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Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Due to the lack
of effective biomarkers and its complex immune microenvironment, the effects of current
HCC therapies are not ideal. In this study, we used the GSE57957 microarray data from
Gene Expression Omnibus database to construct a co-expression network. The weighted
gene co-expression network analysis and CIBERSORT algorithm, which quantifies cellular
composition of immune cells, were used to identify modules related to immune cells. Four
hub genes (EFTUD2, GAPDH, NOP56, PA2G4) were identified by co-expression network
and protein-protein interactions network analysis. We examined these genes in TCGA
database, and found that the four hub genes were highly expressed in tumor tissues in
multiple HCC groups, and the expression levels were significantly correlated with patient
survival time, pathological stage and tumor progression. On the other hand, methylation
analysis showed that the up-regulation of EFTUD2, GAPDH, NOP56 might be due to the
hypomethylation status of their promoters. Next, we investigated the correlations between
the expression levels of four hub genes and tumor immune infiltration using Tumor Immune
Estimation Resource (TIMER). Gene set variation analysis suggested that the four hub
genes were associated with numerous pathways that affect tumor progression or immune
microenvironment. Overall, our results showed that the four hub genes were closely related
to tumor prognosis, and may serve as targets for treatment and diagnosis of HCC. In
addition, the associations between these genes and immune infiltration enhanced our
understanding of tumor immune environment and provided new directions for the
development of drugs and the monitoring of tumor immune status.
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INTRODUCTION

Liver cancer is one of the most common cancers in the world. The
recent statistics show that the incidence of liver cancer has been
increasing more rapidly than any other cancers [1].
Hepatocellular carcinoma accounts for approximately 80% of
liver cancers, and cholangiocarcinoma (CCA) accounts for
approximately 15%. 75% of liver cancer cases occur in Asia,
and China accounts for more than half of them. Aflatoxin and
chronic hepatitis B virus (HBV) infection are the two main
risk factors for liver cancer in the high-incidence countries in
Asia and Africa [2]. The current tests for liver cancer are AFP
and PVIK II; but their diagnostic efficacies are not
satisfactory, and more effective diagnostic markers are
needed. Moreover, many patients already have advanced
liver cancer at the time of diagnosis, and they cannot
benefit from radical resection, targeted drugs or
chemotherapy. This is an important factor causing poor
prognosis of liver cancer [3]. Recent reports have shown
that immunotherapy is a promising treatment for many
advanced cancers, especially for patients with liver cancer
caused by hepatitis viruses [4]. nivolumab and
pembrolizumab are FDA approved drugs for treating liver
cancer. These drugs open up a new direction of
immunotherapy for treating advanced liver cancer;
however, the objective efficiency of this treatment is only
16–20% [5], which is mainly due to the immunosuppressive
property of liver tumor.

Recent studies have found that the immune checkpoint
inhibitors can activate the autoimmune response to tumors by
blocking immune checkpoint pathway in T cells. These immune
checkpoint inhibitors showed good effects in the treatment of
melanoma [6]. However, due to the immunosuppressive
microenvironment of liver cancer, conventional immune
checkpoint inhibitors, such as programmed death 1 (PD-1)
and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4),
have limited therapeutic effects for liver cancer [7]. Thus, the
identification of reliable biomarkers can effectively predict the
therapeutic response of checkpoint inhibitors, and help
monitoring the response of immunotherapy and
understanding the mechanism of immune infiltration.

With the establishment of public bioinformatics databases and
the advancement of bioinformatics analysis techniques, many
models have been developed for identifying biomarkers. This
method has been widely used to find biomarkers at the
transcriptional level [8, 9]. In this study, by exploring the data
from GEO public database, we identified the co-expressed genes
usingweighted gene co-expression network analysis (WGCNA), and
examined the relationships between gene networks, phenotypes, and
the expression of core genes. Moreover, we used the CIBERSORT
algorithm to analyze the RNA-seq data from liver cancer patients,
and identified the genes related to immune infiltration. Gene
ontology (GO) and Kyoto Gene and Genome Encyclopedia
(KEGG) analysis were performed to further evaluate the potential
functions of the genes in key modules. Next, we analyzed the
relationships between the expression of hub genes and the tumor
stage, pathological classification, and patient overall survival (OS)

using the TCGA database. Meanwhile, the tumor immune
assessment resources (TIMER) and gene set variation analysis
(GSVA) were applied to study the potential biological functions
of the hub genes.

