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Abstract: Shape-memory materials are smart materials that can remember an original shape and
return to their unique state from a deformed secondary shape in the presence of an appropriate
stimulus. This property allows these materials to be used as shape-memory artificial muscles,
which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from
shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal
elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications,
from biomimetic and soft robotics to actuators, because they can be operated without sophisticated
linkage design and can achieve complex final shapes. Recently, significant achievements have been
made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents
a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on
the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face
concerning actuation. While shape-memory behavior has been demonstrated in several stimulated
environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.
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1. Introduction

Natural muscles generate enough mechanical energy through enormous driving strain and
rapid response to achieve complex movements such as running, swimming, climbing, and flying.
Artificial muscles can match specific temporal, spatial, or force regimes typical of biological nature,
but so far they cannot fully replicate all of these capabilities [1,2]. Thus, imitating natural muscles has
been an essential challenge and opportunity for scientists. However, studies show that the performance
of some artificial muscle materials exceeds that of natural muscle in some aspects. They are therefore
particularly attractive for many applications where a muscle-like response is desirable, for-example
in medical devices, prostheses, robotics, toys, biomimetic devices, and micro/nanoelectromechanical
systems [3], in which, the high-loading actuators use electro- and thermo-activated artificial muscles [4,5].
Soft robots can also be used in an extreme biological environment with photo-activated motors [6,7].
Therefore, the field of artificial muscle is highly interdisciplinary and overlaps with various areas
such as material science, chemical engineering, mechanical engineering, electrical engineering,
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and chemistry [3]. Compared to other materials, polymer materials have the advantages of easy
preparation, low price, high elasticity, superiorities at large deformation and self-healing. Further,
polymeric artificial muscle exhibits excellent multiple stimuli-responses [8–11]. Therefore, Mirvakili and
co-workers [12] demonstrated a multidirectional artificial muscle from a highly oriented nylon filament
that could bend and thus eliminate the need for a mechanical transmission mechanism and space for
storing long linear actuators. The oriented nylon fiber with a thermal conductivity of 0.1 W·m−1

·K−1

showed a 5% deformation with a temperature change from 25 to 140 ◦C. By cycling the input
power, they observed that these nylon fiber actuators had a fully reversible amplitude response over
100,000 cycles.

Similarly, Chen and co-workers [13] developed aerial robots powered by multi-layered dielectric
elastomer artificial muscles. The power density of the artificial muscle was 600 W·kg−1. Driven by
the polymeric actuators, these robots performed a variety of flight motions, such as passively stable
ascending and controllable hovering. Furthermore, they observed that these robots could detect and
withstand collisions with obstacles. Arazoe and his co-workers [14] reported the development of a
humidity-driven film actuator, consisting of a π-stacked carbon nitride polymer that was able to rapidly
respond to the absorption and desorption of traces of water within 50 ms. Meanwhile, under the
irradiation of 365 nm UV-light, the film quickly bent to an angle of 360◦ and jumped vertically up to
10 mm from the surface.

Although polymeric artificial muscles resemble to a large extent natural muscles, challenges remain
within many of the technical applications. Dielectric elastomer actuators (DEAs) are capable of achieving
periodic locomotion at high frequencies and generating high power densities; nevertheless, the weight
of kilovolt supplies has limited the performance of DEAs [15]. The voltages employed in ionic artificial
muscles are low, but they still suffer from high energies because of the close spacing between ions and
electronic charges and the transfer of charges [3,16–18]. However, SMPs have clear beneficial properties,
including their simple, fast response, high extensibility, and high power density with low voltage
requirements. They are suitable as easily controllable actuators or heat-activated artificial muscles.
Therefore, SMP-based soft actuators have been applied in many robot designs, such as soft swimming
robots [19], sequential self-folding or interlocking components [20], hinges for the deployment of a
solar array prototype in the aerospace industry [21], and rigid cable inflatable (RI) structures for large
space systems [22,23]. Here, we focus primarily on the scientific aspects of shape-memory polymer
artificial muscles, including their mechanisms, applications and challenges.

2. Shape-Memory Polymeric Artificial Muscles

Artificial muscle is a generic term used for a class of bio-inspired materials and devices that
can reversibly expand, contract or rotate within one component due to an external stimulus (such as
voltage, current, temperature, or light). These three actuation responses can be combined within a
single component to produce other types of motion (e.g., bending, contraction on one side of the
material, and expansion on the other side) [24,25]. Various techniques have been used to produce
artificial muscles in the past. For example, rubber was used for pneumatic artificial muscles, in which
a gas (for example, air) was used as the energetic source to control or expand the rubber bladder.
For conductive polymer materials, electric-current or voltage was used as the deriving energy
source [24–26]. However, for the actuation of shape-memory materials, an external stimulus (e.g., light,
heat, or voltage) was used as a source of actuation. The artificial muscles based on these materials were
termed as pneumatic/electro-active/shape-memory artificial muscles. All of these SMPs and artificial
muscles were observed with specific limits. Deeper insight into the working mechanism of polymeric
shape-memory polymers and artificial muscles is as follows:

2.1. Shape-Memory Effects

SMPs are stimuli-responsive smart materials that can undergo recoverable deformations upon
application of an external stimulus. This phenomenon in SMP stems from a dual segment system,



Molecules 2020, 25, 4246 3 of 27

i.e., the cross-links that determine the permanent shape and the switching segments with a transition
temperature (Ttrans) that fix the temporary shape. Below Ttrans, the SMPs remain stiff, while they
become relatively soft upon heating above Ttrans. Consequently, they can be deformed into a desired
temporary-shape upon applying an external force. While cooling and then subsequently removing this
external force, their temporary-shape can be maintained for a long time. However, upon re-heating,
their temporary deformed shape will automatically recover the original permanent shape. From here,
it is clear that each SMP consists of dual-segments. One is highly elastic, and can be in molecular
entanglement, the crystalline phase, chemical cross-linking, etc. The other is a reversible domain that
determines the temporary shape and reduces its stiffness upon a particular stimulus. It is usually
related to crystallization/melting transition, glass transition, reversible molecular cross-linking structure,
etc. Upon triggering, the strain energy stored in the temporary shape is released, which results in
shape recovery. The fixed and reversible domain determines the shape-memory performance of
SMPs [8,22,27].

The SMPs can be divided into those showing one-way and two-way shape-memory effects
(2W-SME), as shown in Figure 1. The one-way SME is irreversible, meaning that once the shape-memory
process terminates, the SMP is fixed to a specific structure artificially to restart the shape-memory
process. The performance of these SMPs is termed as the one-way shape-memory effect (1W-SME).
In these SMPs, the transitions from temporary shape to permanent shape cannot be repeated by simply
reversing the stimulus. Here the shape changing occurs only in one direction (Figure 1a). A new
programming process is necessary every time to achieve the temporary shape (after the recovery
process) [28,29]. These can be divided into dual-SMPs and multi-SMPs. If the SMP only remembers the
temporary shape, then it is termed dual-SMP material. However, if the SMP remembers two or more
temporary shapes, then it is termed a triple or multiple-SMP. In multiple-SMPs, the deformed material
returns to its original shape step-by-step from two or more temporary shapes, as shown in Figure 1b.
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Figure 1. Schematic illustration of (a) dual shape-memory, (b) multiple shape-memory effect and
(c) mechanism for 2W-SME of the cross-linked crystalline polymer network with an isotropic and
anisotropic network structure (reproduced with permission [28]. Copyrights (2015), Elsevier).

