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Abstract

Background: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight
percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia.
About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the
majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and
tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few
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2 Orphan crop genomes

plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution. Results: Here, we
present draft genome information for five agriculturally, biologically, medicinally, and economically important
underutilized plants native to Africa: Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa
oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera,
we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the
expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription
factors, and starch biosynthesis-related genes in these genomes. Conclusions: These genome data will be useful to identify
and characterize agronomically important genes and understand their modes of action, enabling genomics-based,
evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.

Keywords: orphan crops; food security; whole-genome sequencing; transcriptome; root nodule symbiosis; transcription
factor

Background

The world’s population is expected to reach 9.8 billion by 2050.
Ensuring a sustainable food supply to meet the energy and nu-
tritional needs of the expanding population is one of the great-
est global challenges [1]. Approximately 88% of countries cur-
rently face a serious burden of malnutrition [2]. To overcome
this burgeoning food and nutritional challenge, the use of po-
tential crop plants (both model and non-model) appears to be a
better choice. Throughout history, humans have relied on an as-
tonishing variety of plants for energy and nutrition; from 390,000
known plant species, around 5,000–7,000 have been cultivated or
collected for food [1, 2]. However, in the present century, fewer
than 150 species are commercially cultivated for food purposes,
and just 30 species provide 95% of human food energy needs.
More than half of the protein and calories we obtain from plants
are acquired from just three “megacrops”: rice, wheat, and maize
[3]. This narrow range of dietary diversity is partly a result of
decades of intensive research focused on just a few species,
which has successfully led to the production of high-yielding va-
rieties of these major crops, usually cultivated under high-input
agricultural systems. However, in some regions, we are now wit-
nessing a drastic decrease in their yields, and the question has
been raised as to whether rice and wheat (in particular) are cur-
rently making enough breeding progress to meet the challenge.
All three megacrops are high-energy carbohydrate sources but
are limited in protein content. Even if these crops can meet the
energy requirement of the increasing world population, they
cannot meet the nutritional requirement for active health by
themselves [2].

To diversify the global food supply, enhance agricultural pro-
ductivity, and tackle malnutrition, it is necessary to diversify and
focus more on crop plants that are utilized in rural societies as a
local source of nutrition and sustenance but have so far received
little attention for crop improvement. These landraces (Tradi-
tional plant varieties) tend to be locally adapted and can often
provide a rich source of nutrition, yet they have largely been ig-
nored by modern interventions. The goal of the African Orphan
Crops Consortium [4], an international public–private partner-
ship, is to sequence, assemble, and annotate the genomes of
101 plants that contribute to traditional African food supplies by
2020. These neglected or orphan plants have been seldom stud-
ied by scientists but are of major importance in many African
countries. They are usually grown by smallholder farmers, either
for consumption or local sale, and are a major food source for
600 million rural Africans [5, 6]. In this study, we sequenced and
assembled draft genomes of five African orphan plant species
(Fig. 1), which are highly important to augment food and nutri-
tional security in Africa.

Vigna subterranea (Bambara groundnut; National Center for
Biotechnology Information [NCBI]: txid115715), belonging to the
Fabaceae family, is a leguminous plant species that originated in
West Africa and is cultivated in sub-Saharan areas, particularly
Nigeria [7, 8]. With good nitrogen-fixing ability and drought tol-
erance, on average the seeds contain 63% carbohydrate, 19% pro-
tein, and 6.5% fat, thereby making bambara groundnut a com-
plete food. Approximately 165,000 tons of this species are pro-
duced in Africa each year, but yields are low because efforts to
improve Bambara have been neglected for many years [9]. The
genomes of mung bean and adzuki bean, which also belong to
the Vigna genus, have been published [10, 11].

Moringa oleifera (Moringa; NCBI: txid3735) is a highly nutri-
tious, fast-growing, and drought-tolerant tree that is indige-
nous to northern India, Pakistan, and Nepal [12]. Presently, this
species is ubiquitously distributed throughout tropical and sub-
tropical countries, and in particular, covers the major agro-
ecological region in Nigeria. The leaves are rich in protein, min-
erals, beta-carotene, and antioxidant compounds, which are
generally used as nutritional supplements and in traditional
medicine. The seeds are used to extract oil, and seed powder can
be used for water purification [13, 14]. There are varying reports
of Moringa production. India is the largest producer of Moringa
with an annual production of 1.1–1.3 million tons of tender fruits
from an area of 38,000 ha. In Limpompo province, Moringa is
cultivated in relatively small areas (0.25–1 hectares), with seed
yields of 50–100 kg/ha [15]. Prior to this study, a draft genome
of M. oleifera from Yunnan (China) was reported [16], which es-
timated a similar genome assembly size and gene numbers to
our version.

Lablab purpureus (Dolichos bean or hyacinth bean; NCBI:
txid35936), a member of the Fabaceae family, is one of the most
ancient (>3,500 years) domesticated and multipurpose legume
species, which is used as an intercrop in livestock systems. Al-
though it has large agromorphological diversity in south Asia, its
origin appears to be African [17]. It is rich in protein, has good
nitrogen-fixing ability, and is highly adaptable to diverse envi-
ronmental conditions [18]. Limited production data are avail-
able, suggesting that yields are low. In southwestern parts of
Bangladesh, Lablab is reported to have a total production area of
approximately 48,000 hectares [17]. In other areas, it has a sim-
ilarly relatively low production area; e.g., Kenya, approximately
10,000 hectares [19] and Karnataka, India, 79,000 hectares [20].

