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Abstract
Introduction Many bacteria are responsible for infections in humans and plants, being found in vegetables, water, and medical
devices. Most bacterial detection methods are time-consuming and take days to give the result. Aptamers are a promising
alternative for a quick and reliable measurement technique to detect bacteria present in food products. Selected aptamers are
DNA or RNA oligonucleotides that can bind with bacteria or other molecules with affinity and specificity for the target cells by
the SELEX or cell-SELEX technique. This method is based on some rounds to remove the non-ligand oligonucleotides, leaving
the aptamers specific to bind to the selected bacteria. Compared with conventional methodologies, the detection approach using
aptamers is a rapid, low-cost form of analysis.
Objective This review summarizes obtention methods and applications of aptamers in the food industry and biotechnology.
Besides, different techniques with aptamers are presented, which enable more effective target detection.
Conclusion Applications of aptamers as biosensors, or the association of aptamers with nanomaterials, may be employed in
analyses by colorimetric, fluorescence, or electrical devices. Additionally, more efficient ways of sample preparation are pre-
sented, which can support food safety to provide human health, with a low-cost method for contaminant detection.

Key points
• Aptamers are promising for detecting contaminants outbreaks.
• Studies are needed to identify aptamers for different targets.

Keywords Biosensor . DNAAptamer . Cell-SELEX . Bacteria

Introduction

The growth of epidemiologic diseases has been increasing due
to food production and consumption trends, such as production
processes, globalization of consumer goods, and high demand
for raw or undercooked foods (Cheung and Kam 2012). Gram-
positive and gram-negative bacteria are responsible for infec-
tious diseases even at low concentrations (Soundy and Day
2017). Manymethods may be applied to identify these bacteria,
such as conventional bacterial culture, immunofluorescence,
and polymerase chain reaction (PCR). However, these tech-
niques are often time-consuming, without quantitative

response, and often they are high-cost analyses (Lavu et al.
2016). In the last decades, rapid and efficient methods of detec-
tion are being developed to decrease food contamination and
improve human health (Amaya-González et al. 2013).

Alternative methods to the detection of microorganisms are
the use of single strands of DNA or RNA, called aptamers,
which are capable to bind to non-nucleic acid molecules. The
technique known as systematic evolution of ligands by expo-
nential enrichment (SELEX) combines different steps such as
incubation of oligonucleotides library, separation, amplifica-
tion by polymerase chain reaction (PCR), and purification
(Liu and Zhang 2015). This approach has been used since
the 1990s when Tuerk and Gold (1990) discovered an RNA
aptamer capable to bind to the T4 DNA polymerase, and
Ellington and Szostak (1990) studied the bind of RNA
aptamer to organic dyes. Over the years many publications
were published on the use of aptamers in different ways, even-
tually conjugated with metallic, oxide or polymeric nanopar-
ticles, and carbon nanotubes (Liu and Zhang 2015).
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This review aims to address the techniques for obtaining
aptamers, and their use particularly for contaminants detection
in food products. The structure and properties of aptamers, as
well as nanomaterials commonly used to be conjugated with
aptamers, are presented. Moreover, recent applications and
market perspectives are also introduced.

Aptamers structure and properties

Aptamers are single-stranded DNA or RNA molecules
(oligonucleotides) with 50 to 100 nucleotides bases, 1 to
2 nm in size, and 7.5 to 32 kDa, with high affinity and spec-
ificity to bind to a target molecule (Ellington and Szostak
1990; Stoltenburg et al. 2005). According to Radom et al.
(2013), DNA aptamers are molecules more stable than
RNA; however, no significant differences were found be-
tween their specificities and binding capacities.

Aptamers can assume stable three-dimensional configura-
tions in the aqueous phase, such as lops, triplexes,
pseudoknots, G-quadruplexes, and staples (Bing et al. 2017).
Due to the ability to change their shape, they can bind to
different targets such as amino acids, vitamins, nucleotides,
proteins, pesticides, drugs, bacteria, and inorganic or organic
compounds. Moreover, they can be used as enzyme inhibitors
to recognize proteins and nucleic acids, as well as inhibitors of
toxins and hormones, applied in the detection of molecules in
complex mixtures, purification, and biosensors (Liu and
Zhang 2015; Peterson et al. 2015).

