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1  | INTRODUC TION

Speciation occurs when lineages become reproductively isolated due 
to a trait polymorphism. If mating success is lower among individuals 
that differ for a given trait, lineages will diverge in the frequency 
of that trait and experience further reductions in gene flow, poten-
tially initiating speciation. Trait polymorphisms that may particularly 
promote speciation include those related to mate choice (e.g., sex-
ual dichromatism; Jenck et al., 2020; Portik et  al., 2019), breeding 
phenology (Taylor & Friesen,  2017), parity (Horreo et  al.,  2019), 

vocalizations (Campbell et al., 2019; Luo et al., 2017), and karyotype, 
particularly those involving chromosomes that determine sex (i.e., 
sex chromosomes; Bracewell et  al.,  2017; Faria & Navarro,  2010; 
Kitano et al., 2009; O'Neill & O'Neill, 2018; Zhang et al., 2015).

Sex determination, which directs gonadal differentiation in sex-
ually reproducing organisms (Bachtrog et  al.,  2014; Hayes,  1998), 
often has a strong chromosomal basis which is highly conserved 
within groups, reflecting strong selective constraint on the produc-
tion of viable males and females. For example, the systems of genetic 
sex determination (GSD) are fixed in therian mammals and birds, 
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Abstract
Polymorphisms can lead to genetic isolation if there is differential mating success 
among conspecifics divergent for a trait. Polymorphism for sex-determining system 
may fall into this category, given strong selection for the production of viable males 
and females and the low success of heterogametic hybrids when sex chromosomes 
differ (Haldane's rule). Here we investigated whether populations exhibiting poly-
morphism for sex determination are genetically isolated, using the viviparous snow 
skink Carinascincus ocellatus. While a comparatively high elevation population has 
genotypic sex determination, in a lower elevation population there is an additional 
temperature component to sex determination. Based on 11,107 SNP markers, these 
populations appear genetically isolated. “Isolation with Migration” analysis also sug-
gests these populations diverged in the absence of gene flow, across a period encom-
passing multiple Pleistocene glaciations and likely greater geographic proximity of 
populations. However, further experiments are required to establish whether genetic 
isolation may be a cause or consequence of differences in sex determination. Given 
the influence of temperature on sex in one lineage, we also discuss the implications 
for the persistence of this polymorphism under climate change.

K E Y W O R D S

genetic sex determination, GSD, Niveoscincus, sex chromosome, temperature-dependent sex 
determination, TSD

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-6190-6426
https://orcid.org/0000-0002-2050-8026
https://orcid.org/0000-0003-4763-1347
https://orcid.org/0000-0002-8185-6091
http://creativecommons.org/licenses/by/4.0/
mailto:peta.hill@utas.edu.au


5576  |     HILL et al.

represented by heterogametic XY male and ZW female chromosome 
systems, respectively (Graves,  2006; Ohno,  1967). However, sex 
determination is comparatively labile in reptiles (Alam et al., 2018; 
Janzen & Phillips, 2006; Johnson Pokorna & Kratochvil, 2016), where 
offspring sex is controlled either by genes (both male and female 
heterogametic systems), the environment (e.g., temperature depen-
dant sex determination, TSD), or by a combination of genes and the 
environment (GSD with environmental effects, GSD + EE; Cornejo-
Paramo et al., 2020; Ezaz et al., 2006; Holleley et al., 2015; Quinn 
et al., 2007; Radder et al., 2008; Sarre et al., 2004). Although tran-
sitions among these systems were initiated as an intraspecific poly-
morphism, it is unknown whether they were accompanied by genetic 
isolation. Within squamates, the family Scincidae shows evidence 
of conserved sex chromosomal regions between some lineages 
(Cornejo-Paramo et al., 2020; Dissanayake et al., 2020) in addition to 
temperature sensitivity in sex determination (Holleley et al., 2016). 
However, variation in the degree of sex chromosome differentiation, 
number of sex chromosomes (Ezaz et al., 2009), and system of het-
erogamety (Patawang et al., 2018) exists, and our understanding of 
the mechanisms of evolutionary transitions in sex determination and 
how they impact demographics remains poor.