Faidherbia albida (apple-ring acacia; NCBI: txid138055) is the
only tree species in the Faidherbia genus (Fabaceae). Its distinc-
tive key features, such as reverse phenology (leaves grow in the
long, dry season and shed during the rainy season) and nitrogen-
fixing ability, mean that F. albida has been planted as a key agro-
forestry species in traditional African farming systems for hun-
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Figure 1: Phylogenetic and evolutionary analysis. Values at branch points indicate estimates of divergence time (million years ago [Mya]); blue numbers show divergence
time (Mya); red nodes indicate previously published calibration times. V. sub shows seeds of Vigna subterranea; L. pur, flowers of Lablab purpureus; F. alb, seed pods of

Faidherbia albida; S. bir, fruit of Sclerocarya birrea; and M. ole, flowers of Moringa oleifera. Scale bar = 10 million years.

dreds of years [21]. It originated in the Sahara or eastern and
southern Africa, then spread across semi-arid tropical Africa,
and later to the Middle East and Arabia. Estimates suggest that
during the last decade, the tree was cultivated over an area of
300,000 hectares [22]. Average pod production ranges from 6–
135 kg per tree per year in the Sudanian zone. In Mana Pools,
Zimbabwe, two trees averaged 161 kg per tree in one year [23].
This yield per unit area is about 2,000–3,000 kg/ha, assuming a
density of ∼20 mature trees per hectare [24].

Sclerocarya birrea (Marula; NCBI: txid289766) belongs to the
Anacardiaceae family and is a traditional fruit tree found in
southern Africa, mostly south of the Zambezi river [25]. Fruits
are eaten fresh or are used to produce juices and wine, which
has substantial socioeconomic and commercialization impor-
tance. The seeds of the fruits are rich in nutrition and oil content
(56%) and are often consumed raw. It is estimated that the total
value of the commercial marula trade is worth USD $160,000 per
year to rural communities [26], with values per tree ranging from
315 kg (17,500 fruits) to 1,643 kg (91,300 fruits) [26, 27]. A survey
in north-central Namibia showed that, on average, there are 5.33
farms per household, with a total of 13,278 fruiting trees.

Considering the limited systematic efforts to improve the
breeding of these understudied tropical crops to date, making
their genomic data available will provide much-needed impe-
tus to conduct basic and applied translational research to im-
prove and develop them as important, sustainably cultivated
food crops. These efforts will be vital for directly or indirectly
improving nutrition for the increasing urban populations in the
regions where these crops are grown.

Data Description
Sample collection, library construction, and sequencing

Genomic DNA was extracted either from a tree (F. albida, M.
oleifera) or from nursery plantlets (V. subtarranea, L. purpureus, S.
birrea) grown at the World AgroForestry Center campus in Kenya
using a modified Cetyl TrimethylAmmonium Bromide (CTAB)
method [28].

Extracted DNA was used to construct paired-end libraries (in-
sert size ranging from 170 to 800 bp) and mate-pair libraries (in-
sert size >2 kb) following Illumina (San Diego, CA) protocols.
Subsequently, sequencing was performed on a HiSeq 2000 plat-
form (Illumina) using a shotgun sequencing strategy to gener-
ate more than 100 Gb raw data for each species (see Additional
file 1: Table S1). Data were filtered using SOAPfilter (v2.2) [29]
as follows: (1) small insert size reads were discarded; (2) Poly-
merase Chain Reaction (PCR) duplicates and adapter contam-
ination were discarded; (3) reads with ≥30% low-quality bases
(quality score ≤15) were removed; (4) bases of low quality were
trimmed from each end of the reads; and (5) reads with ≥10%
uncalled (“N”) bases were removed. At the end, more than 100 ×
high-quality reads were obtained for each species according to
their estimated genome size (see Additional file 1: Table S1).

RNA for transcriptome sequencing was extracted from dif-
ferent tissues of V. subterranea, L. purpureus, F. albida, and M.
oleifera. The RNA was extracted using the PureLink RNA Mini Kit
(Thermo Fisher Scientific, Carlsbad, CA) according to the manu-
facturer’s instructions. For each sample, RNA libraries were con-
structed by following the TruSeq RNA Sample Preparation Kit (Il-
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Table 2: Completeness evaluation of genome assembly using BUSCO database in five species

BUSCO
Vigna subterranea Lablab purpureus Faidherbia albida Sclerocarya birrea Moringa oleifera

N % N % N % N % N %

Complete single copy 1,244 86.39 1,258 87.40 1,231 85.50 1,352 93.90 1,278 88.80
Complete duplicated 82 5.69 83 5.80 84 5.80 32 2.20 19 1.30
Fragmented 28 1.94 20 1.40 34 2.40 21 1.50 23 1.60
Missing 86 5.97 79 5.40 91 6.30 35 2.40 120 8.30
Total 1,440 100 1,440 100 1,440 100 1,440 100 1,440 100

Abbreviation: BUSCO, Benchmarking Universal Single-Copy Orthologs; N, number

lumina) manual and were then sequenced on the Illumina HiSeq
2500 platform (paired-end, 100-bp reads), generating ∼36 Gb of
sequence data for each species. Data were then filtered using a
similar method to that used in DNA filtration, with a slight mod-
ification: (1) reads with ≥10% low-quality bases (quality score
≤15) were removed and (2) reads with ≥5% uncalled (“N”) bases
were removed (see Additional file 1: Table S2). All the transcrip-
tome data from different tissues were compiled, and the com-
bined version was used to check the completeness of the whole-
genome sequence assembly.