The affinity with the target molecule is associated with the
dissociation constant that ranges from picomoles per liter to
nanomoles per liter, being calculated through thermodynamic
stability (Takenaka et al. 2017). Besides, aptamers may be
stored and transported at room temperature due to the stability
in the environmental conditions (Missailidis and Perkins
2007). Also, modifications in the aptamers can make them
more resistant, stable, and improve the targeting ability, as
shown by Ni et al. (2017). According to the authors, aptamers
for the therapeutic area are susceptible to nuclease degradation
and can be excreted by renal filtration even before they bind to
the target. Thus, to increase the resistance to nuclease degra-
dation, aptamers can be modified in the 3′ end with inverted
thymidine or conjugated with biotin or biotin-streptavidin.
Another modification is at 5′ position, which consists of the
addition of cholesterol to increase the aptamer stability in
plasma (Ni et al. 2017).

In the same way, it is possible to combine aptamers with
nanostructures, such as gold nanoparticles or carbon nano-
tubes (Radom et al. 2013). They can be labeled with com-
pounds such as dye or biotin. This process is widely used as
systematic evolution of ligands by exponential enrichment
(SELEX) to control the binding properties (Missailidis and
Perkins 2007; Radom et al. 2013).

Systematic evolution of ligands
by exponential enrichment

SELEX is a technique used to obtain aptamers through the
in vitro selection of oligonucleotides over many rounds
(Radom et al. 2013). In the 1990s, the first reports using the
SELEX technique were published with RNA aptamers bound-
ed to T4 DNA polymerase with high affinity (Tuerk and Gold
1990). In addition, Ellington and Szostak (1990) studied
in vitro selection of organic dyes-binding RNA, and
Robertson and Joyce (1990) selected the tetrahymena ribo-
zyme and through amplifications obtained an RNA sequence
able to cleave a specific DNA sequence.

This technique allows the selection of specific oligonucle-
otides that can be chemically synthesized, without the need to
be produced or selected in a living organism (Stoltenburg et al.
2007). As shown in Fig. 1, SELEX first step is to obtain a
library of random oligonucleotides, which can be single
strands of DNA or RNA, with 1014 to 1015 different se-
quences. This library, also called a bank, has a fixed region
and a random region of 20 to 80 nucleotides, which allows the
molecules to form different structures as already mentioned,
ready to bind the desired molecules (Stoltenburg et al. 2005).
The fixed region, which is the library extremities, allows the
amplification (Stoltenburg et al. 2005).

The binding step occurs by the incubation of the bank of
ligands (aptamer candidates) and the target molecule in a buff-
er solution. After this, the bounded oligonucleotides are sep-
arated from non-bounded by physical separation and PCR
amplification is carried out on the recovered bounded oligo-
nucleotides, thus the first SELEX cycle started (Radom et al.
2013). Different techniques can be used in the separation pro-
cess, such as centrifugation (Soundy and Day 2017; Ramlal
et al. 2018); capillary electrophoresis (Tang et al. 2006); ul-
trafiltration with nitrocellulose filter (Joshi et al. 2009); flow
cytometry (Davis et al. 1996); and affinity chromatography
using agarose, sepharose, magnetic beads and microwell
plate, or sol-gel channels to immobilize the target
(Mckeague et al. 2009; Bae et al. 2013; Kim et al. 2014).

The separation of aptamer candidates from the target mol-
ecule can be carried out by heat treatment, competing for
ligand elution, urea addition, EDTA, or SDS techniques
(Weiss et al. 1997; Bianchini et al. 2001; Theis et al. 2004;
Stoltenburg et al. 2005). According to Ellington and Szostak
(1990), the affinity chromatography technique is used when it
is desired to obtain aptamers for small targets.

For the second SELEX cycle, the amplified product
(double-stranded DNA or RNA) should be converted by
PCR to a single-stranded. According to Stoltenburg et al.
(2005), if the library is DNA, the most used methods are
biotin/streptavidin-added electrophoresis for strand distinction
(desired and unwanted), size-difference primers where the un-
wanted strand is modified, modified primers at tip 3′ (addition
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of a ribose), or hexamethylene glycol spacer primers. For the
last two methods, electrophoresis is used to check the size
difference and separate the unwanted tape. If the double strand
is RNA, dsDNA is transcribed into RNA with T7 RNA poly-
merase. After the simple tapes are incubated again with the
target, one more SELEX cycle occurs (Stoltenburg et al.
2005).

