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Background: Growing evidence suggests that miR-29a has an important role in regulating tumourigenesis and development of
various types of cancer. However, the role and the underlying mechanism of miR-29a in colorectal cancer (CRC) remain largely
unknown.

Methods: MiR-29a targeted gene was identified by the luciferase assay and western blot. MiR-29a function was analysed by
invasion assays and the orthotopic transplantation mouse model. The miR-29a pathway was assayed by real-time PCR, western
blot and chip analysis.

Results: KLF4 was identified as a direct target gene of miR-29a. MiR-29a promoted CRC cell invasion, which was blocked by
re-expression of KLF4. In addition, MMP2 was identified as a novel direct target of KLF4. Both miR-29a overexpression and
KLF4 knockdown promoted MMP2 expression but inhibited E-cadherin expression. Furthermore, clinical data indicated that both
miR-29a high expression and KLF4 mRNA low expression were associated with metastasis and poor prognosis in CRC patients,
and KLF4 protein expression was inversely correlated with MMP2 but positively correlated with E-cad protein expression.

Conclusion: Increased expression of miR-29a promoted CRC metastasis by regulating MMP2/E-cad through direct targeting KLF4,
which highlights the potential of the miR-29a inhibitor as a novel agent against CRC metastasis.

Colorectal cancer (CRC) is one of the leading causes of cancer-
related deaths worldwide (Jemal et al, 2009). Although radical
resection of non-metastatic CRC obviously increases the survival
rate, metastasis and relapse remain the main cause of death in CRC
patients (Mina and Sledge, 2011). It is essential to unveil molecular
pathways of CRC metastasis before we could develop new
molecular markers for the diagnosis and treatment of CRC.

Tumour metastasis includes a series of biological processes
including primary tumour angiogenesis, tumour cell invasion,
lymphatic/vascular intravasation, distant organ extravasation and
colonisation and growth of metastatic tumour cells (Hanahan and
Weinberg, 2011). Although many molecules related to tumour
metastasis have been identified, they cannot fully explain the
phenomenon of cancer metastasis. It was reported that microRNAs
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(miRNAs), functioning as endogenous regulatory RNA molecules,
modulated many physiological and pathological processes through
downregulating target genes (Bartel, 2009). Our previous data
demonstrated that miR-29a was frequently upregulated in CRC
tissues (Fu et al, 2012), implying that miR-29a is a potential
cancer-promoting miRNA in CRC. The same observation was also
confirmed by the research conducted by The Cancer Genome Atlas
Network (2012). However, the specific role of miR-29a in CRC and
its possible mechanism of the action remain elusive.

KLF4, together with Oct3/4, Sox2 and c-Myc, was identified as
the four defined critical factors of inducing differentiated cells into
pluripotent stem cells (Takahashi and Yamanaka, 2006). Previous
studies showed that KLF4 had a tumour suppressive function in
CRC (Zhao et al, 2004). Heterozygous deletion of Klf4 gene in an
Apc Min mice model increased the intestinal tumour burden
(Ghaleb et al, 2007). In addition, KLF4 overexpression inhibited
colony formation, migration and invasion of colon cancer cells
in vitro and tumourigenicity in vivo (Dang et al, 2003).
Downregulation of KLF4 in colon adenomas contributed to
cellular hyperproliferation and malignant transformation (Choi
et al, 2006). However, the underlying molecular mechanism
for KLF4 low expression in CRC needs to be further explored.

In the present study, miR-29a was identified as a novel
metastasis-promoting factor through targeting KLF4, and
miR-29a high expression increased CRC cell invasion in vitro
and liver metastasis in vivo. Furthermore, mechanical research
revealed that KLF4 directly bound to the promoter of MMP2 and
E-cad to regulate their expression in CRC cells. In summary,
a novel molecular link from high expression of miR-29a to cancer
metastasis through upregulation of MMP2 and downregulation of
E-cad via targeting KLF4 in CRC tumourigenesis was established.

