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The detailed characterization of human biology and
behaviors is now possible at scale owing to innovations
in biomarkers, bioimaging, and wearable technologies;
“big data” from electronic medical records, health insur-
ance databases, and other platforms becoming increas-
ingly accessible; and rapidly evolving computational power
and bioinformatics methods. Collectively, these advances
are creating unprecedented opportunities to better un-
derstand diabetes and many other complex traits. Identi-
fying hidden structureswithin these complex data sets and
linking these structures to outcome data may yield unique
insights into the risk factors andnatural history of diabetes,
which in turn may help optimize the prevention and man-
agement of the disease. This emerging area is broadly
termed “precision medicine.” In this Perspective, we give
an overview of the evidence and barriers to the develop-
ment and implementation of precision medicine in type 2
diabetes. We also discuss recently presented paradigms
through which complex data might enhance our under-
standing of diabetes and ultimately our ability to tackle the
disease more effectively than ever before.

The etiology, clinical presentation, and consequences of
type 2 diabetes can vary greatly from one patient to the
next, complicating the prevention and management of the
disease. The cardinal feature of type 2 diabetes is chron-
ically elevated blood glucose concentrations; however, to
categorize it as “type 2 diabetes,” the clinician must exclude
autoimmunity, pregnancy, pancreatic disease or injury,
and rare syndromic or genetic forms of diabetes. In

addition to assessing the signs and symptoms of diabetes,
the clinician uses high-level data about the patient, such as
their age, family history, ethnicity, mental health, medi-
cations, biochemical profile, lifestyle, and body weight, to
understand the nature of the disease and in turn to help
optimize treatment. The fact that type 2 diabetes is di-
agnosed on the basis of exclusion speaks to the lack of
mechanistic understanding we have of the disease and
the absence of assays that detect the underlying defect(s)
rather than its biochemical consequence (elevated glucose).

In Western health care systems, diabetes treatment
follows an algorithmic sequence that starts with lifestyle
modification + metformin (absent contraindications) and
later may progress to other drugs and/or insulin, while
monitoring tolerability and glycemic goals to determine if
the next step in the sequence should be taken. Lifestyle
modification alone is usually unsuccessful and even with
combined drug therapy about one-third of patients with
diabetes in the U.S. eventually require exogenous insulin (1).

The emergence of type 2 diabetes as one of the major
causes of morbidity and premature mortality is closely
linked to widespread adoption of obesogenic (Western-
ized) lifestyles. This relationship is likely to be causal, as
aggressively intervening on lifestyle factors that promote
and/or help maintain weight loss delays the onset of
diabetes in high-risk adults (2–5) and about half of
patients undergoing medium-term hypocaloric diet inter-
ventions leading to major weight loss ($15 kg) achieve
medication-free diabetes remission within a year (6).
Diabetes remission is also common in patients who
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experience major weight loss with bariatric surgery (7).
The population-scale decline in rates of obesity, diabetes,
and cardiovascular disease during economic crises that
have forced entire populations to increase physical activity
levels and reduce caloric intake reinforces the role of
negative energy-balance in diabetes prevention (8).

The proven benefits of lifestyle modification in diabetes
prevention and the effectiveness of several diabetes drugs
are counterbalanced by the continuing emergence of type 2
diabetes as one of the most prevalent and burdensome
diseases globally (9). In the U.S. for example, diabetes was
the seventh leading cause of death in 2010, accounting for
at least 10–15% of deaths in people aged $20 years, with
adult death rates ;50% higher in people with diabetes
than in those without (1). The economic burden of di-
abetes is also formidable, with diabetes costing the U.S.
economy about US$245 billion in 2012, with the average
annual medical costs per patient with diabetes more than
double those for people without the disease (1).

The rising prevalence of diabetes on a population scale
and the insufficiency of established therapeutic options
justify the search for orthogonal diabetes prevention and
treatment strategies to complement existing approaches.
Ideally, these new approaches would be better tailored to
the individual for enhanced tolerability and effectiveness.

This drive to develop precision medicine for diabetes
is predicated on the major technological advances seen
in recent years that include high-resolution ‘omic assays,
wearable devices that monitor behaviors and exposures,
and digital imaging technologies. The intelligent inte-
gration of the data these technologies yield can provide
detailed digital impressions of a person’s physical condi-
tion, their past exposure and ongoing susceptibility to
certain risk factors, and how they might respond to specific
antidiabetes therapies, as well as help track disease pro-
gression. All of this has the potential to substantially im-
prove the prediction, prevention, and treatment of type 2
diabetes, and there are, as discussed later, many major
initiatives under way with this objective. However, as also
discussed, there is much to resolve before precision di-
abetes medicine becomes common practice.