The cycles are performed until a binder with high affinity
and specificity is obtained (Fig. 2), and in this case, 5 to 20 cy-
cles can be performed (Tuerk and Gold 1990; Missailidis and
Perkins 2007; Liu and Zhang 2015). This number depends on
some factors such as the selected library, selection conditions
of oligonucleotides, the concentration of incubated target, as
well as the concentration of aptamer candidates (Radom et al.
2013). Once obtained, the high affinity and specificity
aptamers are cloned into bacterial vectors, usually,
Escherichia coli, sequenced and characterized (Tuerk and
Gold 1990; Stoltenburg et al. 2005; Missailidis and Perkins
2007).

Several aptamers have already been selected for a range of
targets as inorganic ions (Na+) (Zhou et al. 2016), dopamine,
and other organic compounds such as amino acids like L-
tryptophan (Idili et al. 2019), proteins (Deng et al. 2014),
antibiotics (Smart et al. 2020), and microorganisms (bacteria,
viruses, and fungi) (Soundy and Day 2017; Smart et al. 2020).
When the aptamers are obtained by whole cells, the technique
is called cell-SELEX (Radom et al. 2013).

Contrariwise to the SELEX approach, which uses purified
targets, the cell-SELEX technique allows the use of whole
cells where no knowledge of target conformation or protein
purification is required, and whole cells remain in their natural
state throughout the selection process. This technique is used
because in some cases, when the target is purified, the native
configuration can be lost, and the target is masked. So, the
candidate aptamers may not bind since the natural structure of
the targets is not recognized (Ye et al. 2012). The cell-SELEX
cycle follows the same structure as the SELEX technique, but
with the addition of negative selection. This approach uses
different cells that are non-target for reducing the number of
aptamers, which bind with non-specific cells, thus increasing
aptamer specificity (Fig. 2). In the negative selection, Ye et al.
(2012) described that non-binding aptamers are discarded and
those targeting cell-binding are eluted and amplified by PCR.
On the other hand, to the negative control, non-target cells are
incubated with amplified library and non-binding cells are
separated and amplified by PCR and so on until high affinity
and specificity aptamers are obtained (Ye et al. 2012). In the
cell-SELEX, the candidate aptamers can bind to the three-
dimensional configuration of the target (Ye et al. 2012).

Cell-SELEX is reported, in the literature, to select
aptamers, i.e., Salmonella enterica serovar Typhimurium
(Duan et al. 2013; Lavu et al. 2016), Pseudomonas
aeruginosa (Soundy and Day 2017), Neisseria meningitidis
(Mirzakhani et al. 2018), Escherichia coli O157:H7 (Amraee

Fig. 1 Illustration of DNA
aptamers selection by SELEX.
Adapted from Liu and Zhang
(2015)
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et al. 2017), Streptococcus pyogenes (Hamula et al. 2011),
Staphylococcus aureus (Ramlal et al. 2018), Haemophilus
influenzae (Bitaraf et al. 2016), Trypanosoma cruzi (Ulrich
et al. 2002), tumor liver cells (Mi et al. 2009), and mouse stem
cells (Guo et al. 2007).

In this way, the chosen method depends on the target.
Many works employed the cell-SELEX technique to obtain
aptamers for bacteria detection, providing high affinity and
selectivity. On the other hand, the SELEX technique can be
used to identify bacteria and other compounds such as organic
and inorganic molecules, viruses, and tumors.

Aptamers conjugation

Aptamers can have diverse applications, from basic research
in medicine, pharmaceuticals, diagnostics, therapy, and drug
development to pathogen detection, which encompasses the
medical field and the food industry (Tuerk and Gold 1990;
Lavu et al. 2016). In therapy, aptamers act as inhibitors of
targets, as nucleolin inhibition (Radom et al. 2013), while
for food safety, aptamers are used to detect contaminants
(Amaya-González et al. 2013).