MATERIALS AND METHODS

WGCNA Analysis
The matrix files of GSE57957 dataset were downloaded from
NCBI GEO public database to extract the transcriptome data of
39 samples from liver cancer patients [10]. The weighted gene
co-expression network was constructed to find the co-
expression gene module and explore the associations
between gene network, phenotype, and the core genes in
the network. The WGCNA-R packet was used to construct a
co-expression network of all genes in the dataset [11]. Then,
the top 5000 genes with largest variances were screened by
this algorithm for further analysis, where the soft threshold
was set as 5. The weighted adjacency matrix was transformed
into topological overlap matrix (TOM) to estimate network
connectivity, and the hierarchical clustering method was used
to construct the cluster tree of TOM matrix. Different
branches of the cluster tree represent different gene
modules, and different colors represent different modules.
Based on the weighted correlation coefficient, genes were
classified according to their expression patterns. The genes
with similar patterns were grouped into one module, and all
the genes were divided into several modules.

Immune Cell Infiltration Analysis
This study used the CIBERSORT algorithm to analyze the RNA
sequencing data from Liver hepatocellular carcinoma (LIHC)
patients to infer the relative proportion of 22 immune infiltrating
cells [12]. We input the data of immune cell content in each
patient, and then found the modular genes most relevant to
immune infiltration based on WGCNA network and mRNA
expression data. The specific molecular mechanisms were
further explored.

Gene Set Enrichment Analysis
In order to obtain the biological functions and signaling pathways
involved in the modules of interest in WGCNA (The yellow
module has the highest correlation with regulatory T cells), we
used the Metascape database (www.metascape.org) for
annotation and visualization [13], and performed gene
ontology (GO) analysis. Then, we analyzed the genes in a
specific module and performed pathway analysis in “Kyoto
Encyclopedia of Genome” (KEGG).

Identification of Hub Genes
We identified four central genes based on the module
connectivity and the clinical characteristics of each gene in the
central module. To verify the hub genes, we selected all genes in
the hub module and used the Search Tool for the Retrieval of
Interacting Genes (STRING; https://string-db.org/) database to
construct PPI network and look for central nodes [14].
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TCGA Data Acquisition
The TCGA database (https://portal.gdc.cancer.gov/) is
currently the largest genome information database for
cancers [15]. The stored data included gene expression data,
miRNA expression data, copy number variation, DNA
methylation, SNP, etc. We downloaded the raw mRNA
expression data of the processed LIHC. There were a total
of 424 samples, of which 50 were normal samples and 374 were
cancer samples.

The Relationship Between Hub Genes and Immune
Cells
The TIMER database (https://cistrome.shinyapps.io/timer/)
uses RNA-Seq expression spectrum to detect immune cells
infiltration in tumor tissues [16]. In this study, the
relationship between the hub genes and immune cell
content was analyzed using TIMER database, and the
correlations between copy number and immune cells
infiltration level was compared.

Validation of Prognostic Value of the Four
Genes
For external verification of the prognostic value of PA2G4,
EFTUD2, GAPDH and NOP56, the transcriptome expression
profiles of 202 HCC patients with complete clinical data were
downloaded from the ICGC (The International Cancer Genome
Consortium) (https://icgc.org/) database. We assigned patients
into a high-risk and a low-risk group considering the uniform
cutoff (median) and plotted the survival curve by Kaplan-Meier
(K-M) method.

cBioPortal Database Analysis
The cBio Cancer Genomics Portal (http://cbioportal.org) is an
open platform based on the TCGA database for the study of
multi-dimensional Cancer genome datasets. Mutations of hub
genes in HCC were analyzed using the cBioPortal tool. The
OncoPrint was used to display the overview of genetic
alterations in EFTUD2, GAPDH, NOP56 and PA2G4 genes in
each sample.