HOW PRECISION DIABETES MEDICINE MIGHT
WORK

The foundation of precision medicine in type 2 diabetes,
like all other complex diseases, is population genetics,
the catalyst for which was the sequencing of the human
genome, a US$3 billion initiative that completed its work
in 2003 (10). The availability of human genome sequences
provided a framework that facilitated the design of mas-
sively parallel, chip-based genotyping arrays. These tech-
nologies have since been used to characterize common
genomic variation in millions of people worldwide, which
in turn has helped identify hundreds of variants associ-
ated with type 2 diabetes and related traits through
genome-wide association studies (GWAS) (11). The devel-
opment of biotechnologies designed for high-resolution

characterization of other types of biological variants (tran-
scripts, proteins, epigenetic marks, metabolites, micro-
biota, etc.) has followed, further expanding our ability
to map the paths that link a person’s biological idiosyn-
crasies to disease susceptibility. Although this work has
primarily involved hypothesis-free association studies in
large cohort collections, and thus the results are highly
descriptive and of minimal relevance to the individual
patient, it has provided substrate for functional studies,
revealing novel aspects of disease biology and therapeutic
targets that may seed individualized therapies.

It is generally accepted that precision medicine, in-
formed by diverse sources of big data, will improve pre-
vention and treatment of common, multifactorial diseases,
such as type 2 diabetes, but there are few examples to date.
The common variants shown by GWAS to be associated
with type 2 diabetes have at best modest effect sizes, and
the consensus view has historically been that, even in
combination, their predictive value is limited, particularly
when compared with the performance of classic risk fac-
tors such as age, BMI, and blood glucose (12). In the past
year, however, there has been a reinvigoration of interest
in the translational potential offered by genetic risk scores
(13). Recent expanded GWAS data sets have yielded loci
that explain a sizable proportion (50%) of diabetes heri-
tability and highlight that there are millions of people
(in the U.K. or U.S.) who, on the basis of genetic evidence
alone, have very high (;50%) lifetime risks of type 2 di-
abetes (14). This raises the prospect that the rollout of
medical genotyping and sequencing will provide clinically
actionable information on diabetes risk, particularly if
genetic information is combined with other relevant clin-
ical or exposure data.

So far, however, the clinical application of genetics in
diabetes remains limited to rare, monogenic subtypes.
Models for the personalization of type 2 diabetes care
(especially in relation to exploiting the marked clinical
heterogeneity within type 2 diabetes) have often extrap-
olated from this experience to invoke quasi-Mendelian
scenarios characterized by distinctive subtypes of type 2
diabetes, each of which has the potential to be mapped
to a specific remedial therapy or intervention. In reality,
effective strategies in this area must address the multi-
factorial etiology of type 2 diabetes and a continuous
spectrum of predisposition mediated, in most individuals,
through joint effects across multiple pathways.

One recently described conceptualization of the path-
ophysiological architecture of type 2 diabetes predisposi-
tion (termed the “palette model”) focuses attention instead
on the intermediary processes contributing to type 2 di-
abetes risk (15). The most obvious of these include obesity,
fat distribution, islet development and function, and in-
sulin sensitivity, but other, as-yet poorly characterized
contributors are likely. Each of these processes is itself
under multifactorial (genetic and nongenetic) control and
individual “loadings” across them combinatorially influ-
ence both diabetes risk and the phenotype of any diabetes
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that results. Several recent studies (16–19) have added
empirical support for this approach, demonstrating, for
example, differential relationships between process-
specific risk scores and the risk of complications such as
diabetic kidney disease and coronary artery disease.

The palette model captures the range of diabetes sub-
types (from monogenic via hybrid forms [e.g., latent au-
toimmune diabetes in adults] through to the clinical
heterogeneity evident within type 2 diabetes) as a contin-
uum consistent with the genetic architecture of diabetes
and real-world clinical observation (20,21). The model
suggests that for many people with type 2 diabetes, their
condition is the consequence not of a major defect in
a single process but in the confluence of suboptimal
performance across several processes contributing in par-
allel. This is what one would predict given the evidence
that type 2 diabetes risk can be subtly modulated by
common variants acting through any one of several dis-
tinct mechanisms (energy balance, adipocyte differentia-
tion, incretin signaling, insulin secretion, etc.) and by the
wide range of therapeutic interventions that have the
proven capacity to ameliorate, to some degree at least,
the diabetic state (e.g., insulin sensitizers, b-cell secre-
tagogues, calorie restriction, exercise, and metabolic
surgery).

This model provides a framework for understanding the
mechanistic basis of heterogeneity and its clinical conse-
quences. It also allows for the existence of cases at the
extremes of the distribution for which a targeted inter-
vention might be particularly effective. Genetic risk scores
that capture each of these processes may help to tease
apart heterogeneity in phenotype, progression, and ther-
apeutic response. They may allow identification, within the
overall population, of subsets of selected individuals in
whom the profile of genetic predisposition is dominated
by defects in a single pathway, facilitating personalized,
mechanism-specific interventions.