To improve the application range, aptamers may be conju-
gated to nanostructures, which assist in the identification of
the target compounds. Common conjugates for aptamers are
metal or silica nanoparticles, hydrogels, and even carbon
nanomaterials, due to their biocompatibility, controllable
chemical and physical properties, and stability (Liu and
Zhang 2015; Yang et al. 2015).

Among the conjugation applications, one can be the
aptamer conjugation for colorimetric detection. This type of

detection is the most attractive and widely used since the tar-
get is detected through visual observation with the aid of col-
ored reagent without the use of analytical instruments as a
spectrophotometer. For this kind of application, gold, magnet-
ic, or cerium oxide nanoparticles, carbon nanotubes, graphene
oxide, or even polymers may be conjugated to the aptamers
(Sharma et al. 2015). These nanostructured supports have
been commonly synthesized and applied (Almeida et al.
2017; Valério et al. 2017; Chiaradia et al. 2018; Hoelscher
et al. 2018; Maass et al. 2019).

Gold nanoparticles are widely used because they decrease
the distance between dispersed particles and increase the size
after aggregation resulting in red to blue colors, as shown in
Fig. 3 (Sharma et al. 2015). Some authors reported the use of
silver ions to improve detection sensitivity. In this case, silver
ions adhere to the surface of AuNPs reducing silver atoms by
electrons released from the reducing agent around the gold
nanoparticles. Thus, the nucleation reaction increases the gold
nanoparticles size changing the color making possible a visi-
ble identification (Liu et al. 2014).

Fluorescence is the emission of light from an excited mol-
ecule, a dye or even a nanomaterial that then returns to its
initial state (Sharma et al. 2015). Both colorimetric and fluo-
rescence assays are widely used in aptamer studies, as they
present high sensitivity, high efficiency, and easy operation.
Those techniques require the use of fluorophore and chromo-
phore dyes for measurable signal emission (Sharma et al.
2015).

According to Sharma et al. (2015), besides dyes, some
nanomaterials provide fluorescence emission, which are eco-
nomically viable but have a time consuming laborious process
that can affect the selectivity of the aptamer to the target

Fig. 2 cell-SELEX steps to
obtain a DNA aptamer. Adapted
from Ye et al. (2012)
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binding. Assays without fluorescent markers consist of the use
of DNA intercalators, base site binding dyes, and metallic
nanomaterials with the fluorescence emission.

Organic dyes such as FAM (fluorescein amidite) are com-
monly bounded to oligonucleotides but have some limitations
such as broad emission range, low photostability, low absorp-
tion, and photodegradation (Li et al. 2008). To improve these
limitations, inorganic fluorescents like quantum dots can be
used, since their optical characteristics depend on the size (1 to
10 nm). They have a broad absorption spectrum, narrow emis-
sion spectrum, and long life fluorescence. However, their
drawbacks are the high-cost synthesis and toxicity associated
(Sharma et al. 2015). An example of quantum dots is cadmi-
um selenide, which has high luminescence and good quantum
yield (Xu et al. 2015) as already reported to detect the pres-
ence of E. coli O157: H7 by Xu et al. (2015).

Yang et al. (2011) reported the use of carbon nanoparticles
for fluorescence testing, highlighting material advantages
such as low cost, high quantum productivity, simple prepara-
tion, low toxicity, good biocompatibility, good aqueous solu-
bility, and superior photoluminescence properties. In addition
to fluorescent dyes, nucleic acid dyes may be used (SYBR
green I, AccuBlue, and PicoGreen). The drawbacks of the
nucleic acid dyes are the low fluorescence intensity and the
requirement to interleaving with the aptamer DNA sequence
(Duan et al. 2014a).

The chemiluminescence technique also uses optical detec-
tion and is mainly applied in food safety since it produces
energy through chemical reaction without the need for excita-
tion source as in the fluorescence technique (Sharma et al.
2015). Chemiluminescence signals can be increased using
AuNPs as catalysts enhancing biocompatibility and stability
(Yang et al. 2011). DNA aptamers that are rich in guanine (G)
can react with 3,4,5-trimethoxylphenylglyoxal (TMPG),
which forms an energy-rich compound that emits light or
transfers energy to some aptamer-coupled dye, such as 6-

FAM (6-carboxyfluorescein) with green light emission and
can be employed in target detection studies (Kwon et al.
2015). Thus, aptamers can be conjugated to different nanopar-
ticles to increase the selectivity to the target. Besides increas-
ing the selectivity, these nanomaterials allow visual detection.

