.org/10.3390
/genes3030344.

244. Kung JTY, Colognori D, Lee JT. Long noncoding RNAs:
past, present, and future. Genetics. 2013;193(3):651–69.
https://doi.org/10.1534/genetics.112.146704.

245. Mercer TR, Dinger ME, Mattick JS. Long non-coding
RNAs: insights into functions. Nature Reviews Genetics.
2009;10(3):155–9. https://doi.org/10.1038/nrg2521.

246. Struhl K. Transcriptional noise and the fidelity of initiation
by RNA polymerase II. Nat Struct Mol Biol. 2007;14(2):
103–5. https://doi.org/10.1038/nsmb0207-103.

247. Wang Kevin C, Chang HY.Molecular mechanisms of long
noncoding RNAs. Mol Cell. 2011;43(6):904–14.
https://doi.org/10.1016/j.molcel.2011.08.018.

248. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol
Genet. 2006;15(suppl_1):R17–29. https://doi.org/10.1093
/hmg/ddl046.

2 4 9 . Na nu s DE , W i j e s i n gh e SN , P e a r s o n MJ ,
Hadjicharalambous MR, Rosser A, Davis ET, et al.
Regulation of the inflammatory synovial fibroblast phe-
notype by metastasis-associated lung adenocarcinoma
transcript 1 long noncoding RNA in obese patients with
osteoarthritis. Arthritis & Rheumatology. 2020;72(4):
609–19. https://doi.org/10.1002/art.41158.

250. Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW.
Involvements of long noncoding RNAs in obesity-
associated inflammatory diseases. Obes Rev.n/a(n/a).
https://doi.org/10.1111/obr.13156.

251. Gao H, Kerr A, Jiao H, Hon C-C, Rydén M, Dahlman I,
et al. Long non-coding RNAs associated with metabolic
traits in human white adipose tissue. EBioMedicine.
2018 ; 30 : 248–60 . h t t p s : / / d o i . o r g / 10 . 1016 / j .
ebiom.2018.03.010.

252. Alessio E, Buson L, Chemello F, Peggion C, Grespi F,
Martini P, et al. Single cell analysis reveals the involvement
of the long non-coding RNA Pvt1 in the modulation of
muscle atrophy and mitochondrial network. Nucleic Acids
Res. 2019;47(4):1653–70. https://doi.org/10.1093
/nar/gkz007.

253. Liu M, Li B, Peng W, Ma Y, Huang Y, Lan X, et al.
LncRNA-MEG3 promotes bovine myoblast differentiation
by sponging miR-135. J Cell Physiol. 2019;234(10):
18361–70. https://doi.org/10.1002/jcp.28469.

254. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding
RNA gives rise to microRNAs miR-675-3p and miR-
675-5p to promote skeletal muscle differentiation and re-
generation. Genes Dev. 2014;28(5):491–501. https://doi.
org/10.1101/gad.234419.113.

255. Schmidt E, Dhaouadi I, Gaziano I, Oliverio M, Klemm P,
Awazawa M, et al. LincRNA H19 protects from dietary
obesity by constraining expression of monoallelic genes in
brown fat. Nature Communications. 2018;9(1):3622.
https://doi.org/10.1038/s41467-018-05933-8.

256. Watts R, Johnsen VL, Shearer J, Hittel DS. Myostatin-
induced inhibition of the long noncoding RNA Malat1 is
associated with decreased myogenesis. Am J Physiol Cell
Physiol. 2013;304(10):C995–1001. https://doi.
org/10.1152/ajpcell.00392.2012.

257. Schirwis E, Agbulut O, Vadrot N, Mouisel E, Hourdé C,
Bonnieu A, et al. The beneficial effect of myostatin defi-
ciency on maximal muscle force and power is attenuated
with age. Exp Gerontol. 2013;48(2):183–90. https://doi.
org/10.1016/j.exger.2012.11.008.

258. Kim J, Kim KM, Noh JH, Yoon J-H, Abdelmohsen K,
Gorospe M. Long noncoding RNAs in diseases of aging.
Biochim Biophys Acta. 2016;1859(1):209–21. https://doi.
org/10.1016/j.bbagrm.2015.06.013.