Obvious realization of the multi-shape-memory effect (multi-SME) is mainly determined by two
kinds of strategies. One strategy is to use polymers with a broad thermal transition in which multiple
thermal transitions and temporary shapes are programmed at multiple temperatures across the broad
transitions (with different composition materials). In this system, a predominant blend is prepared
with broad glass transition that varies with the blend composition (due to miscibility). The other
method to achieve broad thermal transition includes grafting, blocking copolymerization of different
components, performing chemical cross-linking coupled with supramolecular bonding, etc. However,
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the important point to note is that it is very difficult to obtain a broad thermal transition with a chemical
reaction (due to its complex nature). Further, the method based on miscible polymer blends is limited
because most polymer blends are immiscible. This is why few research efforts have been dedicated to
these types of SMPs [27,30]. The other kind of strategy to achieve multiple-SME is to construct several
domains with well-separated thermal transitions. This method involves blending two chemically
cross-linked polymers, copolymers or composites. In these blends, the reversible domains are related
to the two crystallization/melting transitions, or one crystallization/melting temperature and one glass
transition temperature of the polymers/composites [28]. This strategy to achieve multiple-SME is more
exciting because SME is endowed by controlling the appropriate microstructure.

However, the two-way SME responds entirely to external stimuli, is reversible, and does not require
additional programming of the material itself. Liquid crystal elastomers [31], cross-linked crystalline
polymers [32], and their composites show these features [33]. The two-way reversible shape-memory
effect can further be subdivided into quasi two-way and stress-free two-way shape-memory effects [34].
The quasi-2W-SME can be observed both in LCEs and semi-crystalline networks under an external
stress. LCEs are elastic polymer networks containing main chain or side-chain liquid crystal units
(LC-units). These LC-units are capable of undergoing reversible mesomorphic-to-isotropic phase
transitions. In a liquid crystal these domains are typically randomly oriented with respect to each
other, and thus are called liquid crystalline polydomains. During confirmation of the LCE network,
these polydomains can be aligned when an external filed is applied (e.g., magnetic field or stretching
force). This results in the alignment of the monodomain elongations of the LCE strip. When heated to a
temperature above the liquid crystal clearing temperature (Tcl), the polymer chains reduce its anisotropy.
Hence macroscopic contraction of the sample occurs upon cooling below Tcl, and the sample reverts to
the original anisotropic state (elongation). This process is fully reversible and the monodomains can be
formed either physically or by a chemical process using a two-step cross-linking process or a one-step
cross-linking process [28,35,36]. During the two-step cross-linking process, in the first step, an isotropic
network is established via partial cross-linking, then anisotropy is induced (via deformation) and fixed
further by cross-linking in the second step [37–40]. However, in the one-step cross-linking process,
small molecules or polymeric liquid crystal precursors are macroscopically oriented by applying an
external field. After that, aligned precursors are polymerized/cross-linked to form a macroscopically
anisotropic LCE [41–44]. However, in the physical process, the monodomain formation occurs via
hanging an external weight or stress to the already synthesized LCE polydomains [45]. The basic
difference between these two cross-linking methods is that the chemically cross-linked method cannot
be altered after the fabrication process, while the physical fabricated network can be tuned easily
(by applying external stress). This quasi-2W-SME can also be observed in semi-crystalline networks
under a constant tensile load. The semi-crystalline network (of polycyclooctene) underwent elongation
when it was cooled across the Tm (i.e., crystallization induced elongation or CIE). When heated above
the Tm under the same load, the elongation reversed (i.e., melting induced contraction or MIC) [41].
The CIE-MIC transformation for the semi-crystalline networks requires the presence of an external
force. Furthermore, the cross-link density is considered a tailoring parameter to control the quasi
two-way shape-memory response [46–49]. If we look back at the mechanism of LCE, the anisotropic
alignment of the polymer chain is the true inherent mechanism for the semi-crystalline polymer network.
Although it is the external stress that is changing the anisotropy and strain change, the requirement
of an external stress is a serious limitation for the application of potential quasi-2W-SMP devices.
Therefore, the search for alternative mechanisms and materials to enable stress free 2W-SME has been
a constant chase for the SMP community.

In this regard, Landlein’s group [33] synthesized a polyester urethane (PEU) network with a poly
ω-pentadecalactone (PPDL) and PCL segment. The basic steps were similar in their mechanism to
irreversible multi-SME (triple -SME) (Figure 1b), but no force was required for the cyclic actuation.
The two polyesters provided a high Tm (Tm,high) of around 64 ◦C and a low Tm (Tm,low) of around 34 ◦C,
respectively. The original shape of the PEU sample, i.e., shape S, was first deformed at a Treset > Tm, high
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by applying an external force. This deformation was fixed by obtaining shape S1 at a lower temperature
(Tlow), i.e., Tlow < Tm,low, while removing the external force, as shown in Figure 1c. At this point,
the chain confirmation associated with PPDL changed. After this, the PEU sample was reheated again
to the Thigh, i.e., Tm,low < Thigh < Tm,high, leading to another shape, S2. During this time the anisotropy
and chain confirmation of the crystalline phase of PCL changed. Upon reheating to Thigh, the partial
orientation in the PCL chain was removed and the deformation fixed by the PPDL domain remained
untouched. This behavior sets the network anisotropy for the PCL domain without external force.
Hence, macroscopic CIE-to-MIC transformation of PCL domains can be induced without external
force. Overall, this internally created network anisotropy is reversible and differentiates the reversible
2W-SME from the irreversible multi-SME.

Later on, many attempts were carried out to achieve the stress-free two-way shape-memory
effect to overcome the limitation of constant force by utilizing a variety of methods, such as bilayer
polymeric laminate [50], core-shell composites [51,52], and crystalline polymeric multi-networks [53–55].
Along with these other methods, free-standing [56], autonomous [57], and controlled shape-memory
actuation [58] methods were introduced by using a glassy thermoset-stretched liquid crystalline
network, epoxy-based shape-memory lightly cross-linked network, and carbon nanotube/epoxy
shape-memory LCE, respectively. The general design principle for all of the above free-standing
two-way SMEs was the preparation of anisotropic networks (or built-in stress) that can provide an
actuating force for reversible two-way SME without an external load.

Additive manufacturing is also gaining popularity in various scientific disciplines for device
fabrication and tissue engineering [59]. The 3D printer can extrude a thermoplastic or LCE molten
polymer that cools and solidifies to form a 3D structure, when cycled above and below their transition
temperature or nematic-to-isotropic transition temperature (TN1). However, their development is
limited to 3D-printable functional materials [60]. The thermoplastic/LCE ink with the highest triggerable
dynamic bonds can lock controlled network configurations in the form of a 3D shape on exposure to
UV light without an imposed mechanical field [59,61].

The 3D-printed reversible shape-changing soft actuators show 2W-shape-changing behavior.
The printed conductive wires actuate LCE/SMP strips via Joule heating (UV light or heat treatment).
The uniaxial deformation of the SMP/LCE strip acts as a driving force to achieve bending [62].
The 3D-printed shapes can be applied to flexible electronic devices, i.e., soft crawler, sensors,
self-deploying devices, and implantable medical devices [62–65]. The 3D printing techniques are
now evolving towards 4D printing, which has attracted increasing interest since its development.
The materials used in 4D printing include hydrogels, multi-material shape-memory composites and
LCEs. Unlike typical SMPs, 4D-printed materials can show a triple shape-memory effect. These triple
shape-memory polymers possess two distinct temporary networks, which allows them to memorize an
additional temporary shape [63,64,66]. The fundamental principle of 4D printing is to directly combine
the structural design of the shape change to the material components and 3D printing processes. It can
simplify the design strategy and fabrication process, and realize desirable 4D properties. Compared to
the traditional manufacturing processes, such as molding and cutting, the 4D printing process
can significantly save on fabrication costs. From all of this discussion, it is clear that the field of
artificial muscles is strongly developing and more and more techniques are advancing the field of
artificial muscles.