Aptamers applications

Several aptamers have been developed for different applica-
tions, as reported by Chan et al. (2008) that employed PEG-
conjugated aptamers RB006 against coagulation. Wu et al.
(2008) developed a PO RO10–60 aptamer to stimulate the
immune response against pathogens by delaying symptoms
and allowing the use of antibiotics. There are also electro-
chemical sensors, which are aptamers that act in real-time
detection of cocaine in fetal bovine serum (Swensen et al.
2009).

Aptamer-based nanostructures have also been widely used
in medicine, biology, and nanoelectronics due to the high
stability, as shown in Table 1. The AS1411 aptamer conjugat-
ed with gold nanoclusters was tested in mice cancer cells and
demonstrated to be a good radiosensitizer (Ghahremani et al.
2018). Through cell-SELEX, the JHIT2 aptamer was selected
and labeled with FAM and iodine-131 to detect human hepa-
toma cell line HepG2 by a fluorescent signal (Zhang et al.
2020). All these studies show that the aptamers can assist in
the rapid detection of different targets, shortening the time to
start treatments that are important for human health.

Lavu et al. (2016) studied the use of gold nanoparticles
with aptamers for the detection of Salmonella enterica. The
aptamer SAL 26 was conjugated with gold nanoparticles at
room temperature and in the presence of NaCl keeping the
solution red, and when in the presence of Salmonella enterica
(102 to 106 CFU/mL), the solution turned blue after 30 min.
According to the authors, the color change is associated with

Fig. 3 Aptamer conjugation with
gold nanoparticles. Note:
Adapted from Sharma et al.
(2015)

6933Appl Microbiol Biotechnol (2020) 104:6929–6939



Table 1 Examples of aptamers application to different targets in different areas

Target Method Sample Reference

Streptococcus pyogenes Cell-SELEX Cooked chicken (Huang et al. 2018)

Salmonella typhimurium Cell-SELEX Pasteurized milk (Duan et al. 2014b)

Salmonella typhimurium and Vibrio
parahemolyticus

Cell-SELEX Frozen shrimp, chicken breasts (Duan et al. 2014a)

Salmonella – Pork (Ma et al. 2014)

Escherichia coli Cell-SELEX Milk and tap water and pond (Kim et al. 2013; Jin et al.
2017)

Staphylococcus aureus – Fresh fish (Jia et al. 2014)

Staphylococcus aureus Cell-SELEX Pork meat (Hao et al. 2017)

Staphylococcus aureus Cell-SELEX Milk (Yuan et al. 2014)

Listeria monocytogenes SELEX Liced beef, chicken, turkey (Ohk et al. 2010)

Campylobacter jejuni SELEX Live cell (Bruno et al. 2009)

Lactobacillus acidophilus Cell-SELEX Oxidized PSi Fabry-Pérot thin films (Urmann et al. 2016)

Francisella tularensis SELEX Bacterial antigen (Vivekananda and Kiel 2006)

Mycobacterium tuberculosis SELEX Live cell (Chen et al. 2012)

Vibrio parahemolyticus Cell-SELEX Live cell (Duan et al. 2012)

Shigella sonnei Cell-SELEX Live cell (Song et al. 2017)

C. jejuni Cell-SELEX Live cell (Dwivedi et al. 2010)

Vaccinia virus SELEX Vaccinia intacto (Labib et al. 2012)

herpes simplex virus SELEX Gd protein of HSV-1 (Gopinath et al. 2012)

Hepatitis C and hepatitis B virus SELEX Hepatitis C virus (Kumar et al. 1997)

Human immunodeficiency virus In vitro
selection

Human immunodeficiency virus type-1 (Boiziau et al. 1999)

Influenza virus SELEX Hemagglutinin protein of human influenza
virus B

(Gopinath et al. 2005)

Severe Acute Respiratory Syndrome (SARS)
coronavirus

SELEX Live cell (Jang et al. 2008)