Low mating success is expected among individuals when differ-
ences in sex determination reflect gross chromosomal differences 
(e.g., sex chromosome presence, composition, or system of heterog-
amety; Haldane, 1922; Lima, 2014; O'Neill & O'Neill, 2018; Phillips & 
Edmands, 2012). However, not all changes to the sex chromosomes 
result in incompatibilities. When genes and temperature interact 
to determine sex, a temperature override of the genetic sex deter-
mination signal can produce individuals whose sexual phenotype 
does not match their sexual genotype (known as sex reversal). This 
phenomenon is occurring in wild populations of the central bearded 
dragon, Pogona vitticeps, which has a thermosensitive ZW/ZZ system 
of sex determination, resulting in the production of females (nor-
mally ZW) with a male genotype (ZZ) (Holleley et al., 2015). While 
the W chromosome has been lost in these sex-reversed females, 
and the thermal threshold for sex reversal is evolving in this system 
(Holleley et al., 2015; Quinn et al., 2011), the Z chromosomes remain 
homologous and ZZ males can successfully breed with ZZ females 
under laboratory conditions (Holleley et al., 2015). For a transition in 
sex-determining system to lead to postzygotic incompatibilities via 
hybrid inviability or sterility, the transition must involve changes to 
the sex chromosomes such that they show deleterious interactions 
on a hybrid background (Haldane, 1922).

The viviparous Tasmanian spotted snow skink, Carinascincus 
ocellatus (formerly Niveoscincus), is an extraordinary example of 
a species exhibiting incipient divergence in sex determination 
(Cunningham et  al.,  2017; Pen et  al.,  2010; Wapstra et  al.,  2004). 
This species is widely distributed across a broad altitudinal and 
climatic range in Tasmania, from sea level to 1,200  m (Wapstra & 
Swain, 2001; Wapstra et al., 1999). Long-term field data and labora-
tory experiments document variation in sex ratio with temperature 
at a comparatively warm, low elevation population, but parity of sex 
ratios regardless of temperature at a cool high elevation population 

(Pen et  al.,  2010; Wapstra et  al.,  2009). In addition, population-
specific sex-linked DNA variation exists in both C. ocellatus sex-
determining systems and sex chromosomes in the two populations 
have minor structural differences (Hill et al., 2021). Therefore, a high 
elevation population exhibits GSD (50:50 sex ratios facilitated by 
high elevation XY sex chromosomes in the absence of thermosen-
sitivity), while a low elevation population has GSD + EE (biased sex 
ratios facilitated by low elevation XY sex chromosomes with ther-
mosensitivity; Hill et al., 2018). In the GSD + EE population, warmer 
years result in a female-biased sex ratio; cooler years result in a male 
bias (Cunningham et al., 2017; Pen et al., 2010). In C. ocellatus, the 
divergence in sex determination appears driven by climate-specific 
selection: early birth confers a fitness advantage to females at low 
elevation because birth date influences the onset of maturity and 
females have a higher lifetime reproductive fitness when born early 
(Pen et al., 2010). At high elevations, the shorter reproductive sea-
son and longer period between birth and maturation preclude any 
advantage for either sex based on birth date (Pen et  al., 2010). In 
addition, interannual weather fluctuations selects against GSD + EE 
at high altitudes to prevent extreme sex ratios (Pen et al., 2010). C. 
ocellatus populations would have experienced this climate-specific 
selection as they dispersed from refugia during the interglacial peri-
ods of the Pleistocene.

