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INTRODUCTION
Cutaneous squamous cell carcinoma (cSCC), the sec-

ond most common nonmelanoma skin cancer1 accounting 
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Background: Cancer stem cell (CSC) subpopulations within moderately differenti-
ated head and neck cutaneous squamous cell carcinoma (MDHNcSCC) express 
the components of the renin–angiotensin system (RAS). This study investigated 
the expression of cathepsins B, D, and G, which constitute bypass loops of the RAS, 
by CSCs in MDHNcSCC.
Methods: Immunohistochemical staining was performed on MDHNcSCC tissue samples 
from 15 patients to determine the expression of cathepsins B, D, and G. Co-localization 
of these cathepsins with the embryonic stem cell markers Octamer-binding transcrip-
tion factor 4 (OCT4) and c-MYC was investigated with immunofluorescence staining. 
Reverse transcription quantitative polymerase chain reaction was performed on 5 
MDHNcSCC tissue samples to investigate transcript expression of cathepsins B, D and 
G. Western blotting and enzymatic activity assays were performed on 5 MDHNcSCC 
tissue samples and 6 MDHNcSCC-derived primary cell lines to confirm protein expres-
sion, transcript expression, and functional activity of these cathepsins, respectively.
Results: Immunohistochemical staining demonstrated the expression of cathep-
sins B, D, and G in all MDHNcSCC tissue samples. Immunofluorescence staining 
showed localization of cathepsins B and D to the c-MYC+ CSC subpopulations and 
the OCT4+ CSC subpopulations within the tumor nests and the peritumoral stroma. 
Cathepsin G was expressed on  the tryptase+/c-MYC+ cells within the peritumoral 
stroma. Reverse transcription quantitative polymerase chain reaction demonstrated 
transcript expression of cathepsins B, D and G in the MDHNcSCC tissue samples. 
Western blotting and enzymatic activity assays confirmed protein expression and 
functional activity of cathepsins B and D  in the MDHNcSCC tissue samples and 
MDHNcSCC-derived primary cell lines, respectively.
Conclusions: Cathepsins B, D, and G are expressed in MDHNcSCC with functionally 
active cathepsins B and D localizing to the CSC subpopulations, and cathepsin G is 
expressed by mast cells, suggesting the potential use of cathepsin inhibitors in addi-
tion to RAS blockade to target CSCs in MDHNcSCC. (Plast Reconstr Surg Glob Open 
2020;8:e3042; doi: 10.1097/GOX.0000000000003042; Published online 19 August 2020.)
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for 15%–25%, is increasing rapidly worldwide.2 Risk fac-
tors for cSCC include childhood and adolescent exposure 
to ultraviolet radiation, immunosuppression, and chronic 
ulcers.2

cSCC commonly affects the head and neck,3 with a 
1.9%–2.6% risk of metastasis, most commonly to parotid 
and neck nodes with known risk factors, including peri-
neural invasion, lymphovascular invasion, poor histo-
logical differentiation, and certain anatomic subsites.1,2 
Current treatment for metastatic head and neck cutane-
ous SCC (HNcSCC) involves radical surgery and adjuvant 
radiotherapy,3 with a 5-year survival of 48%.3

Cancer stem cells (CSCs), the proposed origin of 
cancer, possess the ability to both self-renew and form 
downstream progenitor cancer cells with more limited 
tumorigenicity.4 CSCs are highly tumorigenic compared 
with cancer cells, which form the bulk of the tumor,5 sug-
gesting the presence of a hierarchy.6–8 Overexpression of 
embryonic stem cell markers is associated with increased 
tumor size and invasion, local recurrence, and metastasis.4

CSCs have been identified in many cancer types, includ-
ing oral cavity SCC (OCSCC) of different subsites,9–11 glio-
blastoma,12 renal clear cell carcinoma,13 primary14 and 
metastatic15 colon adenocarcinoma, and metastatic malig-
nant melanoma.16,17

CSCs have been proposed as a novel therapeutic 
target,5 with recent studies investigating different CSC-
surface marker–targeted therapies and CSC-directed 
immunotherapy.18,19