MATERIAL AND METHODS

Human tissues and cell lines. Eighty-five human primary CRC
tissue specimens were collected by surgery at Xinhua Hospital of
Shanghai Jiaotong University (Shanghai, China) between Jan 2009
and Jun 2009, immediately snap-frozen in liquid nitrogen and
stored at � 80 1C for analysis. Additional 82 pairs of human
primary CRC tissues and adjacent non-cancerous tissues (NCTs)
collected at the same time were constructed for tissue microarray.
All human materials were obtained with signed informed consent,
and the study was approved by the Clinical Research Ethics
Committee of Xinhua Hospital of Shanghai Jiaotong University.

The human CRC cell lines HCT-116 and LoVo were purchased
from the American Type Culture Collection (ATCC, USA). LoVo
was maintained in F12-K, and HCT-116 was maintained in
McCoy’s 5a. Media were supplemented with 10% fetal bovine
serum (FBS) at 37 1C and 5% CO2.

RNA extraction and quantitative real-time PCR. Total RNA was
extracted using RNAiso Plus (TaKaRa, Tokyo, Japan). Comple-
mentary DNA was synthesised with PrimeScript RT–PCR Kit
(TaKaRa). Quantitative RT–PCR (qRT–PCR) was performed using
SYBR Premix Ex Taq (TaKaRa) on ABI 7500 PCR System (Applied
Biosystems, Foster City, CA, USA). Specific Bulge-LoopTM
miRNA Primers were synthesised by RiboBio (Guangzhou, China).
GAPDH and U6 small nuclear RNA were used as internal control
for detection of mRNA and miRNA, respectively. The primer
sequence for mRNA qRT–PCR was displayed in Supplementary
Table S1. For the study of correlations between miR-29a and KLF4
mRNA expression, and correlations between miR-29a/KLF4
mRNA expression and overall survival (OS), miR-29a expression
and KLF4 mRNA expression were classified to low and high
expression according to their respective median expression.

Oligonucleotide transfection. MicroRNA-29a mimics and
anti-miR-29a were synthesised by RiboBio. KLF4 siRNA (KLF4
siRNA-1 50-CCAGCCAGAAAGCACUACAAU-30, KLF4 siRNA-2
50-UGACCAGGCACUACCGUAA-30) was synthesised by Gene-
pharma (Shanghai, China). RNA oligonucleotides were transfected
by lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

Vector construction and lentivirus production. The human
mature miR-29a sequence 50-UAGCACCAUCUGAAAUCGGU
UA-30 was synthesised and then cloned into the lentivirus
expression vector pGLV3 to generate pGLV3-miR-29a.
To generate virus particles, package, envelop and expressing
constructs were co-transfected into HEK293T cells using lipofec-
tamine 2000. For infection, the virus was supplemented with
8 mg ml� 1 of polybrene (Sigma, St Louis, MO, USA).

The 30UTR of KLF4 was amplified from human genomic
DNA and cloned into the pGL3-control vector (Promega,
Madison, WI, USA). Site-directed mutagenesis of the miR-29a
target-site in the KLF4 30UTR was carried out using site-directed
mutagenesis kit (TaKaRa, Japan). The primer sequence for KLF4
30UTR Mut was F 50-CACAGTCTAGACCCAGCCAGAAAGCAC
TACAATC-30 and R 50-CACAGGAGCTCACTCACCATCGTGG
TAGATTTAGGC-30.

The MMP2 proximal promoter (� 1256/þ 299) was amplified
from human genomic DNA by PCR. Both PCR products and
pGL3-cyclin D1-luciferase reporter plasmid (addgene 32726) were
digested with KpnI and HindIII and ligated together to form
the (� 1256/þ 299) MMP2-Luc reporter plasmid. The primers for
constructing vectors are displayed in Supplementary Table S1.

Luciferase assay. HEK293T cells (1� 105 per 0.05 ml) were cultured
in 24-well plates. For 30UTR of KLF4 report system, HEK293T cells
were co-transfected with 200 ng WT or Mutant reporter plasmid,
25 nmol miRNAor anti-miRNA and 20 ng Renil using lipofecta-
mine 2000 (Invitrogen). After 24-h transfection, firefly and Renilla
luciferase activities were measured using the dual-luciferase
reporter assay system (Promega). For MMP2 promoter report
system, HEK293T cells were co-transfected with 200 ng WT or
Mutant reporter plasmid, 25 nmol siRNA and 20 ng Renil for 48 h.