Gene Set Variation Analysis
Gene Set variation analysis (GSVA) is a non-parametric
unsupervized method to evaluate the enrichment of
transcriptome gene sets [17]. GSVA converts gene level
changes into pathway level changes through comprehensive
scoring of interested gene sets, and then determines the
biological functional changes of each sample. In this study, we
downloaded the gene sets from the Molecular Signatures
Database (Version V7.0) and used GSVA algorithm to score
each gene set and assess the potential biological functional
changes of each sample [18].

Statistical Analysis
All statistical analyses were performed using R 3.6. All statistical
tests were bilateral; p < 0.05 was considered statistically
significant.

RESULTS

The research strategy is described in Figure 1.

RNA Expression Data
We downloaded the RNA expression data of 39 HCC samples
from Gene Expression Omnibus (GEO) database. The top 5000
genes with the largest variances were selected for further analysis
(Supplementary Table S1).

WGCNA and Gene Co-Expression Network
for HCC
CIBERSORT is an analytical algorithm that evaluates the abundance
of different cell subtypes in each sample by analyzing the RNA
expression data in GEO database. We performed the R package
“CIBERSORT” to obtain the relative proportions of 22 tumor-
infiltrating immune cells (TIICs) in each patient sample
(Supplementary Table S2), which were then used as the
characteristic data for WGCNA. By performing “WGCNA,” we
developed a co-expression network based on the expression levels of
the 5000 genes. The average linkage and Pearson correlation values
were calculated to cluster the samples in GSE57957 (Supplementary
Figure S1). By setting soft-thresholding power as β � 5 (scale free R2

� 0.9), we built a scale-free network (Supplementary Figures
S2A,B). The dynamic hybrid cutting was used to create a
hierarchical clustering tree, whose leaves represented genes. The
genes with similar expression level came together and formed a
branch, and 12 branches were generated to represent gene modules.
Eventually, the modules with correlation coefficient greater than 0.
were combined for data verification (Supplementary Figure S2C).

Identification of Hub Modules and
Enrichment Analysis
Among the twelve modules, the yellow module showed higher
correlation than other modules for regulatory T cells (Tregs) (R2

� 0.49, p � 0.002; Supplementary Figure S3A). Since the
correlation between other modules and T cells was less than
0.49, we focused on the yellow module as the hub module. The
genes in yellow module were analyzed using the Metascape
database for pathway and process enrichment analysis. The 20
highest enrichment terms are shown in Figure 2, and the four
most highly enriched terms were ribonucleoprotein complex
biogenesis, RNA splicing via transesterification reactions, cell
cycle, and peptide biosynthesis.

Identification of Hub Genes
The highly related genes in the module were investigated as
potential key factors connected to Tregs. The yellow module
included a total of 440 genes (Supplementary Figure S3B).
We constructed the protein-protein interaction (PPI)
network for yellow module using the string database and
identified five genes with the highest connectivity (Figure 3).
By analyzing the relationships between the expression of
these five genes and patient survival time, we selected four
genes that affected the prognosis as the hub genes, which were
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EFTUD2, GAPDH, NOP56, and PA2G4. Next, we
downloaded the correlation values between hub gene
expression and the abundance of tumor-infiltrating
lymphocytes from the GEO dataset, and calculated the
contents of 22 immune cells using CIBERSORT algorithm.

The results showed a positive correlation between the
expression levels of hub genes and the abundance of
tumor-infiltrating lymphocytes. As shown in Figure 4, the
positive correlation values were more significant for Tregs
and M0 macrophages.

FIGURE 1 | The workflow of the study. CV: Coefficient of Variation.