Evaluation of genome size

Clean reads of the paired-end libraries were used to estimate
genome sizes (insert size 250 bp and 500 bp). k-mer frequency
distribution analysis was performed using the following for-
mula:

Gen = Num∗(Len − 17 + 1)/K Dep

where Num represents the read number of reads used, Len
represents the read length, K represents the k-mer length, and
K Dep refers to where the main peak is located in the distribution
curve [30].

k-mer distributions of F. albida, S. birrea, and M. oleifera
showed two distinct peaks (see Additional file 1: Fig. S1), where
the second peak was confirmed as the main one for each of the
species. The genome sizes of V. subterranea, L. purpureus, F. albida,
S. birrea, and M. oleifera were predicted as 550, 423, 661, 356, and
278 Mb, respectively (see Additional file 1: Table S3).

De novo genome assembly

For de novo genome assembly, SOAPdenovo2 (SOAPdenovo2, RR
ID:SCR 014986) [29] was used for constructing contigs, followed
by scaffolding, and finally gap filling. To build contigs, libraries
ranging from 170 to 800 bp were used to construct de Bruijn
graphs with the parameters “pregraph –d 2 –K 55,” and con-
tigs were subsequently formed with the parameters “contig –g
–D 1” to delete links with low coverage. In the scaffolding step,
paired-end and mate-pair information was used to order the
contigs with parameters “scaff –g –F” and “map –g –k 55.” Fi-
nally, to fill the gaps within scaffolds, GapCloser version 1.12
(GapCloser, RRID:SCR 015026) [29] was used with the parame-
ters “–l 150 –t 32” using the pair-end libraries. Finally, total as-
sembled lengths of 535.05, 395.47, 653.73, 330.98, and 216.76 Mb
were obtained for V. subterranea, L. purpureus, F. albida, S. birrea,
and M. oleifera genomes, respectively (Table 1). This accounted
for approximately 97.3%, 93.5%, 98.9%, 92.9%, and 77.9% of their
respective estimated genome sizes.

Genome evaluation

Genome assembly completeness was assessed with Bench-
marking Universal Single-Copy Orthologs (BUSCO) version
3.0.1 (BUSCO, RRID:SCR 015008) [31]. From the 1,440 core em-
bryophyta genes, 1,326 (92.1%), 1,341 (93.2%), 1,315 (91.3%), 1,384
(96.1%), and 1,297 (90.1%) were identified in the V. subterranea,
L. purpureus, F. albida, S. birrea, and M. oleifera assemblies, re-
spectively, with 1,244 (86.4%), 1,258 (87.4%), 1,231 (85.5%), 1,352
(93.9%), and 1,278 (88.8%) genes, respectively, being complete
(Table 2).

To evaluate the completeness of genes in the assemblies, uni-
genes were generated from the transcript data of each species
using Bridger software with the parameters “–kmer length 25 –
min kmer coverage 2” [32] and then aligned to the correspond-
ing assembly using Basic Local Alignment Search Tool (BLAST)-
like alignment tool (BLAT, RRID:SCR 011919) [33]. The results in-
dicated that each of the assemblies covered about 90% of the ex-
pressed unigenes, suggesting that the assembled genomes con-
tained a high percentage of expressed genes (Table 3).

To confirm the accuracy of the assemblies, some of the
paired-end libraries were mapped to the genome assemblies,
and the sequencing coverage was calculated using SOAPaligner,
version 2.21 (SOAPaligner/soap2, RRID:SCR 005503) [34]. Se-
quencing coverage showed that >99% of the bases had a se-
quencing depth of more than 10× and confirmed the accuracy
at the base level (see Additional file 1: Fig. S2). GC content and
average depth were also calculated with 10 kb non-overlapping
windows. The distribution of GC content indicated a relatively
pure single genome without contamination or GC bias (see Addi-
tional file 1: Fig. S3). The GC content of each sequenced genome
was also compared with that of a related species. As expected,
close peak positions showed that the related species were simi-
lar in GC content (see Additional file 1: Fig. S4).

Repeat annotation

Repetitive sequences were identified using RepeatMasker (ver-
sion 4.0.5) [35], with a combined Repbase and a custom library
obtained through careful self-training. The custom library com-
prised three parts: MITEs (miniature inverted repeat transpos-
able elements), LTRs (long terminal repeats), and an extensive li-
brary that was constructed as follows. First, the annotated MITE
library was created using MITE-hunter [36] with default param-
eters. Then, a library of LTR elements with lengths of 1.5–25 kb
and two libraries of terminal repeats ranging from 100 to 6,000 bp
with ≥85% similarity were constructed using LTRharvest [37]
integrated in Genometools (version 1.5.8) [38] with parameters
“–minlenltr 100, –maxlenltr 6000, –mindistltr 1500, –maxdistltr
25000, –mintsd 5, –maxtsd 5, –similar 90, –vic 10.” Subsequently,

https://scicrunch.org/resolver/RRID:SCR_014986
https://scicrunch.org/resolver/RRID:SCR_015026
https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_011919
https://scicrunch.org/resolver/RRID:SCR_005503
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Table 3: Gene coverage of candidate species based on transcriptome data