Nevertheless, for multifactorial diseases like type 2 di-
abetes, where individual predisposition is influenced as
much by nongenetic as genetic factors, there is an absolute
limit to the clinical precision that genetics alone can pro-
vide. For precision medicine to flourish, this genetic
information will need to be integrated with relevant
measures of those aspects of the external and internal
environment (the latter term, for example, encompassing
the gut microbiome) that also influence type 2 diabetes
predisposition, phenotype, and progression. This informa-
tion would ideally be supported by pertinent biomarker
and clinical readouts, generating integrated profiles that
may provide the predictive accuracy needed for clinical
utility.

Along these lines, Ahlqvist et al. (20) used data from
8,980 Swedish patients with newly diagnosed diabetes (of
any type) and applied machine learning algorithms to
derive a data-driven approach to classifying diabetes sub-
types. The authors proposed five subtypes determined by
variations across six variables (glutamate decarboxylase

antibodies, age at diagnosis, BMI, HbA1c, and HOMA2
estimates of b-cell function and insulin resistance). The
relationship of subtype and incident events (use of anti-
diabetes medication, achievement of treatment goals, and
diabetes complications) were assessed and replicated in
independent cohorts. Each cluster was characterized by
certain phenotypic features assessed soon after diagnosis.
These include early-onset severe autoimmune diabetes
(6.7% of patients), severe insulin-deficient diabetes (17.5%
of patients), severe insulin-resistant diabetes (15.3% of
patients), mild obesity-related diabetes (21.6% of patients),
and mild age-related diabetes (39.1% of patients). Rates of
diabetic renal disease and coronary disease were highest in
severe insulin-resistant diabetes, although rates of retinop-
athy were lowest for this group (retinopathies were more
frequent in severe insulin-deficient diabetes). Severe insulin-
resistant diabetes also progressedmost rapidly to oral diabetes
medications (other than metformin) and was the slowest
to reach the HbA1c treatment goal,6.9% (52 mmol/mol).
Both severe autoimmune diabetes and severe insulin-
deficient diabetes progressed to sustained insulin use con-
siderably more quickly than the remaining clusters. By
contrast, mild age-related diabetes and mild obesity-related
diabetes were characterized by reasonably favorable profiles.

This initial step demonstrated that one can derive
clusters from existing big data that make eminent phys-
iological sense. One limitation of this approach though, in
contrast with a genetically driven strategy, resides in the
use of phenotypic criteria for clustering that are ascer-
tained at disease onset and are not necessarily generaliz-
able to the many people one would want to stratify (with
normoglycemia or with advanced diabetes). One should
also remain cognizant that a clinician may not be able to
unequivocally place an individual patient into a given
cluster; thus, the implementation and clinical utility of
this approach remain to be demonstrated.

It will be essential to understand how the relationships
between these genetic and physiological approaches to
stratification might be combined and, in doing so, how
much value is added from a clinical perspective. A crucial
missing piece is evidence that by clustering patients in this
way, disease course, diabetes complications, or treatment
response can be predicted with sufficient accuracy to be of
clinical value. This determination requires the explicit
assessment of predictive accuracy and reclassification.
Similarly, it is not known whether treatment that is guided
by cluster identity will be more or less effective than
current approaches, for which intervention studies will
be needed. Moreover, because clustering techniques typ-
ically require the dichotomization of continuous exposure
variables, which usually results in loss of power, the pre-
dictive accuracy of algorithms that do not require this type
of data transformation is likely to be superior.

Family history of diabetes is a strong predictor of
disease and is frequently included in diabetes prediction
algorithms. For information on family history to enhance
the predictive ability of the phenotypic clusters proposed
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by Ahlqvist et al. (20), it would require that some clusters
be more driven by familial factors than others. This may
well be true, and future studies exploring the genetic basis
of these clusters may help test this hypothesis. However,
family history is the consequence of both genetic and
environmental influences (including developmental expo-
sures), and understanding why family history affects dis-
ease progression differentially across clusters, if indeed it
does, would likely be intensely scrutinized owing to the
etiological insights this might reveal.

OVERVIEW OF MAJOR PRECISION MEDICINE
INITIATIVES

After the first draft sequence of the human genome was
published in 2001 (10), methods and technologies were
rapidly developed that enabled large-scale quantification of
human genetic variation and subsequently variation across
other biological strata. As investigators began using these
technologies, global research consortia grew through which
novel biomarkers for type 2 diabetes were discovered. The
rapid growth of large data sets and ad hoc collaborative
networks, as well as clear evidence that this new approach
to biomarker discovery worked, laid the foundations for
large precision medicine initiatives. Although some initia-
tives have built new cohorts from scratch, most have
leveraged existing data and biomaterials already stored in
biobanks (Table 1 and Fig. 1).