Western blotting. Cells were lysed with 1� SDS–PAGE loading
buffer. An equal amount of protein was separated on 10%
SDS–PAGE gel and then transferred to the nitrocellulose
membrane. After blocking with 3% BSA, the membrane was
probed with the following primary antibodies: anti-KLF4 (Abcam,
Cambridge, UK; 1 : 1000), anti-MMP2 (Bioworld, St Louis, MN,
USA; 1 : 1000), anti-E-cad (BD, Bedford, MA, USA; 1 : 1000) and
anti-GAPDH (Santa, Dallas, TX, USA; 1 : 1000). Glyceraldehyde
3-phosphate dehydrogenase was used as loading control. The proteins
were visualised using ECL reagents (Pierce, Rockford, IL, USA).

Invasion assay. Transwell champers (24-well insert; Corning,
Horseheads, NY, USA) were used to analyse the ability of cell
invasion. The chambers were precoated with 0.05 ml matrigel (BD
Biosciences, 50 mg ml� 1 1 : 8) for 4 h. After 48-h transfection, cells
were suspended in culture medium with 1% FBS and added to the
upper chambers (HCT-116, 12� 104cells per well and LoVo,
8� 104cells per well). At the end point of incubation (HCT-116,
48 h and LoVo, 22 h), cells on the upper membrane surface were
removed. The lower membrane surface was fixed by 4%
formaldehyde, stained with Hoechst 33 342 and counted under a
fluorescence microscope.

Cell proliferation assay. HCT-116 cells (3000 per well) were
planted into 96-well culture plate. Sixteen hours later, miR-Ctrl or
miR-29a oligonucleotides were transfected by lipofectamine 2000
(Invitrogen). Cell proliferation was measured at 24 h, 48 h and 96 h
post-transfection, respectively, by using the Cell Counting Kit-8
(Dojindo, Japan) according to the manufacture’s instruction.
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Cell cycle assay. HCT-116 cells were harvested by 0.25% trypsin
without EDTA 48 h after transfection with miR-Ctrl or miR-29a.
Then cells were washed with ice-cold PBS and fixed with 70%
ethanol overnight at 4 1C. For flow cytometric analysis, the fixed
cells were suspended in PBS, incubated with RNase at 37 1C for 1 h
and subjected to PI staining (Sigma).

In vivo models. Six-week-old male Nu/Nu mice (Shanghai SLAC
Laboratory Animal Co., Ltd., Shanghai, China) were housed under
specific pathogen-free conditions. Control or miR-29a over-
expressed LoVo cells (2� 106) were resuspended in 0.05 ml PBS
and injected into the wall of the cecum (five mice for each group)
to established the orthotopic transplantation model. After 8 weeks,
mice were killed, and livers were isolated and examined for the
number of metastatic tumours and calculated for the expression of
KLF4 and miR-29a.

Chromatin immunoprecipitation. The chromatin immuno-
precipitation (ChIP) assay was performed using Magna ChIP
A/G Chromatin Immunoprecipitation Kit (Millipore Cat no.:
17–10085; Temecula, CA, USA). Briefly, 1� 107 HCT-116 cells
were fixed with 1% paraformaldehyde and lysed by SDS lysis
buffer. Then cell lysate was sonicated and immunoprecipitated
with antibodies specific to KLF4 (R&D Cat no: AF3640;
Minneapolis, MA, USA) or control goat IgG (Bioworld). After
protein/DNA complexes were eluted, reverse cross-linked to free
DNA and purified, the specific DNA fragments were quantitated
by qRT–PCR and normalised to input from the same cells.
The qRT–PCR primers for MMP2 are listed in Supplementary
Table S1.