Species Dataset Number Total length (bp)
Base coverage by

assembly (%)
Sequence coverage by

assembly (%)

Vigna subterranea

All 116,223 161,077,155 89.61 98.21
>200 bp 116,223 161,077,155 89.61 98.21
>500 bp 72,139 147,068,299 89.03 98.00

>1,000 bp 47,952 129,884,929 88.33 97.52

Lablab purpureus

All 86,867 80,837,182 93.59 99.25
>200 bp 86,867 80,837,182 93.59 99.25
>500 bp 41,252 66,764,786 92.94 99.18

>1,000 bp 24,627 55,074,989 92.32 99.02

Faidherbia albida

All 50,294 46,650,067 93.62 98.85
>200 bp 50,294 46,650,067 93.62 98.85
>500 bp 26,352 39,282,694 93.32 99.05

>1,000 bp 15,569 31,560,858 92.78 98.95

Moringa oleifera

All 60,964 57,114,636 88.98 92.16
>200 bp 60,964 57,114,636 88.98 92.16
>500 bp 29,581 47,523,018 88.85 92.69

>1,000 bp 18,322 39,528,310 88.70 92.99

we used several strategies to filter the candidates, i.e., (1) pres-
ence of intact poly purine tracts or primer binding sites [39] using
the eukaryotic tRNA library [40]; (2) removal of contamination
from local gene clusters and tandem local repeats by inspecting
50 bases of the upstream and downstream LTR flanks using mul-
tiple sequence comparison by log-expectation (MUSCLE, RRID:
SCR 011812) [41] for a minimum of 60% identity; and (3) removal
of nested LTR candidates from other types of the elements. Ex-
emplars for the LTR library were extracted from the filtered can-
didates using a cutoff of 80% identity in 90% of the sequence. Re-
gions of the genome annotated as LTRs and MITEs were masked
and then put into RepeatModeler (version 1-0-8; RepeatModeler,
RRID:SCR 015027) to predict other repetitive sequences for the
extensive library. Finally, the MITE, LTR, and extensive libraries
were integrated into the custom library, which was combined
with the Repbase library and taken as an input for RepeatMasker
to identify and classify genome-wide repetitive elements. The
pipeline identified 205,189,285 (38.35% of the genome length),
147,050,327 (37.18%), 358,653,534 (54.86%), 149,551,125 (45.18%),
and 87,944,150 (40.57%) bases of non-redundant repetitive se-
quences in V. subterranea, L. purpureus, F. albida, S. birrea, and M.
oleifera, respectively. LTR elements were predominant, taking up
19.8%, 23.8%, 44.6%, 38.8%, and 22.7% of each genome, respec-
tively (Table 4).

Gene prediction

Repetitive regions of the genome were masked before gene pre-
diction. Structures of protein-coding genes were predicted us-
ing the MAKER-P pipeline (version 2.31) [42] based on RNA, ho-
mologous, and de novo prediction evidence. For RNA evidence,
the clean transcriptome reads were assembled into inchworms
using Trinity (version 2.0.6) [43] and then provided to MAKER-P
as expressed sequence tag evidence. For homologous compari-
son, protein sequences from the model plant Arabidopsis thaliana
and related species of each sequenced species were downloaded
and provided as protein evidence. Related species used for ho-
mologous evidence were Arachis duranensis, A. ipaensis, Glycine
max, Lotus japonicus, Medicago truncatula, and Vigna angularis for
V. subterranea; A. duranensis, Cajanus cajan, G. max, M. truncatula,
Phaseolus vulgaris, and V. angularis for L. purpureus; C. cajan, V. an-

gularis, L. japonicus, P. vulgaris, M. truncatula, and G. max for F.
albida; Actinidia chinensis and Musa acuminata for S. birrea; and
G. max, Oryza sativa, Populus trichocarpa, and Sorghum bicolor for
M. oleifera.

For de novo prediction evidence, a series of training sets was
made to optimize different ab initio gene predictors. Initially, a
set of transcripts was generated by a genome-guided approach
using Trinity with the parameters “–full cleanup, –jaccard clip, –
genome guided max intron 10000, –min contig length 200.” The
transcripts were then mapped back to the genome using PASA
(version 2.0.2) [44], and a set of gene models with real gene
characteristics (e.g., size and number of exons/introns per gene,
features of splicing sites) was generated. Complete gene mod-
els were picked for training Augustus [45]. Genemark-ES (ver-
sion 4.21) [46] was self-trained with default parameters. The first
round of MAKER-P was run based on the evidence as above, with
default parameters except “est2genome” and “protein2genome”
being set to “1,” yielding only RNA and protein-supported gene
models. SNAP [47] was then trained with these gene models. De-
fault parameters were used to run the second and final rounds
of MAKER-P, producing the final gene models.