In 2008, a joint undertaking between the European
Commission, European academic institutions, and the
European Federation of Pharmaceutical Industries and
Associations was launched. This €5.6 billion program,
called the Innovative Medicines Initiative (IMI), comprises
;100 projects focused on the major diseases affecting
European citizens. Of these, several focus on precision
medicine in type 2 diabetes: SUrrogate markers for Micro-
and Macro-vascular hard endpoints for Innovative dia-
betes Tools (SUMMIT) (diabetes complications), Diabetes
Research on Patient Stratification (DIRECT) (drug response
and glycemic deterioration before and after the onset of
type 2 diabetes) (22), Risk Assessment and ProgreSsiOn of
DIabetes (RHAPSODY) (glycemic deterioration before and
after the onset of type 2 diabetes), and Biomarker En-
terprise to Attack Diabetic Kidney Disease (BEAt-DKD)
(diabetic kidney disease). A common objective is the discov-
ery and validation of biomarkers that facilitate the strati-
fication of patient populations into subgroups that might
be treated more effectively than without biomarker strat-
ification. In some instances, the focus is also on diagnos-
tic reclassification. Unlike most other precision medicine
initiatives, those within the IMI focus on the integration of
multiple biomarkers, such as genotypes, transcripts, pro-
teins, metabolites, and metagenomics sequences.

The UK Biobank cohort (established 2005) includes
around 500,000 adults, the vast majority of whom have
provided nonfasting blood samples and self-reported data
on lifestyle, health, and well-being and have been geno-
typed using genome-wide arrays, and targeted metabolomic

analyses are also under way. In subcohorts, more detailed
phenotyping has been undertaken, such as MRI scans and
physical activity monitoring. Research conducted using UK
Biobank data, for example, has shown that genetic variants
associated with obesity are likely to influence susceptibility
to a range of modifiable lifestyle exposures (23–26), which
may have relevance to diabetes. Nevertheless, the very small
magnitude of these effects and susceptibility to confounding
(25) precludes the immediate translation of these findings
into clinical practice. Alternatively, as UK Biobank accrues
incident events of diabetes complications, the database is
likely to become a powerful resource through which the
prognostic value of stratifying populations into subgroups
or determining how environmental risk factors differentially
affect disease susceptibility by subgroup can be assessed.

Plans to implement precision medicine into U.S. med-
ical practice accelerated in 2015 with the announcement of
the Precision Medicine Initiative (PMI), for which US$215
million was initially budgeted by the federal government
(27,28). In the short term, the PMI is focused on cancer,
whereas in the longer term, all areas of health and health
care will be studied, with specific emphasis placed on the
discovery of predictive biomarkers for type 2 diabetes (28).
A major feature of the PMI is a cohort of 1 million people
and a research program called the All of Us Research Pro-
gram. The cohort, supported by a US$55 million budget, is
built around nationwide recruitment sites under the banner
of the PMI Cohort Program. Managed access for accredited
researchers to biobanked data and samples is intended
to facilitate several major goals, including those related to
gene–environment interactions, pharmacogenomics, risk
stratification, mobile health technologies, health empower-
ment, and innovative clinical trials (https://allofus.nih.gov).

Several other major U.S. initiatives predate the PMI and
have diabetes and its risk factors at their core. These
include the Million Veteran Program (MVP) and the
Accelerating Medicines Partnership in Type 2 Diabetes
(AMP T2D). The MVP uses genomics and other health
data obtained through electronic medical records and
follow-up surveys in about 600,000 military veterans
aged 50–69 years (29). The AMP T2D seeks to gather
genomic and metagenomic data and to create an analytical
engine that can be used to mine the genetic basis to
diabetes and related traits, while safeguarding the confi-
dentiality of the results. Data access is a central pillar of
AMP T2D and through the T2D Knowledge Portal (www
.type2diabetesgenetics.org) the consortium has assembled
genetic and phenotypic data from participants with and
without type 2 diabetes frommultiple populations, creating
a central repository for such data (www.type2diabetesgenetics
.org/informational/about). The ability of these initiatives to
contribute to precision diabetes medicine is likely to be
enhanced by their partnerships with industry, which are
necessary to translate research into therapeutics ap-
proved by the U.S. Food and Drug Administration (FDA).