FIGURE 2 | Pathway and process enrichment analysis. (A) Bar chart showing the first 20 enriched terms. (B)The network diagram of the enriched terms. Each
enrichment term is a node, and the similar nodes are connected by edge. Nodes with the same cluster ID are in same color.
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Validation of Hub Genes and Determination
of Clinical Characteristics
We downloaded the raw RNA expression data of the four hub
genes of LIHC from the TCGA database. By using Wilcoxon
signed-rank test to process the data, we found that the
expression levels of all hub genes were higher in tumor tissues
than in normal tissues (p < 0.05) (Figure 5A). The correlations
between hub gene expression and tumor grade, pathological stages,
T stages were shown in boxplot (Figures 5B–D). The expression
levels of EFTUD2, NOP56, PA2G4 were significantly positively
correlated with pathological stages (p < 0.05). The EFTUD2 and
NOP56 also showed significantly positive correlation with tumor

grade and T stages. GAPDH only showed moderate correlation
with pathological stages. Although no significant correlation was
detected for PA2G4, its expression level showed an obvious up
trend with increased pathological stages and T stages. Finally, to
determine the performance of EFTUD2, GAPDH, NOP56 and
PA2G4 in predicting clinical outcomes of LIHC patients, Kaplan-
Meier survival curves were plotted to analyze the relationship
between genes expression and patient OS (Figure 5E). The
median was used as cutoff points between the high and the
low-expression groups of hub genes. The results showed that
the expression of EFTUD2, GAPDH, NOP56 and PA2G4
genes significantly correlated with poor overall survival.

FIGURE 3 | The PPI network of genes from the yellow module. The darker nodes have more edges and are more connected to other nodes.

FIGURE 4 | Immune correlation heatmap. The heatmap shows the correlation between the expression of four identified hub genes and the TIICs contents from
TCGA database, which were quantified using the Cibersort algorithm. The red color indicates a positive correlation, and blue color indicates a negative correlation.
Validation of hub genes and determination of clinical characteristics.

Pathology & Oncology Research April 2021 | Volume 27 | Article 6016935

Zhou et al. Bioinformatics Analysis



Validation of Prognostic Value of the Four
Genes
To validate the prognostic value of the four genes in tumors, it was
downloaded and analyzed on the transcriptome expression profiles

of 202 HCC patients through ICGC database to determine whether
EFTUD2, GAPDH, NOP56 and PA2G4 expressions are correlated
with the prognosis of LIHC.Figure 6 confirmed that high expression
of these 4 hub genes affected the prognosis of LIHC.

FIGURE 5 | Validation of hub genes in the TCGA dataset. (A) The expression levels of EFTUD2, GAPDH, NOP56 and PA2G4 in tumor and adjacent normal tissues.
(B) The expression levels of EFTUD2, GAPDH, NOP56 and PA2G4 in LIHC samples with different tumor grades. (C) The expression levels of EFTUD2, GAPDH, NOP56
and PA2G4 in LIHC samples with different pathological stages. (D) The expression levels of EFTUD2, GAPDH, NOP56 and PA2G4 in LIHC samples with different T
stages. (E) The correlations between EFTUD2, GAPDH, NOP56 and PA2G4 expression and survival time in the TCGA dataset. The red line indicates samples with
high expression level, and the blue line indicates the samples with low expression level.
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FIGURE 6 | Kaplan-Meier survival curves comparing the high and low expression of (A) EFTUD2, (B) GAPDH, (C) NOP56, and (D) PA2G4 in LIHC by ICGC.
Association between methylation and the expression levels of hub genes.

FIGURE 7 |Methylation analyses of HCC hub genes. The methylation levels of (A) EFTUD2, (B) GAPDH, (C) NOP56, and (D) PA2G4 in HCC and paracancerous
normal tissues were examined using DiseaseMeth 2.0. Correlation between hub gene expression and immune infiltration level in HCC.
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Association Between Methylation and the
Expression Levels of Hub Genes
We investigated the relationship between the expression levels of
four hub genes and their methylation status to explore the
underlying mechanism of the up-regulation of hub genes in HCC
tissues. DiseaseMeth 2.0 analysis showed that the mean methylation
levels of EFTUD2, GAPDH, NOP56 were all significantly lower in
HCC compared with paracancerous normal tissues (Figures 7A–D).