2.2. Programmable Shape-Memory Polymeric Artificial Muscles

Artificial muscle applications require a stimuli to generate arbitrary three-dimensional SMP
shape changes. These shape changes can be achieved by utilizing “programming processes” [67].
The programming process is the manipulation of external, physical processes that determines the
shape-changing pathway. This process is independent of material fabrication and is based on the
molded system, so that it can occur precisely according to the demand. The shape shifting performance
of any SMP is accompanied by a force generation, which converts the stimuli into mechanical energy.
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With the programming process, the sample can perform remote self-locomotion as a robotic. By cyclic
stimuli, the reversible bending and unbending can be transformed into walking, swimming and
load lifting abilities. As shown in Figure 2a, the Wang group [40] made significant progress in the
preparation of PCL- and polydopamine (PDA)-based shape-memory polymers. They utilized two
kinds of lactones as raw materials with similar but different thermal properties. They incorporated
very small amounts of polydopamine (PDA) nanospheres into a poly (ε-caprolactone) semi-crystalline
copolymer network and PCL-co-pentadecalactone (PCL-co-PDL) prepolymers. The addition of PDA
nanophores showed a profound effect on the melting and crystalline enthalpies of the PCL-co-PDL
segments, which were three times as much as those of the polymer composites, indicating the complete
inhibition of PDA nanophores inside the polymer network without affecting the crystallization of
the homopolymer (PCL). The PDL segment served as a geometric frame contributing to the main
melting point. The melting temperature was used as an actuation temperature. It was selected (Tms)
in between the melting temperature of two polymers within a range of 50–65 ◦C. This is because the
melting temperature of the PCL segment was in the range of 15–50 ◦C, whereas that of the PCL-co-PDL
segment remained in between 65–80 ◦C. The whole procedure was divided into three steps. To begin
with, when the temperature was higher than Tms, i.e., Thigh > Tms, the molecular chains were in
a viscous state and the material was easy to deform. After that, lowering the temperature to Tlow,
i.e., Tlow < Tms, the material returned to its original shape. Further, to observe the 2W-SME, the sample
was first programed to a “V” shape (with an angle of 70◦) in a water bath at 90 ◦C. The short arm of
the programmed sample was fixed on a clamp. When the temperature was turned on (light on) the
sample started opening and reached an angle of 115 ◦C (in 8-to-9s). However, when the light was
turned off, the sample started closing to a smaller angle of nearly 90◦ and 70◦ in a time of 35 s and 83 s,
respectively. Consequently, the temperature between Thigh and Tlow was used to make the process
more programmable and conversable, due to the partial crystallinity (in the polymer). Apart from
polycaprolactone, several shape-memory hydrogel materials have also been observed as programmable
artificial muscles, and a typical example is displayed in Figure 2b. That is, a bilayer hydrogel was
obtained with an asymmetric upper critical solution temperature (UCST). When the temperature was
lower than UCST, the layer of poly acrylic acid and poly acrylamide were able to shrink, while driving
the sample to bend on account of the hydrogen bonding. As the ratio of the two layers changed,
the size of the changes could be programmed. Further, it was observed that photomask technology
can be used to design interpenetrating network domains to achieve complex two-dimensional and
three-dimensional deformations of the hydrogels [68]. Liquid crystal elastomers can also be used to
create artificial muscles as shown in Figure 2c. Here, specifically, a new dynamic network based on
reversible siloxane exchange reactions is shown. The siloxane liquid crystal elastomer was swollen in a
solution of an anionic catalyst (TMA-DMSiO), and the siloxane exchange was induced at a specific
temperature (100 ◦C) to establish a more complex motion mode or three-dimensional shape-change.
Because the catalyst would disable at a high temperature (150 ◦C), a heating method was designed
to stop the exchange reaction. For further research, by combining the photo-thermal conversion,
different types of motion modules were integrated, while achieving a continuous NIR-induced process
of grasping and transporting objects by software devices [69].

This means that the programming process, crystallinity and anisotropic behavior of the materials
are the key factors that empower SMP materials to exhibit an artificial muscle performance. Along with
this stimulus is another significant factor that is acting as a trigger to actuate the SME. Here we will
focus primarily on the understanding of scientific aspects of programmable (both 1W and 2W SMPs)
shape-memory artificial muscles, developed in the last 5–6 years. We do not focus on the artificially
made biological muscles for in-vivo use in the human body. Therefore, the terms actuators and artificial
muscles are used interchangeably throughout the manuscript.
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Figure 2. Various programmable shape-memory polymeric artificial muscles based on (a) PCL and
polydopamine (Reprinted (adapted) with permission [40]. Copyright (2018) American Chemical
Society); (b) hydrogel (Reprinted (adapted) with permission [68]. Copyright (2019) American Chemical
Society); (c) liquid crystal elastomer (Reprinted (adapted) with permission [69]. Copyright 2020 John
Wiley and Sons).

3. Applications of Shape-Memory Polymeric Artificial Muscles

3.1. Thermo-Induced Shape-Memory Polymeric Artificial Muscles

The development of thermally actuated SMPs has focused primarily on relatively low temperatures
(Tc < 100 ◦C) and using elastomeric polymers such as thermoplastic polyurethane (TPU), cross-linked
polyethylene, polycaprolactone (PCL) and polynorbornene. These materials were considered
appropriate for biomedical applications, such as smart fibers, shrinkable tubes, and aerospace
applications using changes in modulus and switching temperature for shape change as well as
actuation. These materials consist of network points and molecular switches that are constructed either
by physical cross-links of intermolecular interactions or chemical cross-links through covalent bonds.
This cross-linking structure leads to phase separation and produces hard segments, soft segments,
and domain formation in the polymeric network. Inside this system, the hard segment serves as a
pivoting point for shape recovery movement, while the soft segment mainly serves to absorb the external
stress that is applied to the polymer [8,70]. Based on intermolecular interactions, these polymers can
be further sub-divided into linear and branched polymers. For linear polymers, the shape-memory
effect is due to their phase separation and domain orientation in the block copolymers such as PUs and
PMMA-g-PEG copolymers. In polyester–urethanes, the oligomer segments serve as hard-segments,
while the polyester serves as a switching segment (Figure 3). However, as for PMMA-graft-PEG
copolymers, the PMMA is not covalently cross-linked with PEG, but rather the junction point of the
backbone and side chains behave as a physical cross-linking point. On other hand, entangled branched
copolymers usually take much longer to disappear by the repetitive motion of polymers [22,71].
Further, these materials have the ability of rapid shape recovery and demonstrate a durable elastic
nature with bio-compatibility, which is used in biomaterials and shape-memory polymer textiles.
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For preparation, the covalently cross-linked network points can be obtained by cross-linking of
linear or branched polymers, as well as by copolymerization of one or several monomers, whereby at
least one is considered to have at least one tri-functional group. Sometimes radical initiation reactions
can lead to cross-linking in co-polymer networks [72]. Other synthetic routes rely on copolymerization
of polymer networks by Diels–Alders reactions, or a two-step poly-condensation process, which not
only improves the mechanical and shape-memory performance of the polymer composite, but also
increases the durability during repeated actuation by promoting self-healing [73–75]. Here we
provide a list of information related to the synthesis and internal mechanisms of some SMP artificial
muscles so that readers can refer to relevant literature that discusses the synthesis of SMPs such
as polycaprolactone-epoxy-based polymer networks, bisphenol-A epoxy resin [76,77], polyvinyl
butyral-based polymer networks [78], PCL and poly-L-lactic acid [79], polycaprolactone-based
polyurethane [80], PU/montmorillonite-PMMA composites [81], cross-linked poly(ethylene vinyl
acetate) and poly(ε-caprolactone) [27], polyethylene glycol-based polyurethane (PEG-based-PUs) [82],
polycaprolactone-based SMPs [83], and poly(ethylene oxide-co-ethylene terephthalate) [84].