259. Xing D, Liang JQ, Li Y, Lu J, Jia HB, Xu LY, et al.
Identification of long noncoding RNA associated with

108

https://doi.org/10.1371/journal.pone.0068743
https://doi.org/10.1152/ajpendo.00514.2002
https://doi.org/10.1152/ajpendo.00514.2002
https://doi.org/10.1152/ajpendo.00798.2007
https://doi.org/10.1152/ajpendo.00798.2007
https://doi.org/10.4081/ejh.2014.2254
https://doi.org/10.4081/ejh.2014.2254
https://doi.org/10.1152/ajpregu.1999.277.2.r601
https://doi.org/10.1152/ajpregu.1999.277.2.r601
https://doi.org/10.1055/a-0641-5546
https://doi.org/10.1371/journal.pone.0127701
https://doi.org/10.3389/fcvm.2017.00027
https://doi.org/10.1172/jci13562
https://doi.org/10.1159/000494137
https://doi.org/10.1159/000494137
https://doi.org/10.1016/j.febslet.2011.05.001
https://doi.org/10.3390/genes3030344
https://doi.org/10.3390/genes3030344
https://doi.org/10.1534/genetics.112.146704
https://doi.org/10.1038/nrg2521
https://doi.org/10.1038/nsmb0207-103
https://doi.org/10.1016/j.molcel.2011.08.018
https://doi.org/10.1093/hmg/ddl046
https://doi.org/10.1093/hmg/ddl046
https://doi.org/10.1002/art.41158
https://doi.org/10.1111/obr.13156
https://doi.org/10.1016/j.ebiom.2018.03.010
https://doi.org/10.1016/j.ebiom.2018.03.010
https://doi.org/10.1093/nar/gkz007
https://doi.org/10.1093/nar/gkz007
https://doi.org/10.1002/jcp.28469
https://doi.org/10.1101/gad.234419.113
https://doi.org/10.1101/gad.234419.113
https://doi.org/10.1038/s41467-018-05933-8
https://doi.org/10.1152/ajpcell.00392.2012
https://doi.org/10.1152/ajpcell.00392.2012
https://doi.org/10.1016/j.exger.2012.11.008
https://doi.org/10.1016/j.exger.2012.11.008
https://doi.org/10.1016/j.bbagrm.2015.06.013
https://doi.org/10.1016/j.bbagrm.2015.06.013


GeroScience (2021) 43:85–110

osteoarthritis in humans. Orthop Surg. 2014;6(4):288–93.
https://doi.org/10.1111/os.12147.

260. Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa
M, Honda M, et al. Expression levels of long non-coding
RNAs change in models of altered muscle activity and
muscle mass. Int J Mol Sci. 2020;21(5):1628. https://doi.
org/10.3390/ijms21051628.

261. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC,
Chen X, et al. A uniform system for microRNA annotation.
RNA. 2003;9(3):277–9. https://doi.org/10.1261
/rna.2183803.

262. Lee RC, Feinbaum RL, Ambros V. The C. elegans
heterochronic gene lin-4 encodes small RNAs with anti-
sense complementarity to lin-14. Cell. 1993;75(5):843–
854. https://doi.org/10.1016/0092-8674(93)90529-y.

263. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant
class of tiny RNAs with probable regulatory roles in
Caenorhabditis elegans. Science. 2001;294(5543):858–
62. https://doi.org/10.1126/science.1065062.

264. Lee RC, Ambros V. An extensive class of small RNAs in
Caenorhabditis elegans. Science. 2001;294(5543):862–4.
https://doi.org/10.1126/science.1065329.

265. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al.
Characterization of microRNAs in serum: a novel class of
biomarkers for diagnosis of cancer and other diseases. Cell
Res. 2008;18(10):997–1006. https://doi.org/10.1038
/cr.2008.282.

266. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC,
GibsonDF, et al. Argonaute2 complexes carry a population
of circulating microRNAs independent of vesicles in hu-
man plasma. Proceedings of the National Academy of
Sciences. 2011;108(12):5003–8. https://doi.org/10.1073
/pnas.1019055108.

267. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ,
Lötvall JO. Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange
between cells. Nat Cell Biol. 2007;9(6):654–9. https://doi.
org/10.1038/ncb1596.

268. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB,
Sullivan ML, Karlsson JM, et al. Mechanism of transfer
of functional microRNAs between mouse dendritic cells
via exosomes. Blood. 2012;119(3):756–66. https://doi.
org/10.1182/blood-2011-02-338004.

269. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of
microRNA biogenesis, mechanisms of actions, and circu-
lation. Front Endocrinol (Lausanne). 2018;9(402).
https://doi.org/10.3389/fendo.2018.00402.

270. Ha M, Kim VN. Regulation of microRNA biogenesis.
Nature Reviews Molecular Cell Biology. 2014;15(8):
509–24. https://doi.org/10.1038/nrm3838.

271. Yang JS, Lai EC. Alternative miRNA biogenesis pathways
and the interpretation of core miRNA pathway mutants.
Mol Cell. 2011;43(6):892–903. https://doi.org/10.1016/j.
molcel.2011.07.024.

272. Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K,
et al. MicroRNAs in sarcopenia: a systematic review.
Frontiers in Medicine. 2020;7(180). https://doi.
org/10.3389/fmed.2020.00180.

273. Brown DM, Goljanek-Whysall K. microRNAs:
Modulators of the underlying pathophysiology of

sarcopenia? Ageing research reviews. 2015;24:263–73.
https://doi.org/10.1016/j.arr.2015.08.007.

274. He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D,
et al. Circulating microRNAs in plasma decrease in re-
sponse to sarcopenia in the elderly. Frontiers in Genetics.
2020;11(167). https://doi.org/10.3389/fgene.2020.00167.

275. Kim JY, Park Y-K, Lee K-P, Lee S-M, Kang T-W, KimH-
J, et al. Genome-wide profiling of the microRNA-mRNA
regulatory network in skeletal muscle with aging. Aging.
2014;6(7):524–44. https://doi.org/10.18632/aging.100677.

276. Heneghan HM,Miller N, KerinMJ. Role of microRNAs in
obesity and the metabolic syndrome. Obes Rev.
2010;11(5):354–61. https://doi.org/10.1111/j.1467-789
X.2009.00659.x.

277. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27
in the regulation of adipogenesis. The FEBS journal.
2009;276(8):2348–58. https://doi.org/10.1111/j.1742-
4658.2009.06967.x.

278. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG,
Ravichandran LV, et al. MicroRNA-143 regulates adipo-
cyte differentiation. J Biol Chem. 2004;279(50):52361–5.
https://doi.org/10.1074/jbc.C400438200.

279. Xie H, Lim B, Lodish HF. MicroRNAs induced during
adipogenesis that accelerate fat cell development are down-
regulated in obesity. Diabetes. 2009;58(5):1050–7.
https://doi.org/10.2337/db08-1299.

280. Iacomino G, Siani A. Role of microRNAs in obesity and
obesity-related diseases. Genes Nutr. 2017;12(1):23.
https://doi.org/10.1186/s12263-017-0577-z.

281. Ji C, Guo X. The clinical potential of circulating
microRNAs in obesity. Nature Reviews Endocrinology.
2019;15(12):731–43. https://doi.org/10.1038/s41574-019-
0260-0.

282. Wang Y-c, Li Y, Wang X-y, Zhang D, Zhang H, Wu Q,
et al. Circulating miR-130b mediates metabolic crosstalk
between fat and muscle in overweight/obesity.
Diabetologia. 2013;56(10):2275–85. https://doi.
org/10.1007/s00125-013-2996-8.

283. Corona-Meraz F-I, Vázquez-Del Mercado M, Ortega FJ,
Ruiz-Quezada S-L, Guzmán-Ornelas M-O, Navarro-
Hernández R-E. Ageing influences the relationship of cir-
culating miR-33a and miR-33b levels with insulin resis-
tance and adiposity. Diabetes and Vascular Disease
Research. 2019;16(3):244–53. https://doi.org/10.1177
/1479164118816659.

284. Greco S, De SimoneM, Colussi C, Zaccagnini G, Fasanaro
P, Pescatori M, et al. Common micro-RNA signature in
skeletal muscle damage and regeneration induced by
Duchenne muscular dystrophy and acute ischemia.
FASEB J. 2009;23(10):3335–46. https://doi.org/10.1096
/fj.08-128579.

285. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-
Salinas D, Chamorro-Jorganes A, Ramírez CM, et al. A
regulatory role for microRNA 33* in controlling lipid
metabolism gene expression. Mol Cell Biol. 2013;33(11):
2339–52. https://doi.org/10.1128/MCB.01714-12.

286. Näär AM. miR-33: a metabolic conundrum. Trends in
endocrinology and metabolism: TEM. 2018;29(10):667–
8. https://doi.org/10.1016/j.tem.2018.04.004.

287. Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T,
Nishiga M, et al. MicroRNA-33 regulates sterol regulatory

109

https://doi.org/10.1111/os.12147
https://doi.org/10.3390/ijms21051628
https://doi.org/10.3390/ijms21051628
https://doi.org/10.1261/rna.2183803
https://doi.org/10.1261/rna.2183803
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.1126/science.1065062
https://doi.org/10.1126/science.1065329
https://doi.org/10.1038/cr.2008.282
https://doi.org/10.1038/cr.2008.282
https://doi.org/10.1073/pnas.1019055108
https://doi.org/10.1073/pnas.1019055108
https://doi.org/10.1038/ncb1596
https://doi.org/10.1038/ncb1596
https://doi.org/10.1182/blood-2011-02-338004
https://doi.org/10.1182/blood-2011-02-338004
https://doi.org/10.3389/fendo.2018.00402
https://doi.org/10.1038/nrm3838
https://doi.org/10.1016/j.molcel.2011.07.024
https://doi.org/10.1016/j.molcel.2011.07.024
https://doi.org/10.3389/fmed.2020.00180
https://doi.org/10.3389/fmed.2020.00180
https://doi.org/10.1016/j.arr.2015.08.007
https://doi.org/10.3389/fgene.2020.00167
https://doi.org/10.18632/aging.100677
https://doi.org/10.1111/j.1467-789X.2009.00659.x
https://doi.org/10.1111/j.1467-789X.2009.00659.x
https://doi.org/10.1111/j.1742-4658.2009.06967.x
https://doi.org/10.1111/j.1742-4658.2009.06967.x
https://doi.org/10.1074/jbc.C400438200
https://doi.org/10.2337/db08-1299
https://doi.org/10.1186/s12263-017-0577-z
https://doi.org/10.1038/s41574-019-0260-0
https://doi.org/10.1038/s41574-019-0260-0
https://doi.org/10.1007/s00125-013-2996-8
https://doi.org/10.1007/s00125-013-2996-8
https://doi.org/10.1177/1479164118816659
https://doi.org/10.1177/1479164118816659
https://doi.org/10.1096/fj.08-128579
https://doi.org/10.1096/fj.08-128579
https://doi.org/10.1128/MCB.01714-12
https://doi.org/10.1016/j.tem.2018.04.004


GeroScience (2021) 43:85–110

element-binding protein 1 expression in mice. Nat
Commun. 2013;4:2883. https://doi.org/10.1038
/ncomms3883.

288. Price NL, Singh AK, Rotllan N, Goedeke L, Wing A,
Canfrán-Duque A, et al. Genetic ablation of mir-33 in-
creases food intake, enhances adipose tissue expansion,
and promotes obesity and insulin resistance. Cell Rep.
2018;22(8):2133–45. https:/ /doi.org/10.1016/j .
celrep.2018.01.074.

289. Li X, Qiu J, Liu H, Deng Y, Hu S, Hu J, et al. MicroRNA-
33a negatively regulates myoblast proliferation by
targeting IGF1, follistatin and cyclin D1. Biosci Rep.
2020;40(6):BSR20191327. https://doi.org/10.1042
/BSR20191327.

290. Güller I, Russell AP. MicroRNAs in skeletal muscle: their
role and regulation in development, disease and function.
The Journal of physiology. 2010;588(Pt 21):4075–87.
https://doi.org/10.1113/jphysiol.2010.194175.

291. Zhao Y, Srivastava D. A developmental view of
microRNA function. Trends Biochem Sci. 2007;32(4):
189–97. https://doi.org/10.1016/j.tibs.2007.02.006.

292. Zhao Y, Samal E, Srivastava D. Serum response factor
regulates a muscle-specific microRNA that targets Hand2
during cardiogenesis. Nature. 2005;436(7048):214–20.
https://doi.org/10.1038/nature03817.