Expression of components of the renin–angiotensin 
system (RAS) by CSCs has been demonstrated in differ-
ent cancer types, including glioblastoma,20 OCSCC,21–23 
metastatic colon adenocarcinoma,15 and metastatic malig-
nant  melanoma,24 suggesting the potential of targeting 
CSCs by modulating the RAS.25,26

Using induced embryonic stem cell (ESC) markers 
Octamer-binding transcription factor 4 (OCT4), sex deter-
mining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4) 
and c-MYC, we have recently identified 4 CSC subpopulations 
within moderately differentiated HNcSCC (MDHNcSCC): 
an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ subpopulation 
within the tumor nests (TNs), the peritumoral stroma (PTS), 
and the endothelium of the microvessel within the PTS, and 
an OCT4+/NANOG−/SOX2+/KLF4+/c-MYC+ subpopulation 
solely within the PTS.27 These primitive cells express com-
ponents of the RAS: prorenin receptor (PRR), angiotensin-
converting enzyme (ACE), angiotensin receptor 1 (AT1R), 
and angiotensin receptor 2 (AT2R).28

The RAS is a hormonal system classically associated 
with blood pressure and body fluid regulation; however, 
there is increasing evidence for its role in tumorigene-
sis.29,30 The RAS promotes cancer cell proliferation, sur-
vival, metastasis, and angiogenesis.31 Angiotensinogen is 
converted to angiotensin I (ATI) by renin, which is the 
active form of prorenin.30 Both renin and prorenin bind 
PRR.29 ATI is then cleaved by ACE to form angiotensin II, 
which acts upon binding to AT1R and AT2R.30 AT1R pro-
motes angiogenesis, proliferation, and pro-inflammation, 
whereas AT2R antagonizes these functions.29

The production of the peptides of the RAS involves many 
alternative signaling pathways, including enzymes such as 
cathepsins B, D, and G.32 Cathepsin B is a lysosomal cyste-
ine protease that processes that cleaves  inactive prorenin 
to renin.33 Cathepsin D is an aspartyl protease that converts 
angiotensinogen to ATI, and is functionally homologous to 
renin.34 Cathepsin G, a serine protease, processes angioten-
sinogen and ATI to form angiotensin II and is functionally 
homologous to ACE.35 These cathepsins constitute bypass 
loops for the RAS and have been identified in different tumor 
types, including infantile hemangioma (IH),32 glioblastoma,36 
oral tongue SCC,37 and metastatic colon adenocarcinoma.38

Increased expression of cathepsins has been observed 
in a wide range of cancer types,29,39 including head and 
neck cancer.40–42 Increased expression of cathepsins B and 
D have been associated with tumor progression, including 
cellular proliferation and differentiation, and tumor inva-
sion and metastasis,39,43 and increased risk of local recur-
rence and metastasis.39

This study investigated expression of cathepsins B, 
D, and G using immunohistochemical staining and their 
localization to the CSC subpopulations within human 
MDHNcSCC using immunofluorescence staining. 
Western blotting (WB) and reverse transcription quantita-
tive polymerase chain reaction (RT-qPCR) were used to 
confirm their protein and mRNA expression, respectively. 
Enzymatic activity assays (EAAs) were used to investigate 
their functional activity.

MATERIALS AND METHODS

MDHNcSCC Tissue Samples
MDHNcSCC tissue samples from 10 male and 5 female 

patients aged 42–99 years (mean, 76.3 years), including 
those used in the previous studies,27,28 were sourced from 
the Gillies McIndoe Research Institute Tissue Bank for 
this study. The Central Regional Health and Disability 
Ethics Committee approved this study (Ref. 12/CEN/74). 
Written consent was obtained from all participants. (See 
table, Supplemental Digital Content 1, which shows the 
patient demographics and anatomic site of their head and 
neck cSCC, http://links.lww.com/PRSGO/B447.)