The Nordic countries have a long history of biobank-
ing and registry-based research and have contributed
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substantially to discoveries in diabetes genetics over the
past decade. In 2015, the Nordic Precision Medicine
Initiative (NPMI) was formed to bring together genetic and
other biomedical data from .1 million Nordic citizens.
Several national precision and genomic medicine projects
are under way: in Estonia, for example, the Estonian
Genome Center at the University of Tartu is curating
a population-based biobank suitable for precision medicine
research in diabetes and other complex diseases. The aim
is to promote and advance the development of genetic
research and the implementation of genomic data into
clinical practice to improve public health. The Estonian
government recently launched the Estonian Personalised
Medicine Pilot Project (EPMPP) (2015–2018), which seeks
to implement personalized medicine on a national scale.
Accordingly, the government has provided US$5.9 million
to support genotyping in 100,000 Estonians. In Finland,
the FinnGen project was launched in 2017 with the
objective to link genomic data with digital health care
data for 500,000 Finnish citizens (10% of the country’s
population) through a public–private partnership. In Sweden,
GAPS (Genomic Aggregation Project in Sweden) has
assimilated.160,000 genotyped samples with corresponding

phenotype data covering a wide range of diseases, including
diabetes (30), and GMS (Genomic Medicine Sweden) is
spearheading clinical genomics on a national scale. In Iceland,
the company deCODE genetics has established a genetic and
phenotype database that encompasses the entire population
(n = 334,000), which fuels genetics research and drug target
validation for a wide range of diseases, including diabetes.

Several other countries have launched large-scale pro-
grams of research on genomic and precision medicine,
many with clear paths to clinical application although
often only in relation to rare pediatric diseases. In Saudi
Arabia, the very high prevalence of type 2 diabetes (;20%)
led the Saudi government and King Abdulaziz City for
Science and Technology to initiate the Saudi Human
Genome Project (SHGP), which seeks to sequence the
genomes of 100,000 Saudi citizens in order to identify
the genetic basis of monogenic and complex diseases like
type 2 diabetes. In China, which has become a formidable
force in decoding genomes (31), the government an-
nounced in 2016 a bold initiative to become a global
superpower in precision medicine, with a US$9 billion,
15-year precision medicine initiative (32). The Chinese
initiative has three core objectives, focused on recruiting

Figure 1—Global precision medicine initiatives of relevance to type 2 diabetes.
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1) millions of participants from the seven main regions of
China to form a nationally representative cohort, 2) eight
disease-specific cohorts (cardiovascular, cerebrovascular,
respiratory, metabolic, neurological, psychosomatic, im-
mune system disorders, and seven common malignant
tumors) totaling 700,000 participants, and 3) a clinical
cohort (N = 50,000 patients with 50 rare diseases) (33).

CLINICAL TRANSLATION

The practice of precision diabetes medicine is currently
confined to rare monogenic forms of the disease. Never-
theless, individual variants present only in specific pop-
ulation isolates have been discovered that may have clinical
value in the prevention or treatment of type 2 diabetes.
These include a TBC1D4 nonsense variant (p.Arg684ter)
of relatively high prevalence in Greenlandic Inuit (minor
allele frequency 17%) and other circumpolar Inuit popu-
lations that predisposes a substantially increased risk of
diabetes (odds ratio .10 in those homozygous for the
variant) (34). The mechanism of action involves the mus-
cle-selective loss of the long TBC1D4 isoform and dimin-
ished GLUT4-mediated cellular glucose uptake in response
to insulin. A thymine for cytosine substitution that causes
a premature stop at codon 363 of TBC1D4 has also been
discovered in people with acanthosis nigricans; the muta-
tion causes postprandial hyperinsulinemia as a possible
consequence of a specific muscle and adipose tissue insulin
resistance (35).

In Latinos, a low frequency (minor allele frequency =
2.1% in people with type 2 diabetes) missense variant (p.
E508K) at HNF1A conveys a type 2 diabetes odds ratio.5
(36).HNF1A also harbors mutations that cause rare mono-
genic diabetes that can be successfully treated with sulfo-
nylureas (discussed later), suggesting this is true for the
nontrivial number of Latino individuals with type 2 di-
abetes who carry p.E508K. Despite the relatively large
effects these variants convey, whether they will prove
useful in the context of precision medicine is unknown, as
no formal assessment of clinical utility or cost-effectiveness
has been reported.

Metformin was discovered in the 1960s and is currently
the frontline drug for early-stage diabetes treatment, al-
though its mechanisms of action remain unclear (37). There
is genetic evidence for metformin intolerance (38), although
this has not been widely replicated. By contrast, variants at
ATM (39) and SLC2A2 (encoding GLUT2) (40) have been
associated at a genome-wide level of statistical significance
with metformin response. Although the effects conveyed by
these variants are too small to guide patient-level treatment
decisions, these findings may prove valuable in determining
metformin’s mechanisms of action.

Many major precision medicine statements, including
the executive summary of the U.S. PMI (28) and a National
Research Council report focused on precision medicine and
new disease taxonomies (41), make clear that research and
practice in precision medicine should consider the major
impact of lifestyle in disease etiology, prevention, and

treatment. The incorporation of lifestyle into precision
diabetes medicine is adequately justified by its proven
benefits in diabetes prevention and treatment. Yet, there
is good evidence that people benefit to varying degrees
from diet and exercise and that personal biology underlies
this (42). Thus, if precision medicine programs are to ad-
equately consider the impact of lifestyle and other envi-
ronmental exposures, it seems logical that emphasis should
be placed on improving the precision of not only drugs but
also this type of antidiabetes therapy too.