Trypanosoma spp. SELEX Plasma of T. cruzi infected mice (Nagarkatti et al. 2014)

Leishmania spp. SELEX Live cell (Guerra-Pérez et al. 2015)

Plasmodium spp. – P. falciparum para-sites (Cheung et al. 2018)

Cryptosporidium parvum SELEX Fresh fruits (Iqbal et al. 2015)

Entamoeba histolytica SELEX Live cell (Ospina-Villa et al. 2015)

MCF-7 breast cancer cells – Target cancer cells (Wang et al. 2015)

Leukemia CCRF-CEM cells – Human leukemia CCRF-CEM cells (Ye et al. 2015)

Metastatic tumor tissues Cell-SELEX Colon cancer cell SW620 (Li et al. 2015)

Ochratoxin A (OTA) SELEX Immobilized OTA (Cruz-Aguado and Penner
2008)

Bacterial endotoxins SELEX Lipopolysaccharide (Kim et al. 2012)

Copper – Lake samples (Chen et al. 2011)

Arsenic – Aqueous solution (Oroval et al. 2017)

Acetamiprid – Wastewater and tomatoes (Fan et al. 2013)

Herbicides SELEX Atrazine (Sinha et al. 2010)

Milk allergen SELEX β-LG variants A and B (Eissa and Zourob 2017)

Bisphenol A – Aqueous solution (Chen et al. 2017)

Beta1-adrenoreceptor autoantibodies – Serum of patients (Wallukat et al. 2016)

Lung cancer SELEX Cells (Bates et al. 2009)

Colorectal cancer – Camptothecin loaded-pegylated dendrimer (Alibolandi et al. 2017)

Breast cancer – Breast cancer tissues (Wang et al. 2017)
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the formation of a tertiary structure with the target cell that has
no affinity for gold nanoparticles, resulting in salt-induced
aggregation.

De Girolamo et al. (2011) developed a DNA aptamer to
detect OTA (Ochratoxin A) mycotoxin produced by
Aspergillus ochraceus and Penicillium verrucosum, found in
wheat. They showed a system able to detect OTA in a range
from 0.4 to 500 ng. Chen et al. (2015) reported the direct
detection of FB1 (fumonisin B1) in maize samples by using
gold nanoparticles conjugated to modified aptamers (5′-
SH-(CH2)6-AGCAGCACAGAGGTCAGATGCGATCT
GGATATTATTTTTGATACCCCTTTGGGGAGACATCC
TATGCGTGCTACCGTGAA-3′). The authors reported an
accrued detection after 40 min at room temperature for FB1
concentrations above to 2 pM. Another mycotoxin that is tox-
ic to humans is zearalenone (ZEN). It is found in cereal crops
and produced by Fusarium graminearum (Luo et al. 2020).
To detect ZEN, the mycotoxin was extracted of cereal crops
and different solutions were prepared and analyzed by the
aptamer conjugated with zinc oxide-nitrogen doped graphene
quantum dots (ZnO-NGQDs), which was capable to detect
3.3 × 10−14 g.mL−1 (Luo et al. 2020).

Heavy metals present in milk and dairy products, fish,
eggs, oils, and seeds can be also detected by aptamers.
Hazardous metals, such as arsenic and mercury, can affect
human health by interfering with the central nervous system
and endocrine system. Thereby, colorimetric detection by
DNA aptamers has been reported by Li et al. (2009), who
used aptamer (5′-TTTTTTTTTT-3′) conjugated with AuNPs
(13 nm) incubated with mercury (1 × 10−4 mol.L−1) at room
temperature. After the addition of 50μL of 0.5MNaCl, it was
observed that the solution turned to blue confirming the pres-
ence of metal. Wu et al. (2014) investigated DNA aptamer
conjugated with gold nanoparticles to cadmium and reported
high-affinity detection for an aqueous solution containing cad-
mium at lower concentration (4.6 nM).

The green malachite fungicide is widely used in aquacul-
ture and can contaminate fish and their eggs, posing a risk to
those who consume them (Stead et al. 2010). In 2010, it was
reported the first malachite green (MG) detection by RNA
ap t am e r ( 5 ’ - GGAUCCCGACUGGCGAGAGC
CAGGUAACGAAUGGAUCC-3′) in fish skin samples, and
the developed approach was able to quickly confirm the con-
tamination after 15–20 min at 2 μg.kg−1 of salmon tissue
(Stead et al. 2010).