Although several studies have provided information regarding 
the genetic isolation of GSD and GSD + EE C. ocellatus populations, 
they each contain caveats (Cliff et al., 2015; Hill et al., 2018). Firstly, 
phylogeographic analysis of mitochondrial DNA (mtDNA) revealed 
a lack of reciprocal monophyly between these populations and sug-
gested that the ancestors of the GSD and GSD + EE lineages likely 
occupied shared lowland refugia during Pleistocene glaciations, in-
cluding the last glacial maximum, and were potentially interbreeding 
(Cliff et  al.,  2015). Furthermore, the species is presently more-or-
less continuously distributed between the GSD and GSD + EE sites, 
with no obvious large-scale barriers to movement (Cliff et al., 2015), 
suggesting the possibility of contemporary gene flow. However, the 
lack of mtDNA genetic structuring among these populations may 
not refute contemporary genetic isolation of these sex-determining 
systems, given the potential for mitochondrial incomplete lineage 
sorting to persist in large and recently diverged populations (Funk 
& Omland, 2003). Secondly, a detailed genomic analysis identified 
loci with population-specific sex-linked variation (33 loci in the GSD 
and 42 loci in the GSD + EE populations; Hill et al., 2018), suggest-
ing genetic isolation. Similarly, linkage disequilibrium among sex-
linked SNPs common to both populations is greater in the GSD than 
GSD + EE population (Hill et al., 2018). This suggests disparate inhi-
bition of sex chromosome recombination (and differentiation) among 
populations, despite some regions being conserved relative to other 
taxa (Cornejo-Paramo et  al.,  2020). However, crosses between 
individuals with different sex chromosomes could still maintain 
population-specific sex-linked loci, while homogenizing autosomal 
variation depending on the strength of selection on hybrid incom-
patibilities (Presgraves, 2018). Thirdly, while we have attempted to 
cross-breed these populations, and copulations occurred (suggesting 
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no strong premating isolation), there were no subsequent births, but 
breeding experiments involving within-population crosses also had 
low success. Therefore, we lack knowledge of whether the diver-
gence of these sex-determining systems may have impacted auto-
somal gene flow between their populations more generally (without 
precluding genetic isolation by other mechanisms).

Here we used “Isolation with Migration” models (Hey & 
Nielsen,  2004) and neutral, nonsex-linked single nucleotide poly-
morphisms (SNPs) to investigate whether autosomal gene flow has 
accompanied divergence of the GSD and GSD + EE populations of 
C. ocellatus. This approach is widely applicable to the exploration of 
whether gene flow between lineages has been disrupted by diver-
gence in traits (Hey, 2010; Hey et al., 2018; Hey & Nielsen, 2004; 
Runemark et al., 2012). Furthermore, we used this approach to es-
timate the age of the divergence of GSD and GSD  +  EE lineages, 
to address whether gene flow occurred between them during their 
divergence. Reptiles' close link with the thermal environment makes 
them a compelling group for understanding the interactions be-
tween climate-mediated natural selection on sex-determining sys-
tems and gene flow among lineages. We discuss our findings in the 
context of sex determination transitions against a background of 
Pleistocene climate fluctuations and infer the consequences to GSD 
and GSD + EE populations of C. ocellatus under climate change.

2  | METHODS

2.1 | Study populations

We studied populations of C. ocellatus representing the climatic ex-
tremes of this species' range: a warmer low elevation population (42 
34′S, 147 52′E; elevation 50 m) and a cooler high elevation population 
(41 51′S, 146 34′E; elevation 1,200 m. Figure 1). These are the same 
populations that underpinned research on sex determination and 
sex-linked DNA sequences in this species (Cunningham et al., 2017; 
Hill et al., 2018; Wapstra et al., 2004, 2009). Mitochondrial geno-
types for five and four individuals were included representing the 
GSD and GSD + EE populations, respectively, and likewise 42 and 44 
individuals for nuclear SNPs.

2.2 | Neutral autosomal SNP and 
mitochondrial markers

The concatenated mitochondrial sequences (NADH2 and NADH4) 
were obtained from Cliff et  al.,  (2015). Neutral autosomal SNPs 
were derived from the dataset of Hill et al.,  (2018), obtained using 
a high-throughput double digest, restriction enzyme reduced rep-
resentation sequencing approach (Kilian et al., 2012). All sex-linked 
SNPs from this dataset were removed for this analysis. Secondaries 
(additional SNPs on the same fragment) were removed from remain-
ing loci using custom R script (R Core Team,  2017); the SNP with 
the highest reproducibility and polymorphic information content 