One compelling example of how glycemic response to
food can be predicted using an individual’s biomarkers
comes from a study of 800 young adults whose gut meta-
genomic sequences were ascertained and diet and blood
glucose variation (from continuous glucose monitors) were
monitored for a week (43). Each participant received one
standardized meal (50 g carbohydrate) daily. The authors
observed that although participants elicited different post-
prandial glycemic responses, the responses to the same
food were consistent within individuals. Using machine
learning algorithms, these data were used to predict each
participant’s postprandial glycemic response to a given
food. They subsequently administered tailored diet inter-
ventions to modulate glucose levels, providing proof of
concept that personalized diets, guided by biomarker pro-
filing, can reduce blood glucose variability. Notwithstand-
ing the importance of this work from a basic science
perspective, to determine its value for precision medicine
requires knowing if minimizing variations in glucose in
healthy adults is clinically relevant and whether the ap-
proach to predicting glycemic response to food also works
in people with diabetes. To date, neither of these impor-
tant questions is addressed in the published literature.

Despite lifestyle’s proven efficacy in diabetes preven-
tion, the resources available for research on lifestyle
medicine are massively outweighed by investments in
pharmacotherapy. In 2013, for example, ; US$35 billion
was spent by pharmaceutical companies on research and
development (44). Although there are no comparable
statistics for research in lifestyle medicine, funding is
likely to be orders of magnitude less as most of this comes
from the public purse. The marketing of foods and bev-
erages on the other hand is a huge industry whose mes-
sages often counter public health efforts to promote
healthy lifestyle. On an international scale, hundreds of
billions of U.S. dollars are spent on food marketing annu-
ally; one of the biggest spenders is Unilever, which spent
; US$8 billion on brand and marketing investments in
2017 alone (45). Marketing junk foods and beverages is
handsomely resourced, competing with public health ini-
tiatives. The major food companies in the U.K., for exam-
ple, have invested roughly US$200 million each year in
junk food advertising, which contrasts the US$7.2 million
spent on Change4Life, the U.K. government’s flagship
healthy eating campaign (46).

Notwithstanding the relative dearth of funding for
lifestyle medicine, some key initiatives exist. One of the
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largest of these is the National Institutes of Health’s
Common Fund initiative on the Molecular Transducers
of Physical Activity in Humans (http://commonfund.nih.
gov/MolecularTransducers), which seeks to determine
“optimal physical activity recommendations for people
at various stages of life” and develop “precisely targeted
[exercise] regimens for individuals with particular health
needs” (47). Elsewhere, the Food4Me study, a research pro-
gram funded by the European Union, explored the role of
genetics in the personalization of diet; data from the study
suggest that personalized diet interventions supported by
genetic data improve consumption of healthy foods (48) and
help sustain healthy food choices (49). Interestingly, most
loci selected for this intervention (variants at MTHFR, FTO,
TCF7L2, APOE, and FADS1) lack evidence of individual-level
clinical relevance (50), suggesting that the success of the
Food4Me intervention was not dependent on the quality of
the genetic information provided to participants.

Although most, if not all, precision medicine initiatives
are predicated on the assumption that their findings will
help improve people’s health, the emphasis of these ini-
tiatives is almost always on the generation of new knowl-
edge. MVP, for example, seeks “to improve understanding
of how health is affected by genetic characteristics, behav-
iors, and environmental factors” (29). Although this objec-
tive will undoubtedly be achieved, how this information will
eventually be used to optimize prevention and treatment

of diabetes and other diseases is unclear. Indeed, few pre-
cision medicine initiatives focused on complex diseases
provide a clear plan for clinical translation (Fig. 2).

POTENTIAL BOTTLENECKS ON THE PATH TO
PRECISION MEDICINE

Cost-effectiveness
The global precision medicine market was valued at
US$43.6 billion in 2016 and is predicted to triple in value
within the next decade (51). The economic dynamics
associated with precision medicine differ from those of
conventional medicines, as the nature of the approach
means that precision medicines are likely to be approved
for use only in specific subpopulations, limiting the num-
ber of patients eligible for treatment with a given drug. By
contrast, the effectiveness of precision medicines should
be higher for patients within these subpopulations
than for conventional medicines, and side effects may be
fewer and less severe. Owing to the smaller market share
for a given precision medicine, competition to produce
cheaper drugs between manufacturers may be less than for
conventional drugs, and the drive to develop off-patent
biosimilars (i.e., drugs with active properties identical or
similar to previously licensed drugs) is likely to differ
compared with conventional medicines, depending on
the extent to which first-in-class drugs are undercut by
cheaper alternatives. Collectively, these factors will impact

Figure 2—The path to precision medicine in type 2 diabetes. HEA, health economic assessment.
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the cost-effectiveness of precision medicines in type 2 di-
abetes (52).