Application environment, performance stability and cost problems have restricted the deployment
of artificial muscles in robots, exoskeletons, miniature actuators for microfluidic laboratories,
and prosthetic limbs. These materials are expensive in the sense that they need a sizeable driving force,
which is challenging to control. Recently SMP-based thermal actuated artificial muscles, known as
twisted and coiled polymer actuators (TCA), were prepared from nylon 6,6 fibers [85]. To some extent,
these have promising potential because of their low cost, high strength, and reversible thermal expansion
with large dimensional anisotropy. The composites are designed as a particular twist-insertion device
that can be operational at a temperature of 30–150 ◦C with a load of 1400 g. Based on the TCA concept,
Cho. et al. [86] synthesized an artificial finger that could successfully lift different objects as shown
in Figure 4a–c. Similarly, Wu et al. [87] prepared a polyamide muscle-based artificial hand. It was
comprised of a silicon tube (8 mm in diameter and 112 mm in length) with a pre-strain coiled fishing
line and a spring through which hot and cool water was allowed to move freely during relaxation and
contraction. The coiled fishing line muscles acted as a contractile element of the actuating system with
3.33 mm outer coil diameter and 86 mm length. On one end, a string was attached to the actuating
system with a fingertip on the far end and the returning spring was used as a contractile element in
the actuating system, as shown in Figure 4d. The flow of water was analyzed and set with existing
computational software so that the system remained safe and workable. Figure 4d illustrates how,
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when hot water passed through the muscle, the nylon fiber showed a negative axial thermal expansion
and sizeable positive radial thermal expansion, which resulted in contraction of the coiled fiber and
hence the filament moved and lifted the weight (which was 200 g for 37.5 mm displacement).
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Figure 4. Tendon-driven biomimetic robotic finger: (a,b) the developed robotic finger and a human
finger, and (c) grasping various objects (a cosmetic tube, a marker pen, a part of the aluminum profile
and a USB flash drive, from left to right) (Reprinted (adapted) with permission [86]. Copyright (2016)
SPIE. Digital Library). (d) Finger configuration in a prototype hand in the actuation system housed
in the forearm and tendons connected to the fingers (Reprinted (adapted) with permission [87].
Copyright (2015) SPIE. Digital Library).

In contrast, the flow of cold water through the spring resulted in contraction of the system
that brought the system back to its original position. Hot water was supplied to the silicon inlet
at 1.5 s and stopped after 7 s, followed by cold water until the actuating system returned to its
original state. The cooling time was less than 5 s, and depended on the convective heat transfer,
polymer heat capacity, and volume and space area of the muscles, since pure thermally actuated SMPs
have low work capacity. Hains et al. [85] created novel shape-memory artificial muscles reinforced
with CNT-fiber. The prepared muscles matched the performance of mammalian skeletal muscles and
had nearly 20% tensile lifting ability under rapid loading. Precursor fibers were used to generate
highly oriented polymer chains of polyamide and polyethylene (in the fiber direction), which had
small negative thermal expansion co-efficients that yielded significant reversible contraction when
the heat was applied. The already-induced twist brought chirality into the CNT fibers and inside the
system. Polyamide 6, 6 fibers showed a 34% increase in reversible thermal contraction (from 20 ◦C
to 240 ◦C) while the polyurethane monofilaments showed an increment of 16% for coiled muscles
between 20 ◦C and 130 ◦C. The intercooler contact helped to build stiffness into the coiled structure
along with increasing temperature, and produced a 24-fold increase in the related tensile modulus.
Further, the tensile strain and load-bearing ability could be varied by adjusting the coil spring index
(the ratio of mean coil diameter to fiber diameter), which was inversely related to spring stiffness.
The maximum optimal load observed for the largest coil diameter with a spring index (C) of 1.7 was
22 MPa, with a 21% maximum strain. In contrast, with the smallest coil diameter with a spring index
of 1.1, the optimal load increased to 50 MPa, while the maximum stroke registered was 9.3%. However,
the maximum specified work during contraction for the coil spring of polyamide 6, 6 muscles with a
spring index of 1.1 was 2.8 KJ/Kg, which was 64 times that of natural muscles. The average mechanical
output power during contraction was 27.1 kj/kg, which was 84 times the peak output of mammalian
skeletal muscles.
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Similarly, we prepared shape-memory PUPCL copolymer materials [4] with self-healing abilities,
which showed a high cycle life. From load lifting experiments, it was observed that these materials
were able to lift a load of more than 20 times the mass of the actuator material (Figure 5a). More recently,
another type of shape-memory polymer was prepared [88], which was synthesized from PCL, PDMS,
and PUs. Along with the high cycle life (based on self-healing behavior), it could also lift a mass 500 times
its weight within 5 s and the maximum power density registered was half of the mammalian skeletal
muscles (Figure 5b). Moreover, Xie et al. [89] introduced poly (ethylene-co-vinyl acetate)/graphene
(cEVA/G) shape-memory actuators. They developed a series of EVA-carbon fiber based composites
(EVA/CF) with a remarkably enhanced recovery stress both in a free state and under compressive stress.
The addition of CF into EVA increased the modulus and the recovery stresses. Consequently, cEVA/CF
composites exhibited a robust shape recovery performance under a counteracting load. This behavior of
the composite was well modelled in a deployable device, as shown in Figure 5c. Recently they observed
that these materials had a cyclic and dual sensitive (light/thermal) capacity [90]. The cyclic actuation was
enabled by crystallization-induced elongation and melting-induced contraction, which was induced
by the EVA part of the composites. When using NIR (near infra-red) irradiation and direct heating,
an indicating circuit, which used a lamp as an alarm, was enabled to form a conceptual actuator for
sensing applications. This actuator could effectively raise a signal (i.e., the lamp is turned on) when
responding to a direct heating source, and after removing direct heating, the alarm was disengaged,
i.e., light is turned off, and elongation/shape fixation occurred at room temperature. The process
repeated itself during shape recovery when the system was heated for recovery to complete the process.
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(Reprinted (adapted) with permission [4]. Copyright (2018) John Wiley and Sons); (b) the actuation
and grasping behavior of the PUPCL-DS copolymer (Reprinted from Materials and Design [88].
Copyright (2019) Elsevier); (c) the deployable device structure made up of cEVA/CF composites shape
recovery behavior (Reprinted (adapted) with permission [89]. Copyright (2018) Elsevier).

3.2. Photo-Induced Shape-Memory Polymeric Artificial Muscles

Light-responsive molecules can undergo isomerization in the presence of a particular light
stimulus that reversibly changes their structures between two or more chemical aggregates. To be
more specific, this kind of isomerization affects the orientation and arrangement within the molecular
chains. These changes express themselves in terms of color change or visible deformation on the
macro-scale. In recent years, many scientists have prepared a large number of artificial muscles with
a specific mechanical strength and light-driven ability by adding organic phases to the polymeric
systems, e.g., azobenzene [91] or spiropyran [92], or inorganic phases, e.g., graphene [93], or metal
nanoparticles [94,95]. In comparison to thermal-responsive polymers, light-induced polymers have
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the unique advantages of instantaneous control, environmental friendliness, non-contact initiation,
etc., which is of importance in the aerospace, biomedical, and other fields.