The number of protein-coding genes identified in each
species was 31,707 in V. subterranea, 20,946 in L. purpureus, 28,979
in F. albida, 18,937 in S. birrea, and 18,451 in M. oleifera. Com-
pared to the other sequenced species in the same genus [10,
11], V. subterranea has more genes than mung bean (22,427) but
fewer than adzuki bean (34,183). Various gene structure param-
eters were compared to the related species of each sequenced
genome, as summarized in Table 5 and Additional file 1: Fig. S5.
BUSCO evaluation showed that at least 85% of 1,440 core genes
could be identified across all the species, suggesting an accept-
able quality of gene annotation for the five sequenced genomes
(see Additional file 1: Table S4).

Non-coding RNA genes in the sequenced genomes were
also annotated. Using BLAST, ribosomal RNA (rRNA) genes were
searched against the A. thaliana rRNA database or by search-
ing for microRNAs (miRNA) and small nuclear RNA (snRNA)
against the Rfam database (Rfam, RRID:SCR 004276; release 12.0)
[48]. tRNAscan-SE (tRNAscan-SE, RRID:SCR 010835) was also
used to scan for tRNAs [49]. The results are summarized in
Table 6.

https://scicrunch.org/resolver/RRID:SCR_011812
https://scicrunch.org/resolver/RRID:SCR_015027
https://scicrunch.org/resolver/RRID:SCR_004276
https://scicrunch.org/resolver/RRID:SCR_010835
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Functional annotation of protein-coding genes

Functional annotation of protein-coding genes was based on
sequence similarity and domain conservation by aligning pre-
dicted amino acid sequences to public databases. Protein-coding
genes were first searched against protein sequence databases,
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG,
RRID:SCR 012773) [50], the National Center for Biotechnology In-
formation (NCBI) non-redundant (NR) and the Clusters of Or-
thologous Groups (COGs) databases [51], SwissProt, and TrEMBL
[52], for best matches using BLASTP with an E-value cutoff of 1e-
5. Then, InterProScan 55.0 (InterProScan, RRID:SCR 005829) [53]
was used to identify domains and motifs based on Pfam (Pfam,
RRID:SCR 004726) [54], SMART (SMART, RRID:SCR 005026) [55],
PANTHER (PANTHER, RRID:SCR 004869) [56], PRINTS (PRINTS,
RRID:SCR 003412) [57], and ProDom (ProDom, RRID:SCR 006969)
[58]. In total, 98.0%, 98.2%, 93.6%, 98.1%, and 98.8% of genes
in V. subterranea, L. purpureus, F. albida, S.birrea, and M. oleifera,
respectively, were functionally annotated. Of the unannotated
genes, 400, 305, 1,514, 293, and 172 were specific to V. subter-
ranea, L. purpureus, F. albida, S. birrea, and M. oleifera, respectively
(Table 7).

Gene family construction

Protein and nucleotide sequences from the five sequenced
species and nine other species (A. thaliana, Carica papaya, Citrus
sinensis, G. max, M. truncatula, O. sativa, P. vulgaris, S. bicolor, and
Theobroma cacao) were retrieved to construct gene families us-
ing OrthoMCL software [59] based on an all-versus-all BLASTP
alignment with an E-value cutoff of 1e-5. A total of 609, 104, 499,
205, and 150 gene families were found specific to V. subterranea,
L. purpureus, F. albida, S. birrea, and M. oleifera, respectively (see
Additional file 1: Table S5).

Furthermore, the 10,103 gene families of V. subterranea, L. pur-
pureus, F. albida, M. truncatula, and G. max were clustered (Fig. 2A).
There were 1,105 orthologous families shared by the four Pa-
pilionoideae species, while 808 gene families containing 1,966
genes were specific to F. albida, 281 gene families containing 538
genes were specific to L. purpureus, and 789 gene families con-
taining 3,118 genes were specific to V. subterranea.

Moreover, 8,184 gene families of S. birrea, M. oleifera, C. pa-
paya, C. sinensis, and T. cacao were clustered (Fig. 2B), of which
365 gene families containing 798 genes were specific to M.
oleifera and 362 gene families containing 796 genes were spe-
cific to S. birrea. KEGG pathway enrichment analysis of para-
log genes was also conducted (Additional file 1: Tables S6, S7).
Functional annotation revealed that in V. subterranea, these par-
alogs corresponded mainly with carbon fixation, zeatin biosyn-
thesis, and glyoxylate and dicarboxylate metabolism. However,
for L. purpureus, the fatty acid elongation pathway was enriched,
while in F. albida, pathways corresponding to plant–pathogen
interactions and cyanoamino acid metabolism were enriched.
In S. birrea, enrichment occurred in plant–pathogen interac-
tion, starch and sucrose metabolism, and fatty acid biosynthe-
sis pathways. In M. oleifera, pathways related to fatty acid and
diterpenoid biosynthesis and with cyanoamino acid metabolism
were enriched. Using Gene Ontology (GO) analysis, paralog
genes in V. subterranea, L. purpureus, F. albida, M. oleifera, and
S. birrea were enriched in ion binding, metabolic processes,
disease resistance, cell components, and biological processes,
respectively.

https://scicrunch.org/resolver/RRID:SCR_012773
https://scicrunch.org/resolver/RRID:SCR_005829
https://scicrunch.org/resolver/RRID:SCR_004726
https://scicrunch.org/resolver/RRID:SCR_005026
https://scicrunch.org/resolver/RRID:SCR_004869
https://scicrunch.org/resolver/RRID:SCR_003412
https://scicrunch.org/resolver/RRID:SCR_006969