MDHNcSCC-derived Primary Cell Lines
Primary cell lines were derived from 6 fresh MDHNcSCC 

tissue samples from the original cohort of 15 patients. The 
samples were cultured within a Matrigel (cat.#354234; 
Corning, Tewksbury, Maine) explant and extracted follow-
ing their abundant growth.27 The extracted cells were grown 
and passaged in DMEM medium (cat.#10569010; Thermo 
Fisher Scientific, Waltham, Mass.) supplemented with 1% 
fetal calf serum (cat.#10091148; Thermo Fisher Scientific), 
5% mTeSR (cat.#85850; STEMCELL Technologies, 
Vancouver, British Columbia, Canada), 1% penicillin–
streptomycin (cat.#15140122; Thermo Fisher Scientific), 
and 0.2% gentamicin/amphotericin B (cat.#R01510; 
Thermo Fisher Scientific). All cultures were maintained in 
a humidified 37°C incubator with 5% CO2. All primary cells 
used in the experiments were passages 6–8.

http://links.lww.com/PRSGO/B447
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Immunohistochemical and Immunofluorescence Staining
Hematoxylin and eosin staining was performed 

on 4-µm–thick, formalin-fixed, paraffin-embedded 
MDHNcSCC consecutive sections from 15 patients to con-
firm the presence of the tumor, and appropriate histologic 
grading was carried out by an anatomical pathologist. 
Immunohistochemical staining was then performed with 
primary antibodies for cathepsin B (1:1000; cat.#sc-6490-R; 
Santa Cruz Biotechnology, Dallas, TX), cathepsin D (1:200; 
cat.#NCL-CDm; Leica Biosystems, Nussloch, Germany), 
cathepsin G (1:200; cat.#sc-33206; Santa Cruz), OCT4 (1:30; 
cat.#309M-16; Cell Marque, Rocklin, Calif.), c-MYC (1:1000; 
ca#9E10; Abcam, Cambridge, United Kingdom), and trypt-
ase (1:300; cat.#NCL-MCTRYP-428; Leica Biosystems), with 
3,3′-diaminobenzidine as the chromogen. All immunohis-
tochemical-stained slides were mounted in Dako Mounting 
Medium (cat.#CS703; Dako, Santa Clara, Calif.).

Immunofluorescence dual staining was performed on 2 
representative MDHNcSCC tissue samples from the original 
cohort of 15 patients to determine coexpression of cathepsin 
proteins with CSC subpopulations and tryptase. ESC mark-
ers, used for identifying CSC subpopulations, were c-MYC 
and OCT4.27 Vectafluor Excel anti-mouse 488 (ready-to-
use; cat.#DK-2488; Vector Laboratories, Burlingame, Calif.) 
and Alexa Fluor anti-rabbit 594 (1:500; cat.#A-21207; Life 
Technologies, Carlsbad, Calif.) were used to detect the com-
binations. All immunofluorescence slides were mounted in 
Vecta Shield Hardset mounting medium with 4′,6′-diamino-
2-phenylindole (cat.#H-1500; Vector Laboratories).

Human tissues used as positive controls for primary 
antibodies were placenta (for cathepsin B),37 breast ade-
nocarcinoma (for cathepsin D),37 and tonsil (for cathep-
sin G).44 For immunohistochemical staining, matched 
isotype controls (ready-to-use; cat.#IR600 and ready-to-
use; cat.#IR750; Dako) were used on MDHNcSCC sections 
as negative controls. For immunofluorescence staining, 
primary isotype mouse (ready-to-use; cat.#IR750; Dako) 
and rabbit (ready-to-use; cat.#IR600, Dako) controls were 
used on MDHNcSCC tissue sections as negative controls.

All antibodies were diluted with BOND primary 
antibody diluent (cat.#AR9352; Leica). All immunohis-
tochemical and immunofluorescence staining was per-
formed on a Leica BOND RX autostainer.

Image Capture and Analysis
Immunohistochemical-stained slides were viewed and 

imaged on an  Olympus BX53 light microscope fitted 
with an Olympus SC100 digital camera, and processed 
with cellSens 2.0 software (Olympus, Tokyo, Japan). 
Immunofluorescence slides were viewed and imaged on 
an Olympus FV1200 confocal laser-scanning microscope 
(Olympus). All immunofluorescence images were pro-
cessed with cellSens Dimension software (v1.11) using a 
2D deconvolution algorithm (Olympus).