In the past years, the most commonly used representative material that responds to light is
undoubtedly the azobenzene group [96]. The polymers based on amorphous azobenzene have a
1% response (shrinkage) under ultraviolet irradiation [97]. Researchers have found out that aligned
polymers, such as liquid crystal polymers, can improve the driving performance of photo-isomers.
In addition, the combination of the entropy, the elasticity of polymers and the photo-isomerism of
azobenzene is beneficial for obtaining potential artificial muscles with a large range of reversible
deformation [98,99].

The reversible phase transition uses the trans–cis photo-isomerization of azobenzene groups
(Figure 6a). The rod-like trans-structure of the liquid crystal phase is stable at room temperature, and the
curved cis-structure is easily obtained under external stimuli. Typically, UV irradiation is used to trigger
the isomerization phenomenon. For example, the isomerization of a single molecule with shrinkage in
its length of 3.5 Å usually starts with ultraviolet irradiation. This isomerization is reversibly restored
with visible light radiation as well as heating. Therefore, to obtain a unique controllable deformation,
an azobenzene group was added to the polymer network [100]. The continuous accumulation of this
isomerism and exposure to ultraviolet irradiation leads to a polymer phase transition. Thus, the final
product changes from the anisotropic state to the isotropic state, while causing macro-scale deformation
(Figure 6b). On the other hand, the photo-thermal effect can also induce isomerization in the system.
This can be achieved by adding appropriate photo-thermal conversion particles, such as carbon
materials [101], metal nanoparticles [102], and organic dyes [103]. Therefore, on the exposure of
the compound to visible or NIR irradiation, the doped particles serve as a heat source to raise the
temperature of the system above the liquid crystal transition point, resulting in the transformation
to the isotropic state (Figure 6c). Furthermore, because of the Weigert effect, when the transition
distance (long axis) of the trans azobenzene molecule is parallel to the polarization direction of the
linearly polarized light, the azobenzene unit will absorb energy to reach the excited state and undergo
trans–cis isomerization (Figure 6d). In contrast, the molecules that are perpendicular to the polarization
direction do not undergo this process and maintain their initial state. After repeating multiple cycles of
trans–cis–trans isomerization, the transition distance of all trans-azobenzenes will be perpendicular to
the direction of polarized light. Subsequently, it will become stable and the photo-reorientation of
azobenzene will be complete (Figure 6d) [102].

The spray-coating technology was used by Schenning’s group [104] to combine the polyethylene
terephthalate (PET) and liquid crystal network. Firstly, the thermoplastic PET was shaped into arbitrary
shapes (such as origami-like folds and spirals) by heating. Then the heat-fixed geometry formed different
shapes reversibly by irradiation with ultraviolet light. The whole process yielded a final structure
that had a substantial and reversible driving force and took complex forms through winding, curling,
and unfolding. With flexible shape reprogramming ability, the same sample was redesigned multiple
times in favor of manufacturing a mechanically robust, recyclable, and light-responsive actuator
with a highly adjustable geometry (Figure 7a) [105]. Zhang and his co-workers [106] made use of the
mismatch of the coefficient of thermal expansion between graphene oxide and an azobenzene-doped
liquid crystal network to design a delicate bilayer soft actuator through the micro-channel method.
In Figure 7b, the bilayer can be observed. It reacts with both UV and NIR exposure simultaneously due
to the addition of azobenzene and graphene oxide, respectively. This structure is expected to be used
widely in bionic and intelligent soft robots [107]. Similarly, Zhao et al. [108] used a reprogrammable
azobenzene-containing liquid crystal network to demonstrate a new strategy for improving the
light-induced mechanical actuators. These actuators were designed in the form of wheels and spring-like
“motors” with adjustable rolling or moving directions and speeds (Figure 7c) [108]. Furthermore,
by incorporating a type of fast trans–cis azobenzene derivative into a liquid crystal network, Gelebart and
Mulder [91] produced a photo-sensitive polymer film with aligned and macroscopic mechanical waving
behavior (Figure 7d). Their group also presented theoretical models. They used several photo simulation
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methods and explained the mechanism of the generation of the wave. The fundamental idea was to store
the mechanical strain energy in the polymer in advance. After that, the UV light was used to convert
luminous energy to mechanical energy via photoisomerization by triggering the preloaded strain energy.
Furthermore, potential applications of photo-induced films in light-driven motion and self-cleaning
surfaces were proposed, involving photo-mechanical energy and miniaturized transportation.
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Figure 6. (a) Reversible trans–cis photo-isomerization of azobenzene and schematic illustration of
(b) photo-induced and (c) photothermal-induced order–disorder phase transition in LCPs (Reprinted
(adapted) with permission [101]. Copyright (2019) John Wiley and Sons). (d) Photo-reorientation of
azobenzene containing LCPs with linearly unpolarised light (Reprinted (adapted) with permission [96].
Copyright (2019) John Wiley and Sons).
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Figure 7. (a) Demonstration of shape fixing and shape morphing possibilities using a single actuator
strip (Reprinted from Annalen der Physic [105]. Copyright (2012) John Wiley and Sons). (b) Schematic
diagram and real deformation of the bending state and construction of the actuator under NIR and
UV lamp (Reprinted (adapted) with permission [107]. Copyright (2020) American Chemical Society).
(c) Mechanism of various UV-induced actuators based on bilayer LCPs (Reprinted (adapted) with
permission [108]. Copyright (2017) John Wiley and Sons). (d) Schematic diagram of a polymeric film
that was constrained at both ends and reacted with an oblique-incidence light source (left). The blue
arrows show the way the film deformed while the red ones indicate the propagation direction of the
wave (Reprinted (adapted) with permission [96]. Copyright (2019) John Wiley and Sons).
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There is also a range of other functional groups that possess photoresponsive behavior.
The spiropyran molecule is distinctly sensitive to ultraviolet light and has been used to make a
molecular switch (Figure 8a) [109]. The spiropyran structure shows three different light-response
properties at three different wavelengths. The cis–trans isomerization was observed under 405 nm
irradiation. The decomposition of the 2-nitrobenzyl group was observed with 254 nm irradiation, and a
spiro-mesocyanine isomerization occurred under 365 nm light. This makes the spiropyran a promising
candidate for the further design of light-responsive polymeric materials [109]. Similarly, Zhao and
his co-workers [110] reported a dye-doped liquid crystal polymer containing a metal-bis-dithiolene
complex as a molecular photothermal agent. In their article, they observed that with two ends of a
strip fixed, a NIR laser could generate a wave that pushed a rod forwards or backwards. However,
when only one end was fixed, the soft actuator performed various autonomous arm-like movements
depending on the direction and angle of the laser beam (Figure 8b). Brannum and co-worker [111]
designed a well-aligned backbone liquid crystal elastomer with a cholesteric phase. Due to the
introduction of heterogeneous photosensitive chiral olefin in the molecule, the selective reflection
bandwidth of the polymer increased to more than 200 nm. At 200 ◦C, they observed a deformation
and discoloration (Figure 8c). Jin and Song [112] presented a new strategy that involves a combination
of a programmable crystalline polymer and reversible optical bonds to achieve the function of artificial
muscles. The integral three-dimensional structure was based on the plasticity-based origami technique,
with nitro-cinnamate, with photo-reversible dimerization, added into the system to program the
geometric changes as shown in Figure 8d. This method represents a general approach for creating
photo-induced shape-memory polymeric artificial muscles [112]. It should be noted that there are
a substantial number of other molecular systems that have not been mentioned here, which have
the potential to be integrated into the development of photo-induced shape-memory polymeric
artificial muscles.
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Figure 8. (a) Spiropyran-based molecular switch and the UV-vis absorption spectra in response to
different stimuli (Reprinted (adapted) from https://pubs.acs.org/doi/10.1021/jacs.8b09523). (b) Chemical
structure of the liquid crystal elastomer containing 2-butyloctyl carbon chains and autonomous
arm-like motions of the strip actuator under constant illumination of a laser (Reprinted (adapted) with
permission [110]. Copyright (2012) John Wiley and Sons). (c) The photo-isomerization of the chiral
olefin and the deformation and color change of the LCE layer when heated from 25 to 200 ◦C (Reprinted
(adapted) with permission [111]. Copyright (2019) John Wiley and Sons) [70]. (d) Photo-reversible
dimerization of nitro-cinnamate and typical model to illustrate the light programming (Reprinted
(adapted) from Science Advances, Applied Sciences and Engineering [112]. Copyright (2018), American
Association for the advancement of Science).