Immunohistochemical staining. Tissue microarray composed of
82 pairs of human primary CRC tissues and NCTs was
immunohistochemically stained to determine the expression of
KLF4, MMP2 and E-cad. The staining score was evaluated blindly
by two independent investigators and recorded by the staining
proportion (the percentage of cells stained) and the staining
intensity, as suggested by Remmele and Stegner (Remmele
and Stegner, 1987). The proportion score was scored as 0 (0%),
1 (40 to p25%), 2 (425 to p50%), 3 (451 to p75%) and
4 (475%). The intensity score was record as 0 (negative result),
1 (weakly positive), 2 (moderately positive) and 3 (strongly positive).
The final staining scores were calculated by proportion score�
intensity score. For the classification of staining, a staining result
p4 indicates a low level of expression, whereas a staining score
44 represents a high level of expression.

Statistical analysis. Statistical analysis was performed using
SPSS15.0. Values were expressed as mean±standard deviation
(s.d.) for parametric data. Difference between groups was
calculated using the Student’s t-test and non-parametric test
(Mann–Whitney U-test). Overall survival curves were deprived
from the Kaplan–Meier estimate, and the survival differences
between different groups were compared by the log-rank test. The
statistical significance of correlations between the expression of
miR-29a and KLF4 mRNA, and correlations between KLF4
expression and MMP2 and E-cad expression were calculated by
the Pearson w2 test and the Spearman’s rank correlation. A P-value
o0.05 was considered statistically significant.

RESULTS

MiR-29a directly targets KLF4 in CRC cells. KLF4 is a well-
established tumour suppressor gene in CRC and has been
implicated in cell proliferation, migration and invasion. Using
miRanda (John et al, 2004) and TargetScan (Grimson et al, 2007)
algorithms, KLF4 was predicted as a potential direct target of miR-29a.
To further confirm whether or not KLF4 was a direct target of

miR-29a, the 30UTR of KLF4 was cloned into a luciferase reporter
vector and then the predicted binding site of miR-29a in the KLF4
30UTR was mutated to evaluate the effect of miR-29a and
anti-miR-29a using luciferase assay (Figure 1A). It was found
that ectopic overexpression of miR-29a significantly inhibited the
luciferase activity of pGL3-KLF4 30UTR WT, whereas miR-29a
silencing increased the luciferase activity (Figure 1B and C).
In addition, mutation of the binding site of miR-29a in the 30UTR
of KLF4 abolished both the effect of miR-29a and anti-miR-29a
(Figure 1B and C). In concordance with these results, endogenous
KLF4 protein expression was decreased in miR-29a-transfected
CRC cells, which could be reversed by anti-miR-29a treatment
(Figure 1D and E). Therefore, these results suggest that miR-29a
directly regulated KLF4 in CRC cells.

MiR-29a promotes CRC cell invasion in vitro and metastasis
in vivo through regulation of the target gene KLF4. A matrigel
invasion assay was performed to investigate the potential role of
miR-29a in CRC cell invasion. The transfection efficiency was
confirmed by qRT–PCR 48 h after transfection (Supplementary
Figure S1A and B). The invasive activity in miR-29a-transfected
CRC cells increased significantly, whereas cell invasion in CRC
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Figure 1. MicroRNA-29a directly targets KLF4 in CRC cells.
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anti-miR-29a. (D) Western blot analysis of HCT-116 cells transfected
with indicated miR-29a or anti-miR-29a. (E) Western blot analysis of
LoVo cells transfected with indicated miR-29a or anti-miR-29a.
All numerical data are presented as mean±s.d. *Po0.05, n¼3.
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cells treated with anti-miR-29a decrease markedly (Figure 2A and B).
In addition, miR-29a was found to have no effect on cell
proliferation and cell cycle regulation in the HCT-116 cells
(Supplementary Figure S1C and D), suggesting that the effect of
miR-29a on cell invasion was independent of cell proliferation and
cell cycle. To further examine whether miR-29a-induced CRC cell
invasion was dependent on KLF4, HCT-116 cells were transfected
with miR-29a with or without KLF4 in the transwell invasion
assay. It was found that the effect of miR-29a overexpression on
cell invasion was blocked by KLF4 re-expression (Figure 2C).
Our reciprocal experiment showed that anti-miR-29a inhibited the
invasion of LoVo cells, and this effect was partially reversed by
KLF4 silencing (Figure 2D). Finally, to investigate the role of miR-
29a in CRC metastasis in vivo, LoVo transfectants stably expressing
miR-29a using lentivirus infection were established and then
injected into the cecum of nude mice. It was found that miR-29a
overexpression significantly increased the number of metastatic
nodules in the liver 8 weeks after implantation (Figure 2E and F),
and meanwhile the metastatic nodules produced by miR-29a stably
expressing LoVo cells still presented the lower KLF4 expression
(Figure 2G) compared with the control. Collectively, our data
indicate that miR-29a exerted a metastasis-promoting function in
human CRC via targeting KLF4.