Correlation Between Hub Gene Expression
and Immune Infiltration Level in HCC
We performed a comprehensive investigation on the correlations
between the expression levels of EFTUD2, GAPDH, NOP56,
PA2G4 and immune cell infiltration using the TIMER database.
Interestingly, EFTUD2, GAPDH, NOP56 and PA2G4 were all
positively associated with B cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells levels in tumors. Except for
NOP56, the other three genes showed positive correlation with
CD4+ T cells. On the other hand, no or weak associations were
observed between the levels of these four hub genes and tumor purity
(Figures 8A–D). These results showed that the expression levels of
EFTUD2, NOP56, PA2G4 were significantly correlated with the

dominant immune cells infiltration levels. Finally, The correlations
between copy number and infiltration levels were plotted using boxplot
(Figures 9A–D). In particular, GAPDH had significant correlations
with the infiltrating levels of CD8+ T cells, B cells, and dendritic cells.

Genomic Alterations of Hub Genes in HCC
Based on DNA sequencing data from LIHC patients, we determined
the types and frequencies of EFTUD2, GAPDH, NOP56, and
PA2G4 genetic alterations in HCC using the cBioPortal online
tool. Given the important clinical implications of these hub
genes, we investigated the genetic alterations of EFTUD2,
GAPDH, NOP56, and PA2G4 and found that amplification was
the most common change for these genes (Figure 10). A total of 19
samples had mutations in these genes and EFTUD2 was the most
frequently mutated gene (2.5%).

GSVA Analysis for Hub Genes
Gene set variation analysis was performed for the four hub
genes. As shown in Figure 11, several hallmark gene-sets,
including “ANGIOGENESIS,” “KRAS SIGNALING UP,”
“P53 PATHWAY,” “PI3K AKT MTOR SIGNALING,”
“EPITHELIAL_MESENCHYMAL_TRANSITION (EMT),” “MYC
TARGETS V1,” were observed in all four hub genes.

FIGURE 8 | The correlation between the expression levels of hub genes and immune cell infiltration (TIMER). The correlation between the abundance of immune cell
and the expression levels of (A) EFTUD2,(B) GAPDH, (C) NOP56, and (D) PA2G4. Each dot represents a sample in the TCGA dataset.
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DISCUSSION

Surgery is a common treatmentmethod for early liver cancer, but its
effect is not satisfactory. Studies have shown that most patients with
HCCwill eventually need palliative care [19, 20]. On the other hand,
sorafenib, which is a first-line drug for HCC patients, has limited

benefit for patient survival. Thus, immune checkpoint therapy, and
new tumor biomarkers or therapeutic targets have become the focus
of recent liver cancer research [21]. For example, Hu X used similar
methods to confirm that YWHAB, PPAT, and NOL10 are novel
biomarkers and to verify their diagnostic and prognosis value for
HCC [22]. In this study, by using bioinformatics and comprehensive

FIGURE 9 | The correlations between the copy number of hub genes and immune cells infiltration level in LIHC. The correlation between the infiltration level of
immune cell and copy number of (A) EFTUD2,(B) GAPDH, (C) NOP56, and (D) PA2G4. GAPDH affects the infiltrating levels of B cells, CD8+ T cells and dendritic cells in
HCC. NOP56 affects the infiltrating levels of B cells in HCC(* <0.05, ** <0.01). Genomic alterations of hub genes in HCC.

FIGURE 10 | Genomic alterations of hub genes in HCC. EFTUD2 is the most frequently mutated gene. Four hub genes are altered in 19 samples (5%). GSVA
Analysis for hub genes.
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analyses, we identified hub genes that were confirmed to be
prognosis factors for HCC. Furthermore, these genes were
strongly correlated with immune cell infiltration in HCC.

We used the content of immune cells andmRNA expression data
from HCC patients to construct the WGCNA network and
identified the gene module most related to immune infiltration.
Next, we identified the genes that were most closely linked in the co-
expression network and the protein-protein network, including
EFTUD2, GAPDH, NOP56, and PA2G4. Furthermore, we

downloaded the data from TCGA to analyze the expression levels
of these genes and their clinical characteristics. The results showed
that these four genes were overexpressed in liver cancer tissues, and
EFTUD2, GAPDH, NOP56 had high methylation levels in normal
tissues, indicating that these genes could be used as biomarkers
for liver cancer. We then explored the relationships between the
expression levels of these genes and the tumor stage, tumor grade, and
survival time, which are important properties for potential prognostic
factors. By investigating TIMER/STRING database, we found positive