Western Blotting
Total protein was extracted and precipitated from 5 

snap-frozen MDHNcSCC tissue samples and 6 MDHNcSCC-
derived primary cell lines from the original cohort of 15 
patients. The protein was separated by SDS-PAGE and 

transferred to a PVDF membrane.28 Detection of protein 
was performed on the iBind Flex (cat.#SLF200; Thermo 
Fisher Scientific) using the primary antibodies for cathep-
sin B (1:250; cat.#sc-6490-R; Santa Cruz), cathepsin D 
(1:250; cat.#sc-6486; Santa Cruz), cathepsin G (1:500; 
cat.#ab197354; Abcam), and α-tubulin (1:1000; cat.#62204; 
Thermo Fisher Scientific). Secondary antibodies (all from 
Life Technologies) used were goat anti-rabbit Alexa Fluor 
647 (1:2000; cat.#A-21244) for cathepsin B, chicken anti-
goat Alexa Fluor 647 (1:2000; cat.#A-21469) for cathep-
sin D, donkey anti-mouse Alexa Fluor 488 (1:2000; 
cat.#A-21202) for α-tubulin, and goat anti-rabbit horserad-
ish peroxidase (HRP) (1:2000; cat.#ab6721; Abcam) for 
the detection of cathepsin G in the cell lines. For the detec-
tion of cathepsin G in the tissues, a tertiary cascade con-
sisting of rabbit anti-goat Superclonal biotin-conjugated 
secondary antibody (1:20000; cat.#A27013; Thermo Fisher 
Scientific) followed by a Pierce Streptavidin Poly HRP 
(1:5000; cat.#21140; Thermo Fisher Scientific) at 4°C for 
10 minutes was used. Clarity Western ECL (cat.#1705061; 
Bio-Rad, Hercules, Calif.) was used as the substrate for 
visualizing HRP-detected protein bands. The ChemiDoc 
MP Imaging System (Bio-Rad) and Image Lab 6.0 software 
(Bio-Rad) were used for band detection and analysis.

Snap-frozen human tonsil was used as a positive control 
for cathepsin B38 and cathepsin D.38 A recombinant cathep-
sin G protein (cat.#H00001511-Q01; Novus Biologicals, 
Littleton, Colo.) was used as a positive control for cathep-
sin G. Matched mouse (1:500; cat.#ab18443; Abcam) and 
rabbit (1:500; cat.#ab171870; Abcam) isotype controls 
were used as appropriate negative controls. All primary 
and secondary antibodies were diluted in iBind Flex FD 
solution (cat.#SLF2019; Thermo Fischer Scientific).

Enzymatic Activity Assays
The functional activity of cathepsins B and D in 5 

snap-frozen MDHNcSCC tissue samples and 5 of the 6 
MDHNcSCC-derived primary cell lines used for WB was 
determined using EAA kits for cathepsin B (cat.#ab65300; 
Abcam) and cathepsin D (cat.#ab65302; Abcam). All 
steps of the procedure were performed as described 
elsewhere.37 Fluorescence was measured in a black, clear-
bottomed 96-well plate (cat.#3631; Corning) using the 
Varioskan Flash plate reader (Thermo Fisher Scientific). 
Human tonsil and denatured tonsil lysates were used as 
appropriate positive and negative controls, respectively.37