https://pubs.acs.org/doi/10.1021/jacs.8b09523


Molecules 2020, 25, 4246 14 of 27

Ma et al. [113] created a new design based on a mixed-matrix membrane strategy to obtain
photo-induced SMP artificial muscles that lift weights. The formed hybrid system bridges the gap
between the fast light response and the suitable elastomer properties with a high Young’s modulus.
The designed artificial muscles perform a variety of functions, from the ability to hold something
similar to human hands, to lifting weights (Figure 9a). What is more interesting is that Dicker’s
group [114] proposed a new strategy to solve the insufficient driving performance at the molecular
level (Figure 9b). They successfully achieved a three-fold chemical amplification of the driving force
by using the combination of actuation and a light-sensitive acid autocatalytic solution that activates
and deactivates at a specific light wavelength.Molecules 2020, 25, x FOR PEER REVIEW 14 of 27 
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Figure 9. (a) BA2DA-PVDF robot with multiple arms grasping objects (Reprinted (adapted) with
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Copyright (2017) Springer Nature).

3.3. Electro-Induced Shape-Memory Polymeric Artificial Muscles

Heating above transition temperatures, such as Tg or Tm, is usually used in shape-memory
materials. Therefore, to obtain uniform heating, electrically conducting composites were synthesized
by using CNTs, graphene oxide, a CNT membrane, and carbon black as fillers in which the applied
voltage yields an electrical pulse and initiates actuation and deformation of the material via Joule
heating [115–119]. Thus, the primary source of mediation is the applied field, which provides potential
and brings changes in the soft segment of the polymer to restore its original state. This means that
the underlying concept required for the shape-memory phenomenon is the same in electro-active
(electrically actuated) shape-memory polymers as in thermo-active shape-memory polymers [120,121].
Consequently, these materials have received great interest because of their successful applications in
electro-active activators, such as in smart actuators and micro aerial vehicles [122]. The mechanical
reinforcement and functionalization of these filler-based SMPs are achieved mainly through the
hybridization process. Generally, chemical hybridization is considered superior to physical blending
because it can improve interfaces between the polymer and fillers via a fine dispersion process.
Furthermore, chemically incorporated fillers provide multifunctional cross-links, which not only
augment rubber elasticity but also enhance conventional strength and strain recovery [119,123].
The reason for this is that the CNTs have unique structural arrangements of atoms, a high aspect ratio,
and excellent mechanical, thermal, and electronic properties. Additionally, CNTs are highly flexible,
which gives them remarkable advantages, making them the best reinforcement component in host
polymer matrices [119,124].

Similarly, graphene, which is essentially a CNT cut along its axis so that it unrolls and lays
flat, has 2D sp2 hybridization carbons and exhibits excellent electrical conductivity. Further, the 3D
interconnection of graphene can be obtained by freeze casting, self-gelation, and chemical vapor
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deposition. In polymer foams, the graphene not only increases conductivity but also contributes to the
improved mechanical properties [123,125–127]. Furthermore, carbon fiber and oxidized graphite also
show high electrical conductivity because of their high surface area and surface polarity. Using this
electrically induced actuation mechanism, Liu et al. [128] studied an electro-active shape-memory
composite of a CNT/graphene aerogel (Figure 10a). When CNT and graphene, in a weight ratio of
3:5, were added to an epoxy resin, the electrical conductivity was nearly 16.3 S/m and the composites
showed shape recovery after 120 s at a potential difference of 60 V. Mohan and co-workers [129]
combined poly (lactic acid) with CNT and obtained a nanocomposite by a normal chemical process as
shown in Figure 10d. The nanocomposite had a conductivity of 10−6 S/m with shape recovery behavior
within 11 s at a constant voltage of 60 V. The same phenomenon was observed for a composite of
Cu-decorated CNTs dispersed in PLA/ESO (epoxydized soybean oil). The nanocomposite recovered to
its original shape within 35 s with a voltage of 40 V (Figure 10b) [130].
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Figure 10. (a) The shape-recovery process of the compound aerogel (with a carbon nanotube:graphene
weight ratio of 3:5)/epoxy resin composite under a voltage of 60 V (Reprinted from Journal of Materials
Chemistry A [128]. Copyright (2015) Royal Society of Chemistry); (b) photographs showing the shape
recovery process of the representative E-CNT sample obtained at a triggering voltage of 30 V (Reprinted
from Materials [130]. Copyright (2015) MDPI); (c) demonstration of electro-active shape-memory
behavior of PPLACNT-S (Reprinted (adapted) with permission [106]. Copyright (2016) American
Chemical Society); (d) electroactive shape recovery behavior of the Cu-CNT dispersed PLA/ESO
nanocomposite (Cu-CNTs content of 2 wt% at a DC voltage of 40 V) (Reprinted (adapted) with
permission [129]. Copyright (2016) John Wiley and Sons.

A remarkable shape recovery behavior (within 12 s) was observed for a poly (ethylene-co-vinyl
acetate) /Poly(ε-caprolactone) /CNT (EVA/PCL/CNT) blend (Figure 10c). Recently, various synthesis
methods were studied for the preparation of electro-active shape-memory polymers, based on
the following fillers: graphene oxide [131], carbon black [132], CNT layers [133], TiO2 [134],
carbon fibers [135], and single-walled CNTs [136]. Most of these fillers not only made the polymer
material conductive but also improved the mechanical properties. Most of the materials showed a
shape recovery performance within 60–100 s with an applied voltage of 16–70 V. However, none of these
materials showed load-bearing properties. Nevertheless, Yip. et al. [137] prepared high-performance
robotic muscles from conductive polyamide 6,6 sewing thread. The nylon 6,6 sewing thread was
made conductive by coating it with electric heating, while using the same method as Haines et al. [85].
By using this concept, they prepared a robotic hand with 3D-printed ABS (Acrylonitrile Butadiene
Styrene) material. A flexural design with conduits for a tendon was used with supercoiled polymer
(SCP) actuators on each tendon (for actuation).
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These actuators provided a strain of approximately 10–15% to produce a full range of motion.
To mimic the physical location of these muscles in a human arm, they spread them along the forearm
of the robot. Further, to cool the actuators during relaxation, four computer fans were used. The power
to weight ratio demonstrated by these muscles was 5.38 kW/kg, which is 17 times the power to
weight ratio of mammalian skeletal muscles. The grasps were performed within a second without
the need for a feedback sensor and with no noticeable crosstalk between actuators. Most recently,
Peng’s group [138] prepared a 3D porous network composite material (Figure 11). The porous nanotube
served as a built-in integral conductive network, which provided homogenous in-situ Joule heating for
the composite polymer. By using this basic concept, they used the material to prepare an inchworm-like
robot. The basic design of the robot was that thin metal plates were fixed to both sides of the polymer
composites as legs to increase the size of each step (Figure 11). They designed a particular track with a
metal sawtooth-like structure. The locomotion of the robot involved releasing and grasping of the
front and rear sets of legs. This is because when the robot releases its legs, the rear legs are then stuck
to the metal sawtooth, and the front legs push the robot in the forward direction. After grasping,
the front leg is hooked on the sawtooth and pulls the rear leg forward. This movement is repeated
continuously, in analogy to inchworm locomotion, by cyclic releasing and grasping of the front and
back legs. The total time required for a complete cycle was 120 s with an alternating voltage of 2 V and
8 V. The locomotion observed for the inchworm robot was 8 mm in a total time of 10 min, which further
increased to 1.2 cm in 10 min when the cycling time was set to 40 s (Figure 11c). These robots were
considered to have profound potential with numerous advantages, such as their simple structure,
light weight, and low cost, with designable parameters including speed, frequency, and length.