FIGURE 11 | The GSVA analysis for four hub genes.
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correlations between the expression levels of four hub genes and
immune cell infiltrating levels, particularly for T cells. However, the
results of CIBERSORT showed that CD8+ T cells and neutrophils
infiltrated less in each gene module, which was different from
the TIMER database, resulting from the difference between the
two algorithms. CIBERSORT quantified 22 kinds of immune
cells, but it was different from TIMER which only quantified six
kinds of immune cells. TIMER does not normalize the predicted
value to 1, so the results cannot be interpreted as cell fraction
or compared in different data sets. Also, many signaling pathways,
such as ANGIOGENESIS, P53 PATHWAY, EPITHELIAL
MESENCHYMAL TRANSITION (EMT) and MYC TARGETS V1,
were enriched in the groups with upregulated expression level of these
hub genes, suggesting their contribution to the occurrence, progression
and tumor microenvironment of HCC. These analyses suggest that
EFTUD2, GAPDH,NOP56, and PA2G4were potential biomarkers for
the diagnosis and prognosis of hepatocellular carcinoma.

There have been a lot of studies showing that these four hub genes
are involved in tumor development, and recent studies have shown
that several of them are involved in liver cancer. EFTUD2 is a mRNA
splicing regulator, and its mutation causes a multiple malformation
syndrome termed as mandibulofacial dysostosis with microcephaly.
EFTUD 2 mainly restricts HCV infection through a melanoma
differentiation-associated protein 5 (MDA5)-mediated JAK-
independent pathway. Study has shown that EFTUD2 plays an
important role in innate immune response to virus infection [23].
Zhonglin Lv et al. found that myeloid loss of EFTUD2 led to impaired
activation of macrophage NF-κB and ERK, which reduced the release
of pro-inflammatory cytokines and growth factors, and ultimately
inhibited tumor development and progression [24]. A recent study
showed that the expressions of COPZ1 and EFTUD2 were
significantly higher in tumor tissues compared with normal tissues
and both two genesmay correlated with poor prognosis of liver cancer
based on the TCGA database [25]. GAPDH is regulated by several
cancer-related factors, and its overexpression is an event downstream
of p53. GAPDH overexpression is involved in the processes where
cancer cells hijack normal pathways [26, 27]. Recent evidence suggests
that GAPDH plays an important role in tumor cell survival, tumor
angiogenesis, gene expression control in tumor cells, and post-
transcriptional regulation of mRNA in tumor cells [28]. Yihang
Gong et al. showed that intranuclear GAPDH was involved in
hypoxia-induced HSCs apoptosis, which could inhibit tumor
growth and repress HCC progression [29]. Feiwen Deng proposed
a scoring system based on SLC2A1, ENO1, LDHA and GAPD with
sustained predictive ability for overall survival in HCC patients [30].
NOP56 is part of the boxC/D small nucleolarRNAs (snoRNAs). It can
regulate the posttranscriptional modification of ribosomal RNAs and
can act as either a tumor suppressor or an oncogene [31]. Recent
study shows that NOP56 overexpression is an antecedent
event in the relapse of B-cell precursor acute lymphoblastic
leukemia [32], and it has been shown to be a potential
prognostic marker for metastatic renal cell carcinoma [33].
PA2G4 belongs to the DNA/RNA binding protein family and
has been shown to play a role in cell growth, apoptosis and
differentiation [34]. Jessica Koach et al. found that PA2G4
was an oncogene in human, mice, and zebrafish, and might be
a new target for designing MYCN inhibitors [35].

In conclusion, this study identified four hub genes, EFTUD2,
GAPDH, NOP56, and PA2G4, which were overexpressed in tumors
and had good prognostic efficacy for HCC. All these four genes were
correlated with the infiltration of immune cells in HCC patients, and
the biological pathways of these genes are involved in HCC
development. These findings may provide a new perspective for
further understanding of the development of HCC and new
directions for the treatment of HCC. However, this study has
certain limitations. Additional samples are required to confirm
these results, and the regulatory mechanism of these genes in
HCC requires further investigation.
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