RT-qPCR
Total RNA was extracted from 20 mg sections of each 

of the 5 snap-frozen MDHNcSCC tissue samples from 
the original cohort of 15 patients. Tissue sections were 
homogenized using the Omni Tissue Homogenizer 
(Omni International, Kennesaw, Ga.) and then prepared 
using the RNeasy Mini Kit (cat.#74104; Qiagen, Hilden, 
Germany) following the manufacturer’s instructions. An 
on-column DNase digest (cat.#79254; Qiagen) step was 
included to remove potentially contaminating genomic 
DNA. To determine RNA quantity, samples were subjected 
to NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific) quantification.
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Gene expression was analyzed in triplicate by RT-qPCR 
using a Rotor-Gene Multiplex RT-PCR Kit (Qiagen) on the 
Rotor-Gene Q (cat.#204974, Qiagen) and TaqMan gene 
expression assays. The primer probes used were cathep-
sin B (Hs00157194_m1), cathepsin D (Hs00157205_m1), 
cathepsin G (Hs00175195_m1), and the housekeeper genes 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(Hs99999905_m1) and Pumilio RNA Binding Family 
Member 1 (PUM1) (Hs00206469_m1). All primers were 
obtained from Thermo Fisher Scientific (cat.#4331182).

Universal human reference RNA (UHR) 
(cat.#CLT636690; Takara, Shiga, Japan), total RNA 
extracted from a range of healthy adult human tissues, was 
used as the calibrator for the fold-change (2∆∆Ct) analy-
sis. Nuclease-free water was added for the no template 
control, and RNAs from human tonsil for the cathepsin 
assays45 were used as a positive control. The presence of 
the correctly sized bands from the endpoint amplification 
products was confirmed using 2% agarose gel electropho-
resis (cat.#G402002; Thermo Fisher Scientific) and imaged 
using the ChemiDoc MP (Bio-Rad, Hercules, Calif.).

Statistical Analysis
Graphs were generated using GraphPad Prism (v8.0.2, 

San Diego, Calif.), with PCR results expressed as fold-
change relative to UHR. A fold-change cutoff was set at 
2.0 for upregulated and 0.5 for downregulated genes.

RESULTS

Histochemical and Immunohistochemical Staining
Hematoxylin and eosin staining of all 15 MDHNcSCC 

tissue samples confirmed the presence and appropriate 
histologic grading of the tumors. Immunohistochemical 
staining of all MDHNcSCC tissue samples showed a strong 
cytoplasmic expression of cathepsin B (Fig.  1A) and 
cathepsin D (Fig. 1B) by cells within the TNs (bold arrows), 
the PTS (thin arrows), and the endothelium (arrowheads) 
of the microvessels within the PTS. Cathepsin G (Fig. 1C) 
staining was confined to cells within the PTS.

Human tissues used as positive controls for cathepsins 
B, D, and G demonstrated expected staining patterns. 
[See figure, Supplemental Digital Content 2, which shows 

representative immunohistochemical-stained sections of 
positive human control tissues showing the expected stain-
ing pattern for cathepsin B (A, brown) in placenta, cathep-
sin D (B, brown) in breast carcinoma, and cathepsin G (C, 
brown) in tonsil. A moderately differentiated head and neck 
squamous cell carcinoma tissue sample was used as a nega-
tive control by using an IgG isotype control (D). Nuclei were 
counter-stained with hematoxylin (A–C, blue). Original 
magnification: ×400, http://links.lww.com/PRSGO/B448.]

Immunofluorescence Staining
Immunofluorescence staining was performed on 2 

representative MDHNcSCC tissue samples, to determine 
the expression of cathepsins B, D, and G in relation to the 
MDHNcSCC CSC subpopulations recently identified.27

The c-MYC+ (Fig.  2A–C, green) CSC subpopula-
tions within the TNs (arrows) and the PTS (arrowheads) 
expressed both cathepsin B (Fig. 2A, red) and cathepsin D 
(Fig. 2B, red). Cathepsin G (Fig. 2C, red) was expressed only 
by the c-MYC+ CSC subpopulations within the PTS (arrows). 
Cathepsin B (Fig. 2D, red) and cathepsin D (Fig. 2E, red), 
but not cathepsin G (Fig. 2F, red), were expressed by the 
OCT4+ (Fig. 2D–F, green) CSC subpopulations. Cathepsins 
B and D were expressed by 2 CSC subpopulations within the 
PTS, one expressing OCT4 (Fig. 2D, E, green, arrows) and 
another devoid of OCT4 (Fig. 2D, E, green, arrowheads). 
Cathepsin G (Fig. 2G, red) was expressed on the tryptase+ 
(Fig. 2G, green) mast cells, as shown in IH.32