Molecules 2020, 25, x FOR PEER REVIEW 16 of 27 

 

rear legs are then stuck to the metal sawtooth, and the front legs push the robot in the forward 
direction. After grasping, the front leg is hooked on the sawtooth and pulls the rear leg forward. This 
movement is repeated continuously, in analogy to inchworm locomotion, by cyclic releasing and 
grasping of the front and back legs. The total time required for a complete cycle was 120 s with an 
alternating voltage of 2 V and 8 V. The locomotion observed for the inchworm robot was 8 mm in a 
total time of 10 min, which further increased to 1.2 cm in 10 min when the cycling time was set to 40 
s (Figure 11c). These robots were considered to have profound potential with numerous advantages, 
such as their simple structure, light weight, and low cost, with designable parameters including 
speed, frequency, and length. 

 
Figure 11. Application of an electro-active shape-memory polymer composite to an inchworm robot. 
(a) Photographs of inchworm locomotion. (b) Illustration of a designed inchworm robot with a double 
layer CNT–SMP composite in connection with two metal plates as moving legs. (c) Snapshots of an 
inchworm-type robot in locomotion. It has moved over 24 mm in 30 min (Reprinted (adapted) with 
permission [138]. Copyright (2016) Royal Society of Chemistry). 

Wang et al. [7] repeated the same process while preparing a self-adaptable, entirely soft-bodied 
electronic robot from LCE-CB nano-composites. The robot was able to achieve effective soft-bodied 
locomotion based on programmable body bending and anchored motion similar to that of an 
inchworm. Their robot was superior in regards to movement, sensing in both the forward and 
backward direction, and response times. The demonstrated soft robots were capable of sophisticated 
shape adaptation, and two-way gait locomotion in programmable and adaptive sensing actuation 
manners. Further, this process involved a soft Joule heating electronic mesh, ultra-thin Si 
optoelectronic sensors, and thermal responsive LCEs. Kim et al. [139] developed a strategy by 
arranging CNTs in the LCE network. The arrangement of these CNTs not only enhanced the 
mechanical performance or electrical conductivity of the LCE network but also served as an 
alignment layer for LCEs. By controlling the location orientation and quantity of layers of CNTs in 
LCE-CNT composites, programmed and patterned actuators were built that respond to electrical 
current. The response of these actuators to a DC voltage of nearly 15.1 V/cm registered a 12% 
actuation strain and a work capacity of 100 kJ/m3. 

Similarly, Sun et al. [140] prepared electro-active actuators (EAAs) by utilizing super aligned 
carbon-nanotube sheets with poly(dimethyl siloxane) (PDMS) layers. The programmed EAA was 
capable of deforming to a bending angle of 540° at 12 V. This concept was further utilized by 
fabricating a small crawling robot that mimicked worm-like behavior under a cycling voltage (due to 
Joule heating). The EAA started to expand from 0 to 20 s once the voltage was activated. After the 

Figure 11. Application of an electro-active shape-memory polymer composite to an inchworm robot.
(a) Photographs of inchworm locomotion. (b) Illustration of a designed inchworm robot with a double
layer CNT–SMP composite in connection with two metal plates as moving legs. (c) Snapshots of an
inchworm-type robot in locomotion. It has moved over 24 mm in 30 min (Reprinted (adapted) with
permission [138]. Copyright (2016) Royal Society of Chemistry).

Wang et al. [7] repeated the same process while preparing a self-adaptable, entirely soft-bodied
electronic robot from LCE-CB nano-composites. The robot was able to achieve effective soft-bodied
locomotion based on programmable body bending and anchored motion similar to that of an
inchworm. Their robot was superior in regards to movement, sensing in both the forward and
backward direction, and response times. The demonstrated soft robots were capable of sophisticated
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shape adaptation, and two-way gait locomotion in programmable and adaptive sensing actuation
manners. Further, this process involved a soft Joule heating electronic mesh, ultra-thin Si optoelectronic
sensors, and thermal responsive LCEs. Kim et al. [139] developed a strategy by arranging CNTs in
the LCE network. The arrangement of these CNTs not only enhanced the mechanical performance or
electrical conductivity of the LCE network but also served as an alignment layer for LCEs. By controlling
the location orientation and quantity of layers of CNTs in LCE-CNT composites, programmed and
patterned actuators were built that respond to electrical current. The response of these actuators to a
DC voltage of nearly 15.1 V/cm registered a 12% actuation strain and a work capacity of 100 kJ/m3.

Similarly, Sun et al. [140] prepared electro-active actuators (EAAs) by utilizing super aligned
carbon-nanotube sheets with poly(dimethyl siloxane) (PDMS) layers. The programmed EAA was
capable of deforming to a bending angle of 540◦ at 12 V. This concept was further utilized by fabricating
a small crawling robot that mimicked worm-like behavior under a cycling voltage (due to Joule
heating). The EAA started to expand from 0 to 20 s once the voltage was activated. After the voltage
was switched off, the EAA returned to its curved state due to fast heat dissipation. This allowed the
EAA to move forward on the rigid rail.

However, Xiao et al. [141] prepared soft robots (Janus flower-like structure) by using a liquid crystal
polymer (LCP). They used the basic concept of the order–disorder phase transition of mesogens in the
oriented liquid crystal network. They designed soft robots from uniaxially oriented LCN (liquid crystal
network) strips, a laminated Kapton layer and embedded thin resistive wires (in between), as shown
in Figure 12a. The LCN layer served as the active layer. In contrast, the thermo-stable Kapton layer
film acted as the passive layer. The concept of Joule heating was used to induce contraction of the
LCN, which triggered the deformation of the actuator. They used programming conditions, as shown
in Figure 12b, where the passive Kapton layer displayed a certain plastic deformation that helped
the LCN with oriented mesogens to retain the programmed shape at room temperature (shape A).
However, under electric power (voltage on), the contraction force of the LCN with mesogens in an
isotropic state overcame the elastic force (of the deformed Kapton). It thus displayed a shape change
(shape B). When the electric power was off, the extension force of the LCN with re-oriented mesogens
worked with the recall force of Kapton and brought the ELCN(LCN-heating wire-Kapton actuator)
back to a programmed shape (Figure 12c). By using this basic concept, they designed the ELCN
actuator, as shown in Figure 12d. The design of the ELCN gripper was similar to an elephant trunk.
The ELCN gripper gripped (when the power was on) and released (when the power was off) objects of
different shapes and weights, such as a syringe (4.2 g), a tube of water (5.3 g) and a string of electric
coils (7.4 g). As the weight of the prepared ELCN was only 35 mg, the load lifted by the actuator was
210 times heavier than the actuator.