The regulatory effect of the molecular link of miR-29a-KLF4 on
MMP2 and E-cad expressions in CRC cells. Subsequently, the
underlying mechanism of the molecular link of miR-29a-KLF4 in
potentiating CRC cell invasion and CRC metastasis was investigated.
It was interestingly to find that miR-29a overexpression promoted
MMP2 expression at both mRNA and protein levels, whereas anti-
miR-29a inhibited MMP2 expression (Figure 3A and Supplementary
Figure S2A). In addition to MMP2, miR-29a downregulated E-cad
expression at both mRNA and protein levels, whereas miR-29a
silencing promoted E-cad expression (Figure 3A and Supplementary
Figure S2B). Furthermore, the regulatory effect of KLF4 on MMP2
and E-cad was analysed using qRT–PCR and western blot.
Interestingly, reduced expression of KLF4 by siRNA led to
upregulation of MMP2 and downregulation E-cad at both mRNA
and protein levels (Figure 3B and Supplementary Figure S2C).
In addition, three potential KLF4-binding sites in MMP2 promoter
were identified after analysing the promoter of MMP2 (Figure 3C).
It was found that KLF4 siRNA significantly increased the promoter
activity of MMP2, implicating that the potential KLF4-binding sites
was a negative regulating element in the MMP2 promoter
(Figure 3D). Subsequent chromatin immunoprecipitation assay
showed that the KLF4 ChIPs were enriched in the potential binding
sites as compared with the control IgG ChIPs by qRT–PCR
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(Figure 3E). All these data indicated that the link of miR-29a-KLF4
had important roles in regulating MMP2 and E-cad expression.

Both high expression of miR-29a and low expression of KLF4
mRNA correlate with metastasis and poor prognosis of CRC.
It was found in our previous study that miR-29a expression was
increased and KLF4 mRNA expression was reduced in CRC tissues
(Fu et al, 2012). To get insight into the clinical implication of
miR-29a and KLF4, and the correlation between miR-29a and
KLF4 in CRC tissues, the expression level of miR-29a and KLF4
mRNA was analysed in 85 cases of human primary CRC tissues
using qRT–PCR. It was observed that the high expression of miR-29a
was significantly correlated with metastasis (P¼ 0.028, Mann–
Whitney U-test) (Table 1 and Figure 4A), whereas low KLF4

mRNA expression was correlated with metastasis (P¼ 0.029,
Mann–Whitney U-test) (Figure 4B). Unsurprisingly, as the target
gene of miR-29a, KLF4 mRNA expression inversely correlated with
miR-29a expression (Spearman r¼ � 0.271, P¼ 0.013) (Figure 4C).
In addition, the Kaplan–Meier analysis revealed that both miR-29a
high expression and KLF4 low expression correlated with CRC
metastasis and poor OS (Figure 4D and E). Furthermore, the
patients with both high miR-29a expression and low KLF4
expression in the same tissue samples had the worst OS (Figure 4F).
These data reveal that miR-29a-KLF4 inverse regulation was
associated with CRC metastasis and poor survival.

KLF4 protein low expression is associated with both MMP2
protein high expression and E-cad protein low expression in the
CRC tissues. To confirm the regulatory relationship between the
negative regulation of MMP2 expression and positive regulation of
E-cad expression by KLF4, the 82 pairs of CRC tissues and NCTs
were immunostained for KLF4, MMP2 and E-cad (Figure 5A). It
was found that the KLF4 and E-cad protein expression levels were
lower and MMP2 was higher in CRC tissues than those in NCTs
(Figure 5B–D). More importantly, there was a significant inverse
correlation between MMP2 and KLF4 expression levels, and a
significant positive correlation between E-cad and KLF4 in CRC
tissues (Figure 5E and F). These results indicate that MMP2 high
expression and E-cad low expression were significantly associated
with the loss of KLF4 expression in CRC tumourigenesis.
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Table 1. Associations between miR-29a expression levels and clinic-
pathological features in 85 patients with CRC

n miR-29aa P
Sex 0.981

Male 46 0.581 (0.371–1.052)
Female 39 0.609 (0.292–1.209)