293. Rao PK, Kumar RM, FarkhondehM, Baskerville S, Lodish
HF. Myogenic factors that regulate expression of muscle-
specific microRNAs. Proc Natl Acad Sci U S A.
2006;103(23):8721–6. ht tps: / /doi .org/10.1073
/pnas.0602831103.

294. Mori Marcelo A, Raghavan P, Thomou T, Boucher J,
Robida-Stubbs S, Macotela Y, et al. Role of microRNA
processing in adipose tissue in stress defense and longevity.

Cell Metab. 2012;16(3):336–47. https://doi.org/10.1016/j.
cmet.2012.07.017.

295. Frias FT, de Mendonça M, Martins AR, Gindro AF,
Cogliati B, Curi R, et al. MyomiRs as markers of insulin
resistance and decreased myogenesis in skeletal muscle of
diet-induced obese mice. Front Endocrinol (Lausanne).
2016;7:76. https://doi.org/10.3389/fendo.2016.00076.

296. de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ,
Smit JWA, Revuelta-Lopez E, Nasarre L, et al. Serum
microRNA-1 and microRNA-133a levels reflect myocar-
dial steatosis in uncomplicated type 2 diabetes. Sci Rep.
2017;7(1):47. https://doi.org/10.1038/s41598-017-00070-
6.

297. Iacomino G, Russo P, Stillitano I, Lauria F, Marena P,
Ahrens W, et al. Circulating microRNAs are deregulated
in overweight/obese children: preliminary results of the
I.Family study. Genes Nutr. 2016;11(1):7. https://doi.
org/10.1186/s12263-016-0525-3.

298. Oliveira MS, Rheinheimer J, Moehlecke M, Rodrigues M,
Assmann TS, Leitão CB, et al. UCP2, IL18, andmiR-133a-
3p are dysregulated in subcutaneous adipose tissue of pa-
tients with obesity. Mol Cell Endocrinol. 2020;509:
110805. https://doi.org/10.1016/j.mce.2020.110805.

299. Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP,
Psyrogiannis AI, Kyriazopoulou VE, et al. Differential
expression of microRNAs in adipose tissue after long-
term high-fat diet-induced obesity in mice. PLoS One.
2012;7(4):e34872. https://doi.org/10.1371/journal.
pone.0034872.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

110

https://doi.org/10.1038/ncomms3883
https://doi.org/10.1038/ncomms3883
https://doi.org/10.1016/j.celrep.2018.01.074
https://doi.org/10.1016/j.celrep.2018.01.074
https://doi.org/10.1042/BSR20191327
https://doi.org/10.1042/BSR20191327
https://doi.org/10.1113/jphysiol.2010.194175
https://doi.org/10.1016/j.tibs.2007.02.006
https://doi.org/10.1038/nature03817
https://doi.org/10.1073/pnas.0602831103
https://doi.org/10.1073/pnas.0602831103
https://doi.org/10.1016/j.cmet.2012.07.017
https://doi.org/10.1016/j.cmet.2012.07.017
https://doi.org/10.3389/fendo.2016.00076
https://doi.org/10.1038/s41598-017-00070-6
https://doi.org/10.1038/s41598-017-00070-6
https://doi.org/10.1186/s12263-016-0525-3
https://doi.org/10.1186/s12263-016-0525-3
https://doi.org/10.1016/j.mce.2020.110805
https://doi.org/10.1371/journal.pone.0034872
https://doi.org/10.1371/journal.pone.0034872

	Recent...
	Abstract
	Introduction
	Adipose tissue as an endocrine organ
	Inter-tissue communication via multiple means
	Senescence-associated secretory phenotype
	Cytokines as mediators of adipose-muscle cross talk
	Resistin
	Interleukin-15
	Adiponectin
	Leptin
	Lipocalin 2
	Myostatin

	Long non-coding RNAs: emerging roles in skeletal muscle regulation
	H19
	MALAT1
	PVT1
	lncMyoD

	MicroRNAs: novel candidate factors in adipose-muscle cross talk
	miR-31, miR-223, and miR-33a
	MyomiRs

	Conclusions and future directions
	References