Similarly, He et al. [142] prepared an electro-active LCE-based soft tubular actuator. The benefits
of the tubular actuator include multiple actuation modes, contraction, bending, and expansion.
The LCE-based tubular actuator was prepared by sandwiching three separate thin stretchable serpentine
heating wires between two layers of loosely cross-linked LCE films (Figure 13a). After sandwiching,
the whole structure was exposed to UV irradiation to fix the alignment of the liquid crystal mesogen.
The heating wires were used to control the LCE actuator, i.e., to bend or contract the actuators by Joule
heating (Figure 13c). After performing various experiments, i.e., exposing the LCE actuator to an
applied potential that derived actuation of the LCE thin film, they used it to prepare soft grippers,
as shown in Figure 13b. The three tubular actuators were first attached to a circular plate, which was
further connected to the micro-controller to control the actuation electrical potential. By selectively
actuating heating wires in each tubular actuator of the gripper, it was able to grasp and lift a vial after
twisting its cap without additional external control. Recently, Xu et al. [124] prepared a mechanical
gripper made of poly(ethylene-co-octene) (PEO) and segregated conductive networks of carbon
nanotubes (S-CNT) (Figure 13d). The PEO-CNT composites with segregated structures had a low
modulus and high conductivity, as well as a fast response at low voltage. The actuation mechanism was
realized by the shape-memory behavior of the PEO, which is based on the crystallization of ethylene
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sequences in PEO and the crystallization and melting of PEO-CNT composites. Based on this concept,
they prepared a gripper that was able to grasp the objects through an electro-active process. As shown
in Figure 13d, the grippers were able to open their fingers within 18 s with a voltage of 36 V and close
them within 168 s with the voltage off, with 186 s needed for the entire cycle.
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Figure 12. Electro-thermal liquid crystalline network (ELCN) actuators. (a) The integrated ELCN
actuator; (b) the bending states of the ELCN actuator driven by the external voltage; (c) illustration of
an ELCN actuator strip programmed to have a helical LCN shape with either an outside layer or inside
layer, and the corresponding reversible actuation when the power is off and on. (d) Photographs of the
self-locking gripper made with the ELCN actuator, which can grip and lift an object by operating the
programmable hand and arm by using two electric circuits (Reprinted (adapted) with permission [141].
Copyright (2019) John Wiley and Sons).
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Figure 13. (a) Fabrication steps of an LCE-based tubular actuator with three serpentine heating wires
sandwiched between two layers of loosely cross-linked LCE film. (b) An LCE artificial muscle film that
could lift a load of 3.92 N by 38% of its initial length. (c) Schematic of the soft gripper and grasping and
lifting of the vial (50 g) and twisting the cap of a vial (Reprinted (adapted) from Science Advances,
Applied Sciences and Engineering [142]. Copyright (2019), American Association for the advancement
of Science). (d) Schematic of the PEO/S-CNT composites used to grasp and release an object with the
voltage on (36 dc) and off with a picture of the gripper for grabbing nuts (Reprinted (adapted) with
permission from Xu et al. [124]. Copyright (2019) American Chemical Society).
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Similarly, Rubaiai et al. [143] prepared a self-pneumatic actuator (SPA) by using the shape fixation
and shape recovery behavior of conductive poly-lactic acid (CPLA). The fabrication of the SPA was such
that the CPLA was integrated into the flat side of the SPA. The components of the SPA were fabricated
using casting and 3D printing. However, local indentations, i.e., joint 1, 2, and 3, were designed in the
flat sheet geometry to facilitate bending at the hinge locations. For Joule heating, silver wires were
soldered to each hinge without affecting the device flexibility. After this, the CPLA/silver wire was
encapsulated through a silicone rubber bath to allow adhesion with the SPA. When Joule heating is
activated at a given location on the CPLA, the material nearby softens and thus enables bending at that
location. Using this concept, they prepared actuators that enabled them to grasp multiple objects using
different grasping modes. The maximum load held by the SPA was 800 g when the SPA was actuated
with 22 psi and all CPLA joints were actuated with 12 V inputs.

4. Concluding Remarks with Future Perspectives

Exciting properties of SMPs have endowed these materials with desirable utility for artificial muscle
applications. In the past, most of the applications were based on SMP actuators. However, along with
the development of SMP programming methods, cross-linking methods (in various combinations) and
different trigger methods suggest that more applications in the form of artificial muscles, robotic fingers,
deployable devices, and robotics can be realized. Fundamentally, SMP artificial muscles are providing
a new alternative to natural muscles by imitation, which inspires and challenges the material scientists
to untangle the structure–property and application relationships. It is intriguing to see that the artificial
muscle performance in some cases exceeds that of natural muscles, which depends not only on the
intrinsic properties of these materials but also on the actuation mechanisms, miniaturization and
specific design. Aside from the significant progress in SMP artificial muscles, some continuous effort
should be put into the following aspects of SMPs and composites, which have been mostly unexplored
to date.

Among existing SMPs, polycaprolactone, polyurethane, specific epoxy resin and LCEs are often
used as artificial muscles, presumably because these materials have a crystalline domain, which induces
the shape-memory phenomenon. Exploration of new polymer systems with similar properties to these
materials may lead to new functionalities and applications in the field of artificial muscles.

It is generally accepted that SMP artificial muscles usually mimic human muscles, but there is a
lack of SMPs that mimic the strength associated with the actuation of humanoid muscles. Therefore,
appropriate methods are needed to quantitatively assess the contribution of different factors that affect
the mechanical performance of polymer-based actuators.

A large effort has been devoted to controlling the load-bearing performance of SMP artificial
muscles, but little is known about how to develop millions of reversible contractions with rapid
load-bearing abilities. Distinguishing different SMP networks would help greatly in understanding
better the structure–property relationship and reversible relaxation abilities with maximum cycles.

Current knowledge of SMP artificial muscles is generally based on shape-memory polymer
networks and their composites with thermal or electrical actuation. However, little is known about
LCEs and their regular systems. Therefore, thorough study is needed to address many questions
related to LEC-based SMP artificial muscles, activated either thermally, electrically, or by light.

Limited fatigue resistance and cracks on the surface of these materials is a significant limitation at
the current stage. Therefore, the combination of these materials with self-healing materials may provide
a possible solution to the development of new self-healing or self-recovery SMP artificial muscles.

Combined with the load lifting performance, the development of new multifunctional artificial
muscles with opto-active or magneto-active shape-memory performance in a miniaturized form is still
a big challenge. Despite many attempts for the most common applications of SMP artificial muscles,
the actual arrangement of these in robotic design is one of the highly essential issues that need to be
taken into account.
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Furthermore, the electrical actuation of the electro-active SMPs is carried out by dispersion of
fillers, for example, CNTs in the polymer network. Sometimes, weak linkages of these fillers in a
polymer chain may induce defects that significantly reduce the strength. Therefore, better annealing
and optimized synthesis conditions are required to overcome these defects and junctions between the
nanotube yarns in the polymer networks.

How to effectively dissipate the heat when the SMPs are restored to the original shape is also
a big challenge. This is critical to load-bearing two-way SMPs with many shape-changing cycles.
Hence, the investigation of SMPs should be combined with new technologies of thermal management,
which will bring SMP research closer to real applications.
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