Age (years) 0.501

o60 31 0.506 (0.257–1.086)
X60 54 0.617 (0.377–1.082)

Tumour location 0.773

Colon 39 0.640 (0.271–1.033)
Rectum 46 0.603 (0.352–1.141)

Tumour size (cm) 0.718

p6 49 0.523 (0.314–1.113)
46 36 0.649 (0.370–1.017)

pT stage 0.385

T2þT3 32 0.449 (0.255–1.077)
T4 53 0.617 (0.384–1.076)

pN stage 0.373

N0 40 0.482 (0.249–1.059)
N1þN2 45 0.617 (0.381–1.129)

pM stage 0.028*

M0 68 0.513 (0.290–0.933)
M1 17 1.043 (0.412–1.527)

pTNM 0.200

Iþ II 37 0.451 (0.245–1.017)
IIIþ IV 48 0.619 (0.380–1.143)

Mucinous cancinous 0.346

Non-mucinous 63 0.637 (0.376–1.096)
Mucinous 22 0.396 (0.294–1.054)

Abbreviation: CRC¼ colorectal cancer.
*Statistical significance (Po0.05).

aRelative expression by median with 25–75th percentile.
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DISCUSSION

Although aberrant expression of some miRNAs occurred in CRC
metastasis, such as miR-17, miR-19a and miR-21 (Zhang et al,
2012), miR-31 (Wang et al, 2010), miR-103 and miR-107
(Chen et al, 2012), miR-143 and miR-145 (Arndt et al, 2009)
and miR-200 family (Hur et al, 2012), novel candidates with a
definite molecular mechanism in promoting CRC metastasis need
to be further explored. It was reported that the dysregulation of
miR-29a performed a diverse function in different types of cancer
(Gebeshuber et al, 2009; Muniyappa et al, 2009; Eyholzer et al,
2010; Santanam et al, 2010; Cui et al, 2011; Kong et al, 2011;
Teichler et al, 2011). It was previously believed that high serum
expression of miR-29a in CRC patients was correlated with liver
metastasis, and was proposed as a novel biomarker for early and
noninvasive diagnosis of CRC (Wang and Gu, 2012). In this study,
both data from CRC cell line test and the tissue detection of CRC
patients indicate that miR-29a promoted CRC metastasis. Our
CRC cell line tests demonstrated that miR-29a directly targeted
KLF4 to promote CRC cell invasion in vitro and metastasis in vivo,
and MMP2 and E-cad were direct targets of KLF4. Although a
previous study reported significant impact of the low miR-29a
expression on the risk of recurrence in stage II patients by
analysing the RNA from formalin-fixed paraffin-embedded CRC
samples (Weissmann-Brenner et al, 2012), our and some other
studies observed that miR-29a-KLF4 was associated with CRC
metastasis and poor survival (The Cancer Genome Atlas Network
(2012)). We also observed that KLF4 protein low expression was
associated with both MMP2 protein high expression and E-cad
protein low expression in CRC samples. Therefore, the miR-29a-
KLF4-MMP2/E-cad axis, in which miR-29a promoted MMP2 and

decreased E-cad expression through targeting KLF4, emerges as a
novel mechanism for CRC metastasis.

It was reported that the expression of miR-29a was regulated
by different signalling pathways in a cell context-dependent
manner. The transforming growth factor -beta pathway, which
was commonly inactivated at the late stage of CRC, was reported to
suppress miR-29a expression in the fibrosis process (Qin et al,
2011). In addition, the canonical WNT signalling pathway induced
miR-29a expression in osteoclast cells by the TCF4/LEF1-binding
sites in the proximal promoter of miR-29a, whereas miR-29a
directly suppressed the WNT antagonist expression, such as Dkk1,
Kremen2 and sFRP2, to form a positive feedback loop for WNT
signalling (Kapinas et al, 2010). Knowing that both TGF-beta and
WNT signalling pathways were reported to be dysregulated in the
CRC tumourigenesis (Fodde, 2002; Calon et al, 2012), it will
be worthy to explore the correlation between dysregulation of the
miR-29a and TGF-beta and WNT signalling pathway in CRC in
future studies.