Split images of Figure 2 are presented in SDC3. Minimal 
staining was present on the negative control confirm-
ing the specificity of the primary antibodies. [See figure, 
Supplemental Digital Content 3, which shows split immu-
nofluorescence-stained images for cathepsin B (A, red) 
and c-MYC (B, green); cathepsin D (C, red) and c-MYC (D, 
green); cathepsin G (E, red) and c-MYC (F, green); cathep-
sin B (G, red) and OCT4 (H, green); cathepsin D (I, red) 
and OCT4 (J, green); cathepsin G (K, red) and OCT4 (L, 
green); and cathepsin B (M, red) and tryptase (N, green). 
A moderately differentiated head and neck squamous cell 
carcinoma tissue sample was used as a negative control (O) 
by using primary isotype mouse and rabbit antibodies. Cell 
nuclei were counter-stained with 4′,6′-diamino-2-phenylin-
dole (A–O, blue). Original magnification: ×400. Scale bar: 
20 µm, http://links.lww.com/PRSGO/B449.]

Fig. 1. representative immunohistochemical-stained sections of moderately differentiated head and neck squamous cell carcinoma tissue 
samples demonstrating the expression of cathepsin B (a, brown) and cathepsin D (B, brown) within the tumor nests (tns, bold arrows), the 
peritumoral stroma (ptS, thin arrows), and the endothelium of the microvessel (arrowheads) within the ptS. Expression of cathepsin G (C, 
brown) was confined to some cells within the ptS. nuclei were counter-stained with hematoxylin (a–C, blue). Original magnification: ×400.

http://links.lww.com/PRSGO/B448
http://links.lww.com/PRSGO/B449
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Western Blotting
WB confirmed the presence of cathepsins B and D in all 

5 snap-frozen MDHNcSCC tissue samples, with cathepsin B 
(Fig. 3A) showing the expected molecular weight of 25 kDa46 
in all 5 samples. An additional band at 45 kDa was detected 
in one sample, indicating the presence of procathepsin B.46 
The mature form of cathepsin D (Fig. 3B) at the expected 
size of 33 kDa was detected47 in all 5 samples. Cathepsin G 
(Fig. 3C) was not detected in any of the 5 samples.

WB confirmed the presence of cathepsins B and D 
in all 6 MDHNcSCC-derived primary cell lines. Three 
bands at 25, 27, and 42 kDa were present for cathepsin B 
(Fig. 3D), confirming the presence of the mature form of 
cathepsin B at 25 kDa, a 25–27 kDa doublet form of mature 
cathepsin B, and procathepsin B at 42 kDa.46 Cathepsin D 
(Fig. 3E) was present at the expected 33 kDa.47 Cathepsin 
G (Fig. 3F) was not detected in any cell line.

Fig. 2. representative immunofluorescence sections of moderately differentiated head and neck squamous cell carcinoma tissue samples 
demonstrating expression of cathepsin B (a, D, red) by the c-mYC+ (a, green) cells within the tumor nests (tns) (a, arrows), as well as cells 
in the peritumoral stroma (ptS) (a, arrowheads). the cells within the ptS are both OCt4+ (D, green, arrows) and OCt4− (D, red, arrowheads). 
Similarly, cathepsin D (B, E, red) was also expressed by the c-mYC+ (B, green) cells within the tns (B, arrows) and the ptS (B, arrowheads), 
as well as both the OCt4+ (E, green, arrows) and OCt4− (E, red, arrowheads) cells of the ptS. Cathepsin G (C, F, red) was expressed by some 
c-mYC+ (C, green, arrows) cells within the ptS, but not by the OCt4+ (F, green) cells. tryptase+ (G, green) cells within the ptS also expressed 
cathepsin G (G, red). all slides were counter-stained with 4′,6′-diamino-2-phenylindole. Original magnification: ×400. Scale bar: 20 µm.
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Positive controls of human tonsil for cathepsins B and 
D, and a recombinant protein for cathepsin G for both 
MDHNcSCC tissue samples and MDHNcSCC-derived 
primary cell lines demonstrated the expected banding. 
Housekeeper protein α-tubulin (Fig. 3A–F) was detected 
at the expected molecular weight of 55 kDa and demon-
strated approximately equal protein loading and efficient 