Many types of pesticides are used to prevent contamination
by bacteria, fungi, and viruses, and the detection methods
should be efficient even at low pesticide concentrations.
However, detection by liquid and gas chromatography are
expensive and time-consuming (Fan et al. 2013). To reduce
the costs and analysis time, new technologies are employed,
such as the use of biosensors. Fan et al. (2013) developed a
conjugated aptamer with a gold nanoparticle that generates a

signal of impedance to identify acetamiprid with a detection
limit of 1 nM in wastewater and tomatoes and the process
takes up to 3 h.

For herbicides, widely used in the cultivation of corn and
oilseed rape, with the consequent environment and human life
issue, different DNA aptamers with affinity to atrazine were
studied by Williams et al. (2014). The double-stranded DNA
aptamer for fluorescence detection was drawn to detect
fipronil insecticide in river water samples and showed high
sensitivity (Hong et al. 2018).

Moreover, the C07 aptamer was developed to detect Sudan
dye III in chili sauce. From the study, it was reported a fast and
accurate binding to the target, and according to the authors,
100 nM of aptamer was enough to detect 400 ng of Sudan dye
III (Wang et al. 2018). Besides, organic molecules, such as
bisphenol A (BPA), present in some food products are harm-
ful to the human endocrine system, and in 2010, the US and
Canadian governments banned their use (Mckeague et al.
2009). In this sense, Lee et al. (2011) studied the detection
of BPA by aptamers conjugated with carbon nanotube as a
biosensor and showed a detection limit at low concentrations
(10 fM).

In this context, Smart et al. (2020) reported several prom-
ising biosensors for agribusiness. In some cases, aptamers
were conjugated to nanoparticles forming carbon electrodes
for detection of pesticides, toxins, antibiotics, microorgan-
isms, vitamins, fructose, and lactate. In addition, Yan et al.
(2020) showed different photoelectrochemical and
electrochemiluminescent apta-sensors capable to detect food
contaminants and pollutants.

Conclusions and market perspectives

There are several studies in the literature related to the devel-
opment of aptamers for different targets. They are widely
studied in the therapeutic area, to identify cancer cells, bacte-
rial contamination, and viruses. Moreover, aptamers are being
developed for food safety since there is a high diversity of
pathogens in food products from different origins (animal,
vegetable, processed), as well as contamination by packaging
or transportation.

Despite being basic, inexpensive and selective, most
existing aptamers are still not currently used in the industries
and agribusiness routine. Through the aptamer applications, a
quick analysis system can be launched as a biosensor, bring-
ing advantages to the market as visual detection, low-cost
compared with conventional techniques, as well as delivering
robustness and selectivity.

Chemiluminescence detection is one of the most studied
technics since it does not require equipment for signal detec-
tion. However, for many targets, studies are needed to ensure
that sensitivity and specificity are enhanced using
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nanoparticles. Further investigation should be directed to sam-
ple preparation methods.

Many of the aptamers are not able to recognize samples in
the raw phase and need to be prepared in aqueous solutions.
To reduce the gap between lab-scale and industrial large-scale
applications, advances in fast and efficient detection for food
safety are increasing, but some aspects still need to be im-
proved, such as sample preparation, concentration, and the
presence of contaminants from raw materials.

Due to the difficulties related to food safety, the companies
are looking for cheaper and faster alternatives. Whereas the
world population is expected to reach 8.5 billion people by
2030 (United Nations 2019), the food industry faces problems
with changes in food production and supply, increased im-
ports, changes in the environment that lead to contamination,
development of outbreaks, or pests on crops in different loca-
tions. Herewith, the market is turning to faster and more ef-
fective sensors to prevent detect contamination. In this con-
text, aptamers come to the market as an alternative (Liu and
Zhang 2015).

According to their advantages, aptamers can supply the
agribusiness as well as food industrialization needs, being
increasingly used worldwide to speed up the food safety anal-
ysis, to avoid products recall and unnecessary business ex-
penses around the world (Amaya-González et al. 2013;
Aptamer Group 2016).
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