8 Orphan crop genomes

Table 5: Gene structure parameters of Vigna subterranea, Lablab purpureus, Faidherbia albida, Medicago truncatula, Glycine max, Sclerocarya birrea,
Moringa oleifera, Carica papaya, Theobroma cacao, and Citrus sinensis

Species
Protein-coding
gene number

Mean gene
length (bp)

Mean coding sequence
length (bp)

Mean exons
per gene

Mean exon
length (bp)

Mean intron
length (bp)

V. subterranea 31,707 3,287 1,163 5 222 501
L. purpureus 20,946 3,696 1,276 5 239 557
F. albida 28,979 3,396 1,207 5 226 504
M. truncatula 50,358 2,334 986 4 243 440
G. max 55,137 3,144 1,169 5 232 488
S. birrea 18,937 3,561 1,343 6 239 479
M. oleifera 18,451 3,308 1,238 5 232 478
C. papaya 24,107 2,531 962 4 223 473
T. cacao 41,951 3,684 1,323 6 223 479
C. sinensis 35,182 3,797 1,424 6 237 475

Phylogenetic analysis and estimation of divergence
time

We identified 141 single-copy genes in the 14 species used
for the above analysis and subsequently used them to build
a phylogenetic tree. Coding DNA sequence alignments of each
single-copy family were generated following protein sequence
alignment with MUSCLE (MUSCLE, RRID:SCR 011812) [41]. The
aligned coding DNA sequences of each species were then con-
catenated to a supergene sequence. The phylogenetic tree was
constructed with PhyML-3.0 (PhyML, RRID:SCR 014629) [61], with
the HKY85+gamma substitution model on extracted four-fold
degenerate sites. Divergence time was calculated using the
Bayesian relaxed molecular clock method with MCMCTREE in
PAML (PAML, RRID:SCR 014932) [62], based on published cali-
bration times (39–59 Mya between M. truncatula and the main
branch of legumes, 15–30 Mya between G. max and P. vulgaris,
and 83–90 Mya between T. cacao and A. thaliana) [11, 63].

Based on the tree constructed using single-copy-family
genes, the divergence time between F. albida and Papilionoideae
was predicted to be 79.1 (70.0–87.0) Mya. This is a little different
from a previous prediction of the origin of legumes based on two
gene markers (matk and rbcL) [64]. The divergence time between
M. oleifera and C. papaya was predicted to be 65.4 (59.2–71.1) Mya
and 67.9 (53.6–77.3) Mya between S. birrea and C. sinensis (Fig. 1).

Subsequently, to evaluate gene gain and loss, CAFE (CAFE, RR
ID:SCR 005983) [65] was employed to estimate the universal gene
birth and death rate, λ, under a random birth and death model
using the maximum likelihood method. Results for each branch
of the phylogenetic tree were estimated and are represented in
Fig. 1.

GO enrichment analysis was also conducted on gene path-
ways in expanded families in the lineage of each sequenced
species (Additional file 1: Tables S8, S9). Terms related to en-
ergy and nutrient metabolism were commonly distributed in
the enrichment output of V. subterranea, L. purpureus, M. oleifera,
and S. birrea, e.g., proton-transporting two-sector ATPase com-
plex, cyclase activity, nutrient reservoir activity, and carbohy-
drate derivative binding.

In F. albida, expanded gene families were related to signal
transfer or regulation, e.g., signaling receptor activity, phos-
phatase regulator activity, and regulation of response to stim-
ulus. Furthermore, the regulatory factors GLABRA3, ENHANCER
OF GLABRA 3, AUX1, LAX2, and LAX3 [66–68], which are related
to the formation of root hairs and lateral roots, were identified in

these families. As a traditional agroforestry tree in Africa, F. al-
bida was previously reported to have a root system architecture
that displays wide variation under different environmental fac-
tors (soil depth, nutrient amount, or water reservoirs) [69]. This
suggests its adaptability to the complex environment, which re-
quires signal transferring and regulation. The results obtained
from the GO enrichment analysis were consistent with the bio-
logical characteristics of F. albida.

Mining of transcription factors

Transcription factors (TFs) in the sequenced species were iden-
tified using protein sequences of plant TFs from the plant TF
database [70] by BLASTP search with an e-value cutoff of 10E−10,
a minimum identity of 40%, and a minimum query coverage of
50%. About 59 TF families were revealed across the genes in
M. truncatula, G. max, P. vulgaris, C. papaya, C. sinensis, and the
five sequenced species (see Additional file 2: Table S14). Among
these TFs, bHLH, NAC, ERF, MYB-related, C2H2, MYB, WRKY, bZIP,
FAR1, C3H, B3, G2-like, Trihelix, LBD, GRAS, M-type MADS, HD-
ZIP, MIKC MADS, HSF, and GATA were found in abundance ( Fig.
3).