transfer. Negative-control blots for MDHNcSCC tissue 
samples and MDHNcSCC-derived primary cell lines vali-
dated the experiments. [See figure, Supplemental Digital 
Content 4, which shows western blot negative controls of 
protein extracts from moderately differentiated head and 
neck squamous cell carcinoma (MDHNcSCC) tissue sam-
ples (A) and MDHNcSCC-derived primary cell lines (B). 

Fig. 3. Western blot images of separated total protein extracts from moderately differentiated head and neck cutaneous squamous cell 
carcinoma (mDHncSCC) tissue samples (a–C) and mDHncSCC-derived primary cell lines (D–F), probed for cathepsin B (a, D, blue), cathep-
sin D (B, E, blue), and cathepsin G (C, F, red), detected with goat anti-rabbit alexa Fluor 647 (a, D), chicken anti-goat alex Fluor 647 (B, E), 
rabbit anti-goat Hrp (C), and goat anti-rabbit Hrp (F). α-tubulin (a–F, green) was used as a loading control and detected using goat anti-
mouse alexa Fluor 488.

Fig. 4. Enzymatic activity assays of moderately differentiated head and neck cutaneous squamous cell carcinoma (mDHncSCC) tissue 
samples (a) and mDHncSCC-derived primary cell lines (B) for cathepsin B and cathepsin D, with a tonsil as positive control and a denatured 
tonsil as negative control. rFU, relative fluorescence units.
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Controls were performed using matched mouse and rab-
bit isotype, http://links.lww.com/PRSGO/B450.]

Enzymatic Activity Assays
EAAs confirmed the functional activities of cathepsins 

B and D (Fig. 4A) in all 5 MDHNcSCC tissue samples, with 
no statistically significant difference between the enzy-
matic activities of cathepsins B and D in MDHNcSCC tis-
sue samples (t = 1.156; P = 0.312). EAAs also confirmed 
functional activities of cathepsins B and D (Fig. 4B) in all 5 
MDHNcSCC-derived primary cell lines. Appropriate levels 
of activity were detected for positive and negative controls. 
Statistical analysis showed that cathepsin B had a higher 
enzymatic activity than cathepsin D in the MDHNcSCC-
derived primary cell lines (t = 10.3; P < 0.001).

RT-qPCR
RT-qPCR confirmed transcript expression of cathepsins 

B, D, and G (Fig. 5) in all 5 MDHNcSCC tissue samples, with 
the mean level from 5 tissue samples at a level similar to that 
found in UHR. Electrophoresis of qPCR products on 2% 
agarose gels confirmed specific amplification of the prod-
ucts. The expected size amplicons were observed, and no 
products were observed in the no-template-control reactions. 
[See figure, Supplemental Digital Content 5, which shows 
bands on gel electrophoresis displaying the expected size 
for PCR products, demonstrating specificity of the probes in 
MDHNcSCC tissue samples for cathepsin B (A), cathepsin 
D (B), cathepsin G (C), and the housekeeper genes GAPDH 
(D) and PUM1 (E), http://links.lww.com/PRSGO/B451.]

DISCUSSION
CSCs have been identified in many cancer types, 

including OCSCC of different subsites,9–11 glioblastoma,12 

renal clear cell carcinoma,13 primary14 and metastatic15 
colon adenocarcinoma, and metastatic  malignant mela-
noma.16,17 We have recently reported the presence of 
4 CSC subpopulations within human MDHNcSCC: an 
OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ subpopulation 
within the TNs, the PTS, the endothelium of the microves-
sels within the PTS, and an OCT4+/NANOG−/SOX2+/
KLF4+/c-MYC+ subpopulation solely within the PTS.27 
These CSCs have been suggested as a novel therapeutic 
target5 by modulating the RAS.25,26