Thus far, very few cost-effectiveness analyses in pre-
cision diabetes medicine have been published, despite
long-standing recognition that cost-effectiveness is a key
requirement for clinical translation (53). The rare exam-
ples of such studies have focused exclusively on rare mono-
genic forms of diabetes: neonatal diabetes (54) and
maturity-onset diabetes of the young (MODY) (55,56).

Neonatal diabetes is diagnosed in infancy and affects
about 1:400,000 live births and roughly half (;1:252,000
in people aged ,20 years) develop permanent neonatal
diabetes (54). Of the latter group, up to 70% are estimated
to carry mutations in the genes encoding the ATP-sensitive
potassium channel (KCNJ11 and ABCC8). These mutations
block the closing of the KATP channels, which prevents
b-cell depolarization and corresponding insulin secretion
(57). However, treatment with sulfonylureas rectifies this
defect in ;90% of cases, allowing the discontinuation of
exogenous insulin (58). The earliest cost–effect analysis
in precision medicine focused on sulfonylurea therapy in
permanent neonatal diabetes (54). The authors estimated
that genetic testing in permanent neonatal diabetes would
convey significant quality-of-life benefits at 10 years (0.32
quality-adjusted life-years; US$12,528 saved), increasing
to 0.70 at 30 years (US$30,437 saved).

A range of single gene defects cause MODY, each of
which are used to diagnose one of five forms of the disease.
In MODY1 and MODY3, insulin secretion is impaired. The
disease occurs early in life and is often misdiagnosed as
type 1 diabetes, and exogenous insulin therapy is thus
prescribed. However, treatment with sulfonylureas enables
secretion of endogenously produced insulin. Switching
from insulin to sulfonylureas is preferable for a number
of reasons, including those related to safety and burden.
MODY2 is caused by mutations in GCK, which lead to
chronically elevated, but nonprogressive, blood glucose
concentrations that do not typically require treatment;
thus, diagnosing MODY2 also conveys reduced costs and
burdens associated with unnecessary treatment. The first
cost-effectiveness analysis focused on MODY1–3 in U.S.
adults (aged 25–40 years) with diagnosed type 2 diabetes
(56) based many of its assumptions on the findings of
the UK Prospective Diabetes Study (UKPDS) (59). It also
assumed a 2% frequency of MODY among people with
diabetes and set genetic screening costs at US$2,580.
Under these assumptions, genetic screening for MODY
would not be cost-effective. The second study focused only
onMODY1 screening and found that genetic screening was
not cost-effective given the diabetes population frequency
of MODY1 mutations is unlikely to exceed 2%. Sub-
stantial reductions in genetic sequencing costs may, how-
ever, render screening cost-effective (55).

Regulatory Consensus
More than half of the most clinically impactful drugs de-
veloped recently were discovered through academia-led

research (60), emphasizing the huge value of public–
private partnerships. Many of the large precision diabetes
medicine consortia involve both academia and industry
within which unsurprising emphasis is placed on the dis-
covery and validation of biomarkers that expedite drug
development. This expectation is backed up by the proven
ability of genetics to fast-track drug development by
pinpointing high-value drug targets, helping halve drug
failures and markedly reducing their costs (61). In drug
repositioning, genetics has also proven its worth by re-
vealing previously unknown conditions that a drug can be
used to treat and by helping predict drug side effects.

To obtain FDA (or European Medicines Agency [EMA])
approval for biomarkers in medical products and de-
vices involves a comprehensive qualification process (see
https://www.fda.gov/Drugs/DevelopmentApprovalProcess/
DrugDevelopmentToolsQualificationProgram/Biomarker-
QualificationProgram/ucm535395.htm), within which ex-
ists the requirement for a statement termed a “context of
use.” The context of use statement requires a clear and
detailed description of the intended role of the biomarker
in drug development, as well as risks and benefits. The
Foundation for the National Institutes of Health recently
published the Framework for Defining Evidentiary Criteria
for Biomarker Qualification (62), which provides an ex-
panded outline of the biomarker classifications defined
by the FDA.

The process of biomarker qualification in drug devel-
opment requires stringent adherence to the relevant reg-
ulatory agencies’ approvals processes. In some studies that
seek to discover biomarkers for diabetes drug develop-
ment, the process is well rehearsed and aligning biomarker
discovery and validation strategies with regulatory expect-
ations is relatively straightforward; however, it does re-
quire that precision medicine consortia are well versed
in these processes. Biomarker discovery in prediabetes is
more challenging though, as prediabetes is not a distinct
disease state, and although some people with prediabetes
develop diabetes and its complications, a large proportion
remains healthy for many years (63). Nevertheless, a sub-
group of those with prediabetes will progress to diabetes
and identifying these people before b-cell function is
substantially diminished would open the door for several
powerful therapeutics that are ineffective once endoge-
nous insulin production has faded. However, because
neither the FDA nor EMA currently recognizes an inter-
mediate end point for disease progression in prediabetes
drug trials, gaining regulatory approval for new prediabe-
tes biomarkers requires that researchers foster close and
frequent communications with the regulatory agencies to
ensure candidate biomarkers have the possibility to pro-
gress through the regulatory process.