Identification of protein, starch, and fatty acid
biosynthesis-related genes

Using the amino acid, starch, and fatty acid synthesis genes
in soybean [11, 71] as bait, we performed an ortholog search
in V. subterranea, L. purpureus, F. albida, S. birrea, M. oleifera, G.
max, Triticum aestivum, Zea mays, and O. sativa (Additional file 1:
Tables S10–S13). Vigna subterranea is a good source of resistant
starch (RS) [72], which has the potential to protect against dia-
betes and reduce the incidence of diarrhea and other inflamma-
tory bowel diseases [73]. High amylose levels can contribute to
RS. Previously, studies have shown that deficiency in SSIIIa (sol-
uble starch synthase gene) decreases amylopectin biosynthesis
and increases amylose biosynthesis by a granule-bound starch
synthase (GBSS) encoded by the Wx gene in O. sativa indica [74].
Downregulation of the soluble starch synthase SSII and of SBE
leads to higher levels of RS in barley [75]. Interestingly, in V. sub-
terranea, two out of four GBSSs underwent expansion, suggesting
their vital role in controlling starch synthesis (Fig. 4) at the tran-
scriptional and post-transcriptional level. No expansion in GBSS
was observed in the genomes of L. purpureus, F. albida, S. birrea,
or M. oleifera; in V. subterranea, soluble starch synthase was not

https://scicrunch.org/resolver/RRID:SCR_011812
https://scicrunch.org/resolver/RRID:SCR_014629
https://scicrunch.org/resolver/RRID:SCR_014932
https://scicrunch.org/resolver/RRID:SCR_005983
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Table 6: Annotation of non-coding RNA genes in the genomes of Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and
Moringa oleifera

Species Type Copy Average length (bp) Total length (bp) % of genome

miRNA 102 122 12,466 0.002330
tRNA 756 75 56,639 0.010586

rRNA rRNA 1,080 124 134,185 0.025079
18S 55 560 30,798 0.005756
28S 62 126 7,793 0.001456

V. subterranea 5.8S 17 124 2,110 0.000394
5S 946 99 93,484 0.017472

snRNA snRNA 523 117 61,006 0.011402
CD-box 327 100 32,643 0.006101

HACA-box 47 133 6,236 0.001165
splicing 149 149 22,127 0.004135
miRNA 109 123 13,398 0.003388
tRNA 611 75 45,748 0.011568

rRNA rRNA 633 227 143,466 0.036277
18S 213 446 95,074 0.024041
28S 283 121 34,186 0.008644

L. purpureus 5.8S 53 135 7,177 0.001815
5S 84 84 7,029 0.001777

snRNA snRNA 457 118 54,029 0.013662
CD-box 278 97 26,915 0.006806

HACA-box 48 133 6,371 0.001611
splicing 131 158 20,743 0.005245

miRNA 126 122 15,364 0.002350
tRNA 458 75 34,388 0.005260

rRNA rRNA 1,008 107 107,518 0.016447
18S 25 321 8,034 0.001229
28S 26 118 3,063 0.000469

F. albida 5.8S 6 118 710 0.000109
5S 951 101 95,711 0.014641

snRNA snRNA 1,996 108 216,482 0.033115
CD-box 1,836 106 194,676 0.029779

HACA-box 42 132 5,548 0.000849
splicing 118 138 16,258 0.002487

miRNA 106 122 12,899 0.003897
tRNA 564 75 42,181 0.012744

rRNA rRNA 313 142 44,378 0.013408
18S 80 240 19,239 0.005813
28S 57 113 6,460 0.001952

S. birrea 5.8S 16 103 1,644 0.000497
5S 160 106 17,035 0.005147

snRNA snRNA 841 115 96,517 0.029161
CD-box 638 105 67,216 0.020308

HACA-box 34 124 4,217 0.001274
splicing 169 148 25,084 0.007579

miRNA 111 119 13,161 0.006072
tRNA 1,241 75 93,620 0.043191

rRNA rRNA 8,406 309 2,598,079 1.198602
18S 3,256 608 1,979,080 0.913032
28S 3,808 113 430,280 0.198506

M. oleifera 5.8S 1,182 150 177,612 0.08194
5S 160 69 11,107 0.005124

snRNA snRNA 229 119 27,158 0.012529
CD-box 119 97 11,578 0.005341

HACA-box 38 132 4,999 0.002306
splicing 72 147 10,581 0.004881

expanded. Therefore, we speculate that the expansion of GBSS
might be why V. subterranea is rich in RS.

Similarly, differences in the copy numbers of choline kinase,
a key factor in fatty acid synthesis and storage, were found be-

tween the four legumes (V. subterranea, 7; F. albida, 4; L. pur-
pureus, 2; and G. max, 5) and between two orphan species (S.
birrea, 1, and M. oleifera, 3). Choline kinase is the first enzyme
in the cytidine diphosphate–choline pathway that is involved
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Table 7: Statistical analysis of the functional annotations of protein-coding genes in the genomes of Vigna subterranea, Lablab purpureus, Faid-
herbia albida, Sclerocarya birrea, and Moringa oleifera

Database
V. subterranea L. purpureus F. albida S. birrea M. oleifera

N % N % N % N % N %

NR 31,013 97.81 20,540 98.06 27,021 93.24 18,547 97.94 18,203 98.65
SwissProt 22,496 70.95 15,905 75.93 21,247 73.32 15,513 81.92 15,109 81.88
KEGG 22,141 69.83 14,699 70.18 20,184 69.65 14,623 77.22 14,044 76.11
COG 10,814 34.11 7,854 37.50 10,526 36.32 7,715 40.74 7,662 41.52
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Figure 2: The groups of orthologs shared by the orphan crops. (A) Groups of orthologs shared between Lablab purpureus (L. pur), Faidherbia albida (F. alb), Glycine max (G.

max), Medicago truncatula (M. tru), and Vigna subterranea (V. sub). (B) Groups of orthologs shared between Sclerocarya birrea (S. bir), Moringa oleifera (M. ole), Carica papaya

(C. pap), Citrus sinensis (C. sin), and Theobroma cacao (T. cac). Venn diagram generated using [60].

in lecithin biosynthesis [76, 77]. Based on these observations,
we inferred that all the factors required to synthesize lecithin
are present in V. subterranea. However, gene expression data re-
main lacking in terms of the GBSS and choline kinase genes in
these the five species. More transcriptomic analysis and chemi-
cal tests are required to uncover the mechanisms of their nutri-
tion metabolism.