Recent reports demonstrate the expression of RAS 
on CSC components in many cancer types, including 
glioblastoma,20 oral tongue21 and buccal mucosal22 SCC, 
metastatic colon adenocarcinoma,15 and metastatic malig-
nant  melanoma.24 Recent literature suggests a key role 
for the RAS in tumorigenesis,29–31 with many studies dem-
onstrating a reduced recurrence and overall increased 
survival of cancer patients who are administered RAS 
inhibitors.48,49 We have recently shown the expression of 
the RAS components: PRR, ACE, AT1R, and AT2R by these 
CSC subpopulations in MDHNcSCC.28

This study demonstrates the novel findings of cathep-
sins B, D, and G, which constitute a bypass loop for the 
RAS, by these CSC subpopulations, further providing 
insight into the biology of MDHNcSCC.

Cathepsins B and D are expressed by the c-MYC+ CSC 
subpopulations and the OCT4+ CSC subpopulations 
within the TNs, the PTS, and the endothelium of the 
microvessels within the PTS of MDHNcSCC. Intriguingly, 
we also observed an OCT4− population of cells within the 
PTS that expressed cathepsin B only. The precise nature 
of these cells requires further investigation. This localiza-
tion of functionally active cathepsins B and D suggests 
the presence of RAS bypass loops in these CSCs, similar 
to IH,32 glioblastoma,36 oral tongue SCC,37 and metastatic 
colon adenocarcinoma.38

Cathepsin G is expressed by the tryptase+ mast cells 
within the PTS, which also express c-MYC. The finding of 
transcript expression of cathepsin G in the MDHNcSCC tis-
sue samples but not the MDHNcSCC-derived primary cell 
lines may be explained by the reduction in cellular hetero-
geneity by the inadvertent removal of mast cells during cul-
ture, as they are nonadherent in vitro.50 c-MYC in mast cells 
has been demonstrated to enhance interleukin-3–depen-
dent growth,51 suggesting that c-MYC expression in these 
mast cells supports their proliferation in MDHNcSCC. 
Interestingly, c-MYC expression has been shown to rapidly 
recruit mast cells required for angiogenesis and macro-
scopic expansion in a pancreatic islet tumor model.52

Inhibitors of cathepsin B,53 cathepsin D,54 and 
cathepsin G55 currently exist. Curcumin, which inhibits 
the release of cathepsins B and D from lysosymes,56 has 
been proposed as a useful agent in the prevention and 
treatment of cancer,57–59 including in HNcSCC.60 Both 
curcumin and RAS inhibitors have an established safety 
profile. It is exciting to speculate that combined use of 
RAS and cathepsin inhibitors may be a novel therapeutic 
approach to effective targeting of CSCs in the treatment 
of this common cancer.

Fig. 5. transcript expression of cathepsin B, cathepsin D, and cathep-
sin G in moderately differentiated head and neck cutaneous squa-
mous cell carcinoma tissue samples (a–C). Expression is depicted as 
fold-change relative to universal human rna, normalized against 
housekeeping genes glyceraldehyde 3-phosphate dehydrogenase 
and pumilio rna Binding Family member 1. the 95% confidence 
interval of the mean is represented by the error bars.

http://links.lww.com/PRSGO/B450
http://links.lww.com/PRSGO/B451
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LIMITATIONS AND FUTURE DIRECTIONS
The findings of this study are novel and provide 

insights into the pathogenesis of HNcSCC. Further work 
with a larger sample size and functional experiments will 
be needed to confirm the functional role of cathepsins 
including their roles in bypass loops of the RAS, in regu-
lating CSCs in this tumor. Although immunohistochemi-
cal staining of MDHNcSCC tissues displayed a spatial 
distribution of cells (including tumor cells and those 
present in the tumor microenvironment), these cells 
could not be differentiated in WB, RT-qPCR, and EAAs. 
Analysis of MDHNcSCC-derived primary cell lines was 
used to overcome this limitation because the cell lines 
may be more representative of the CSC subpopulations 
and tumor cells.
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