from each locus was retained. SNP genotypes with an average re-
producibility < 0.5, a call rate of <0.9 and loci monomorphic within 
populations were also removed using the dartR package (Gruber & 
Georges, 2019) in R. This left 11,107 SNPs with an average repro-
ducibility of 0.99 and call rate of 0.98. These SNPs were used to cal-
culate pairwise Fst, visualize the genetic similarity of the populations 
via a principal coordinates analysis in the dartR package (Gruber 
& Georges, 2019), and to identify individuals of mixed origin using 
STRUCTURE v 2.3.4 (Pritchard et al., 2000). We used the admixture 
model as implemented in STRUCTURE with no prior information on 
geographic origin included. Runs were replicated five times, and we 
assessed the likelihood values for K = 1–5 using the Evanno method 
(Evanno et al., 2005) implemented in STRUCTURE HARVESTER (Earl 
& vonHoldt, 2012). For each run, we used a burnin of 105 iterations 
and a further run length of 106 iterations. SNPs putatively under se-
lection (Fst in the 5th percentile) and those not in Hardy–Weinberg 
equilibrium (HWE; p <  .05) in either population were then filtered 
from the data using Genepop (Rousset, 2008). From the remaining 
9,453 loci, a set of 100 SNPs were chosen at random for coalescent 
analysis; linkage among these loci was ruled out (R2 < 0.5) using the 
“genetics” package (Warnes et al., 2013) in R.

2.3 | Isolation with Migration analysis

The level of gene flow accompanying divergence of GSD and 
GSD  +  EE populations, along with their duration of divergence, 
was assessed under the “Isolation with Migration” Bayesian frame-
work of Hey and Nielsen (2004), employing IMa3 (Hey et al., 2018). 
Mitochondrial sequences and dart-tags containing the neutral nuclear 

F I G U R E  1   Locations of GSD (high elevation; blue circle) and 
GSD + EE (low elevation; red circle) populations of Carinascincus 
ocellatus with divergent sex determining systems. Altitudinal 
gradient is indicated, and grey shaded region represents the 
mitochondrial clade to which these populations belong (Cliff 
et al., 2015). Inset: C. ocellatus
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SNPs were analyzed concurrently to estimate lineage-splitting time 
and rates of gene flow between lineages in each direction (Figure 2). 
The HKY mutation model (Hasegawa et al., 1985) was employed for 
mtDNA sequence data, while the infinite sites model (Kimura, 1969) 
was employed for nuclear SNPs (Hey & Nielsen, 2004). Uniform pri-
ors were employed for divergence time and population size param-
eters, while exponential priors were employed for gene flow, given 
an expectation that low rates were likely (mean of prior distribution 
6 × 10−06, approximating one individual per generation). Upper limits 
on uniform priors were initially set broadly, and then based on in-
spection of posterior distributions, were narrowed in a subsequent 
run to encompass the range of this posterior plus a margin of error; 
overly large priors reduce the precision of estimates given the use of 
a finite number of bins to represent the posterior distribution.

Isolation with Migration analysis was performed using Markov 
Chain Monte Carlo sampling with 112 chains distributed across 14 
processors, and a geometric chain heating scheme with first and sec-
ond heating parameters of 0.95 and 0.50, respectively. To reduce 
overall run-time, an initial analysis was run and traces inspected to 
ensure stationarity of the sampling distribution was achieved, and 
this was then used to seed four simultaneous analyses, each run for 
24 hr following a 10-min burnin and using unique random number 
seeds, to ensure independence among runs. All runs were assessed 

for convergence using Tracer 1.7.1 (Rambaut et  al.,  2018) prior to 
combining the results. In total, 111,643 genealogies were retained 
for estimation of model parameters.

Information on mutation rate was employed to scale output 
into units of years (divergence time, gene flow). Mitochondrial mu-
tation rates were employed in the analysis, against which mutation 
rates at the nuclear loci would be scaled. We followed the mean 
rate estimate of 1.52% divergence per million years based on cali-
brations from other squamates (Chapple et  al., 2011) and used by 
Cliff et  al.,  (2015). To account for potential variation in mutation 
rate (Ansari et  al.,  2019; Ho et  al.,  2005, 2007), we explored the 
consequences of using a faster rate of 2.3% divergence per million 
years, reported from Canary Islands skinks (Brown & Pestano, 1998). 
Faster rates may be more applicable to reconstructing demographic 
history over recent (<100,000 yr) timescales (Burridge et al., 2008). 
Failure to entertain time-dependent rates of molecular change will 
lead to overestimation of divergence time and underestimation of 
gene flow (Burridge et al., 2008).