Identification of the root nodule symbiosis pathway

Legumes (Fabaceae) are well known for their ability to fix ni-
trogen; an important trait to replenish nitrogen supplies in soil
and agricultural systems. Being part of the human food produc-
tion chain, legumes have a major impact on the global nitro-
gen cycle. Nitrogen-fixing plants can fix nitrogen through root
nodule symbiosis (RNS) using symbiotic nitrogen-fixing bacte-

ria. In a previous report, RNS was revealed to be restricted to Fa-
bales, Fagales, Cucurbitales, and Rosales, which together form
the monophyletic nitrogen-fixing clade. This suggests a predis-
positional event in their common ancestor, which enabled their
subsequent evolution [78]. Despite this genetic predisposition,
many leguminous members of the nitrogen-fixing clade are non-
fixers [79]. This has raised the question as to whether the nodu-
lation trait evolved independently in a convergent manner or
originated from a single evolutionary event followed by mul-
tiple losses. The answer to this question cannot be explained
with current genomic approaches because available genomic
information of nodulating species is, at present, limited to a
single subfamily, the Papilionoideae, in the Fabaceae. Although
the Mimosoideae subfamily within the Fabaceae also contains
nitrogen-fixing species, none of its members have been genome
sequenced.
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Figure 4: Identification of genes involved in the starch biosynthesis pathway.
Genes identified as being involved in starch synthesis are shown in red. Numbers
of homolog genes are presented in Additional file 1: Table S11. AGP, ADP-glucose

pyrophosphorylase; AGPL, AGP large subunit; AGPS, AGP small subunit; PHOH,
starch phosphorylase H (cytosolic type); GBSS, granule-bound starch synthase;
SS, soluble starch synthase; BE, starch branching enzyme; ISA, isoamylase; DPE,

starch debranching enzyme.

In this analysis, we identified 16 RNS signal (Sym) pathway
genes in three legumes (V. subterranea, L. purpureus, and F. al-
bida) and two non-legumes (S. birrea and M. oleifera). First, we col-
lected the protein sequences of previously reported genes in the
Sym pathways of L. japonicus and M. truncatula [80] (Fig. 5). Using
these sequences as bait, we predicted the Sym genes in V. subter-
ranea, L. purpureus, F. albida, S. birrea, and M. oleifera through re-
ciprocal best hits generated by a BLASTP search with an E-value
of 1e-5 (Table 8). To verify this prediction with syntenic analy-
sis, all-versus-all BLASTP results were subjected to MCSCANX
[81] with default parameters to generate syntenic blocks. The
result showed that among the legumes, all of the components
in the pathway were conserved except for MtNFP/LjNFR5, Lj-
CASTOR, CCaMK, MtCRE1/LjLHK1, and NF-YA2, while many com-
ponents were missing in the non-legumes. Among the three
legumes, the orthologous genes MtNFP/LjNFR5, LjCASTOR, and
MtIPD3/LjCYCLOPS were absent in F. albida. As previously re-
ported, the expression of NIN is lower in the ipd3-mutant line
[82]; analysis of the M. truncatula mutant C31 showed that the
Nod Factor Perception gene is essential in Nod factor percep-
tion at early stages of the symbiotic interaction [83]. Meanwhile,
the function of IPD3 was proved to be partly redundant, which
means it is likely that other proteins phosphorylated by CCaMK

can partially fulfill this role when IPD3 is absent [82]. Differences
in the components of the RNS pathway (Table 8), together with
the relatively weak nitrogen-fixing ability [84] of F. albida, is thus
a good reference for RNS diversification research.

Conclusion

This comprehensive study reports the sequencing, assembly,
and annotation of five genomes of underutilized plants in Africa,
along with details of their key evolutionary features. The draft
genomes of these species will serve as an important comple-
mentary resource for non-model food crops, especially the legu-
minous plants, and will be valuable for both agroforestry and
evolutionary research. Improving these underutilized plants us-
ing genomics-assisted tools and methods could help to bring
food security to millions of people.

Availability of supporting data

The raw data from our genome project was deposited in the
NCBI Sequence Read Archive database with Bioproject IDs PR-
JNA453822 and PRJNA474418. Assembly and annotation of the
five genomes and other supporting data, including BUSCO re-
sults, are available in the GigaDB repository [85], and the data
reported in this study are also available in the CNGB Nucleotide
Sequence Archive (CNSA: https://db.cngb.org/cnsa; accession
number CNP0000096). All genome annotations described here
are also available at http://bioinformatics.psb.ugent.be/orcae/
AOCC.
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Figure 5: The common symbiosis signaling pathway among the orphan crops. Sixteen root nodulation symbiosis signal (Sym) pathway genes were identified in
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