It was previously reported that KLF4 was a highly expressed
transcription factor in post-mitotic and terminally differentiated
epithelial cells of organs such as the skin, lung and gastrointestinal
tract (Shields et al, 1996; Segre et al, 1999). Loss of KLF4 is critical
for the pathogenesis and progression of digestive system tumours,
including hepatic, gastric, colorectal and pancreatic cancer
(Wei et al, 2005; Kanai et al, 2006; Wei et al, 2008; Li et al,
2011, 2012). It was proposed that the regulation of KLF4
expression was involved in both post-transcriptional and tran-
scriptional regulation in CRC. On one hand, pVHL, as a facilitating
factor in colorectal oncogenesis, has been demonstrated to
physically interact with KLF4 and promote KLF4 protein
degradation (Gamper et al, 2012). On the other hand, the
decreased mRNA level of KLF4 seems to be the major cause of
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Figure 4. MicroRNA-29a high expression and KLF4 low expression correlate with metastasis and poor survival of CRC patients. (A and B)
Quantitative RT–PCR analysis of miR-29a and KLF4 mRNA expression in CRC patients with/without metastasis (A, P¼ 0.028, B, P¼0.029, Mann–Whitney
U-test). (C) Inverse correlation of miR-29a expression with KLF4 mRNA expression in 85 cases of CRC patients (P¼0.013, r¼ � 0.271, w2 test).
(D–F) The Kaplan–Meier analysis of OS of CRC patients with miR-29a and KLF4 mRNA expression profiles (D and E), and subgroup analysis
of CRC patients with miR-29a low expression and miR-29a high expression accompanied with KLF4 mRNA low expression and KLF4 mRNA high
expression (F).
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loss of KLF4 in CRC. Low mRNA expression level of KLF4 could
be ascribed to hypermethylation of 50-untranslated region,
hemizygous deletion and point mutations of the KLF4 gene,
APC mutation and b-catenin activation in CRC (Dang et al, 2001;
Stone et al, 2002; Zhao et al, 2004). Here we demonstrated that
miR-29a could directly target KLF4, whereas another group
reported that KLF4 was regulated by miR-103/107 in CRC cells
(Chen et al, 2012). Both studies reveal a novel miRNA-mediated
modulation of KLF4 for the downregulation KLF4.

Another issue is to discover new target genes of KLF4. Although
several target genes, such p21, Bmi1 and IFITM3, have been
identified as having tumour suppressor function of KLF4 in CRC
cells (Zhang et al, 2000; Li et al, 2011; Yu et al, 2012), the
mechanism responsible for KLF4 regulating CRC metastasis
remains to be elucidated. Matrix metalloproteinase 2 has been
proved to promote tumour invasion and metastasis in various
tumours (Giannelli et al, 1997; Deryugina and Quigley, 2006).
Previous studies have shown that KLF4 inhibited Snail expression
(Yori et al, 2011), and Snail significantly increased MMP2
expression (Miyoshi et al, 2004), implying an indirect way of
regulation MMP2 by KLF4. In this study, we demonstrated that
KLF4 could directly bind to the promoter of MMP2, playing as a
transcriptional repressor of MMP2 gene. Thus, KLF4 could inhibit
CRC tumour metastasis through suppressing MMP2 expression
and promoting E-cad expression (Batlle et al, 2000; Yori et al,
2010) by both direct transcriptional repression and indirect
repression through Snail.

In summary, this study has provided insight into the role of the
miR-29a-KLF4-MMP2/E-cad axis in CRC metastasis. Our finding
that increased expression of miR-29a promoted CRC metastasis by
regulating MMP2/E-cad through direct targeting KLF4 highlights
the potential of the miR-29a inhibitor as a novel agent against CRC
metastasis.
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