3  | RESULTS

The divergence of GSD + EE (low elevation) and GSD (high elevation) 
populations of C. ocellatus occurred under negligible gene flow and 
commenced between 0.61 and 0.92 Mya (highest posterior density 
0.16–2.30  Mya under different mutation rates, Table  1; Figure  3). 
While analysis with a faster mutation rate (2.3% divergence/Myr) 
produced a more recent estimate of the divergence time (Table 1), 
divergence still occurred within the Pleistocene and substantially 
predated the last glacial maximum. This result, and that of Cliff 
et al., (2015), indicates that GSD and GSD + EE lineages were likely 
sympatric, and definitely more proximate, at low elevation refu-
gia through multiple Pleistocene glaciations, yet they still diverged 
under negligible gene flow.

Pairwise Fst between the populations is 0.24, consistent with 
negligible gene flow compared with both inter and intraspecific val-
ues reported for squamates (Dennison et al., 2012; Koc et al., 2017; 
Tucker et al., 2014). In the principal coordinates analysis, the major 
axis of variation, PC1, explained 21.8% of the total variation in SNP 
genotypes and placed individuals into two distinct groups represent-
ing our populations, with PC2 explaining a further 1.7% (Figure 4). 
These results were corroborated by STRUCTURE which assigned all 
individuals as pure GSD or pure GSD + EE in origin (K = 2; Figure 4).

4  | DISCUSSION

The presence of contemporary genetic structure and an absence of 
gene flow during the Pleistocene divergence of GSD and GSD + EE 
populations of C. ocellatus, across recurrent periods of likely sympa-
try, raises the possibility that divergence in sex-determining system 
promoted broader genetic isolation. When mutations occur on a sex 
chromosome that disrupt sex determination and lead to sex ratio 

F I G U R E  2   Flowchart for estimating divergence time and gene 
flow amongst GSD (high elevation) and GSD + EE (low elevation) 
populations of Carinascincus ocellatus using an Isolation with 
Migration (IMa3) framework. Red denotes steps specific to the 
mitochondrial locus
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skews (e.g., hybrid sterility in the heterogametic sex which leads 
to sex ratios in favor of the homogametic sex; Haldane's rule, e.g., 
Olsson et al., 2004), compensatory mutations that return sex ratios 
to parity are favored (O'Neill & O'Neill, 2018). These can occur on 
the alternative sex chromosome or the autosomes (Meiklejohn & 
Tao, 2010). This process, driven by genetic conflict over the sex ratio, 
presents opportunities for further divergence of sex determination. 

If subsequent mating occurs between lineages diverging in sex 
determination, incompatibilities at the genomic or chromosomal 
level can result in postzygotic isolation, inhibiting gene flow (Faria 
& Navarro, 2010; Meiklejohn & Tao, 2010; Zhang et al., 2015). The 
Pleistocene also represents an important period of speciation in 
ectotherms (Avise et al., 1998). A mutation, or a polymorphism for 
epigenetic regulation, arising and segregating on sex chromosomes 

TA B L E  1   Posterior estimates of divergence (split) time, gene flow and effective population size (Ne) of GSD and GSD+EE populations 
of Carinascincus ocellatus based on mitochondrial mutation rates of 1.52% and 2.30% divergence per million years. Median values from 
posteriors are reported, along with 95% highest posterior densities (HPD) for population splitting time (values for migration posterior were 
sensitive to prior distribution, and hence are not reported). Note that migration rate (gene flow) posteriors are described “backwards in time”

Mutation rate (% 
per Myr)

Split time 
(Mya)

95% HPD 
interval

Gene flow (per gene per year) Population size (Ne, million individuals)

GSD + EE to 
GSD

GSD to 
GSD + EE GSD + EE GSD Ancestral

1.52 0.92 0.24–2.30 3 × 10−8 4 × 10−8 0.63 0.55 9.8

2.30 0.61 0.16–1.50 3 × 10−8 4 × 10−8 0.42 0.36 6.5

F I G U R E  3   Estimated marginal posterior densities for parameters from the Isolation with Migration (IMa3) analysis of Carinascincus 
ocellatus populations with divergent sex determining systems. (a) divergence time of populations, (b) Effective population sizes (Ne) of 
ancestral, GSD and GSD + EE populations and gene flow from (c) GSD to GSD + EE and (d) GSD + EE to GSD populations
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in the ancestral C. ocellatus population, once exposed to selection 
gradients across climate during Pleistocene glacial cycles, could 
rapidly inhibit gene flow between sex-determining systems. Any 
of the population-specific sex-linked loci described for C. ocellatus 
(Hill et al., 2018) could be responsible for initiating the observed dif-
ferences in sex determination, and potentially, the isolation of their 
populations.

Although we have observed low gene flow during the divergence 
of sex-determining systems in C. ocellatus, we cannot yet exclude 
the possibility that divergence in sex determination postdates the 
emergence of an alternative isolating trait. For instance, the impact 
of geographic distance on genetic isolation requires consideration; 
in essence, whether the genetic isolation we observe here exceeds 
that across a comparable geographic scale within a sex-determining 
system. Furthermore, testing whether sex reversal contributes to 
observed population-specific sex determination in C. ocellatus is 
important, as sex-reversed individuals can provide a conduit for 
gene flow between systems (Holleley et al., 2015). While morpho-
logically distinct sex chromosomes are known to isolate lineages 
(Phillips & Edmands,  2012), the degree of differentiation required 
for this to occur is unknown. In the case of C. ocellatus, sex chromo-
somes are similar between systems, with slightly more repeats and 
heterochromatin on Y chromosomes from the GSD population (Hill 
et al., 2021). Likewise, the number of population-specific sex-linked 
markers (GSD n = 33, GSD + EE n = 42) is small relative to those 
still shared between populations (n  =  206; Hill et  al.,  2018). High 
chromosomal similarity would also be expected if the difference in 
sex-determining system is merely a polymorphism for a temperature 
threshold in a shared gene product (Quinn et al., 2011). On the other 
hand, close examination of the life history of this species has not 
revealed strong evidence for population-specific local adaptation 

in traits that may explain their genetic isolation (Cadby et al., 2014; 
Caldwell et  al.,  2017; Cliff et  al.,  2015; Wapstra & Swain,  2001; 
Wapstra et al., 1999). For example, temperature reaction norms for 
gestation length and offspring development are remarkably similar 
in each population (Cunningham et al., 2020), however, further stud-
ies will reveal if local thermal adaptation has occurred since isolation 
resulting in population-specific thermosensitivity of sex determina-
tion. Regardless, whether sex determination isolated populations or 
occurred subsequent to their isolation, our estimate of divergence 
time places a lower limit on the timeframe of their divergence.

With evidence for isolation of populations at the extremes of 
the species range, it is important to understand how different sex-
determining systems will impact population responses to increases 
and fluctuations in temperature over rapid timescales. As tem-
peratures rise, sex ratios across the current C. ocellatus range will 
become increasingly female biased in populations with GSD + EE 
(Cunningham et al., 2017; Pen et al., 2010; Wapstra et al., 2009). 
Climate change is also shifting species' distributions (Bonebrake 
et al., 2018), with higher elevations becoming accessible to phe-
notypes that were historically excluded (Sinervo et  al.,  2010). 
Increased population growth due to an excess of females in 
GSD + EE populations (Wedekind, 2002), will also promote range 
shifts (Boyle et  al.,  2014, 2016). If the GSD and GSD  +  EE sex-
determining systems isolate these populations, this will inhibit the 
transmission of potentially beneficial autosomal alleles between 
populations on secondary contact, representing a potential imped-
iment to their adaptation to changing environmental conditions. 
Alternatively, as climates warm and temperature fluctuations be-
come more extreme, and if dispersal is a limiting factor, a mismatch 
may occur between the climate experienced by populations and 
their ability to sustain fundamental metabolic processes, leading 

F I G U R E  4   Principle Coordinates 
Analysis (upper panel) and STRUCTURE 
(lower panel) analysis conducted on 
11,107 SNP genotypes of individuals 
collected from two populations of 
Carinascincus ocellatus with divergent sex 
determining systems. Populations are GSD 
(grey) and GSD + EE (black)
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to local extinctions (Sinervo et  al.,  2010). Experiments designed 
to map the geographic distribution of sex-determining systems in 
C. ocellatus, combined with modeling of future climate scenarios 
across its range, will confirm potential contact zones between al-
ternative sex-determining systems and regions of the current and 
future distribution where mismatches are most likely to occur be-
tween optimal sex determination and climate.
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