Legal, Social, and Ethical
Balancing the interests of society and its citizens, the risks
and benefits, legislation and individual freedom, as well
as the risk of exasperating disparities, is central to many
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commentaries on the legal, social, and ethical aspects of
precision medicine.

Precision medicine research is heavily dependent on
biobanked data and tissues. Often, the original informed
consents were obtained many years before modern ‘omics
technologies existed, at a time when many research ques-
tions germane to precision medicine were inconceivable.
Often, the informed consents were broad, and ethics
committees have concluded that these modern research
questions are within the scope of the consents. As new,
ever larger, and interconnected cohorts are being formed,
the desire many researchers share for broad consenting
and/or to bank data or samples for unspecified future
research must be placed in context with several important
ethical realities: the need to maintain participants’ confi-
dentiality, appropriately handle incidental findings, deter-
mine who owns the samples and data, consider cultural
sensitivities, return results to participants, engage society,
and ensure unused material is properly disposed (64).

Much as precision medicine was inconceivable when
many existing cohorts were formed, it is impossible to
accurately predict how contemporary cohorts will be used
in the future. Furthermore, many precision medicine
initiatives involve the hybridization of academia, health
care, and industry, which may challenge some of the more
altruistic motivations of participants in academia-led bio-
medical research. Moreover, much of the highly sensitive
data collated by these initiatives will eventually be made
available through managed-access portals to a wide range
of end users who were not part of the data collection
process. Thus, much of this highly sensitive data will be
widely disseminated and used by distant end users to
address a plethora of diverse research questions that
cannot yet be conceived, factors that need to be considered
during the informed consent process. These are challenges
for historical biobanks as well as new precision medicine
cohorts that consent only at enrollment. To help overcome
this, a process called dynamic consent has been developed,
which allows consents to be progressively updated as
projects evolve but requires fluid communication with
participants throughout the life course of a study (65).

A major concern about genetic data are its linkage to
databases that enables inferences about a person’s social,
cognitive, moral, cultural, health, or sexual identity, which
participants had not consented to, or for such inferences
to be made about family members without their consent
(64). Indeed, ensuring genomics data are used in a way
consistent with appropriate ethical standards is a core
feature of most current health data protection legislation
(66). Notwithstanding these risks, there are major benefits
associated with big data, which include the discovery of
novel disease mechanisms and therapeutic targets, many
of which only become visible when data sets scale to
massive proportions. Thus, rather than constrain the
growth and responsible utilization of big data, emphasis is
being placed on implementing legislation that protects
privacy and helps prevent data breaches, while facilitating

the safe and responsible storage, transfer, and utilization
of data. In the European Union, for example, the Gen-
eral Data Protection Regulation was implemented in May
2018 to harmonize data privacy laws across Europe. A key
feature of this legislation as it relates to precision medicine
research is that the analysis of sensitive data requires
explicit opt-in consent, whereas for nonsensitive data,
unambiguous (implied) consent is sufficient.

SUMMARY AND CONCLUSIONS

Diabetes medicine is likely to evolve dramatically in the
coming years, ideally because evidence emerges from the
major precision medicine initiatives to support its utility in
preventing or treating diabetes, but no doubt also because
of the major commercial interest in seeing precision med-
icine grow. One of the possible outcomes will very likely be
the replacement of current classifications of diabetes with
empirically derived subclassifications that can be coupled
with treatment regimens, which, compared with con-
ventional medicines, are more effective, less costly, and
convey fewer unnecessary side effects. As genetic data-
bases grow, genotypes will be increasingly used to discover
new drug targets. At this time, the clinical application of
genetics is confined to the diagnosis of and therapeutic
guidance for rare forms of diabetes, as well as the pre-
diction of adverse drug reactions. The ways in which
genetics may or may not guide prevention and therapy in
common forms of diabetes is unclear. However, because
characterizing variation in a patient’s nuclear genome
is inexpensive and easily achieved and DNA variation re-
mains constant across the life course, it is likely that genetic
sequences will feature in most patients’ clinical records.
Given this, genetic data will likely be deployed in diverse
ways in the diabetes clinic of the future. The roles other
‘omics technologies, digital imaging devices, and wearables
will play in precision diabetes medicine are harder to fore-
cast, as research in these areas is less advanced and the cost
of obtaining some of these data will likely remain high
relative to genetics. Finally, although many precision med-
icine initiatives focus predominantly on pharmacotherapy,
optimizing lifestyle (and possibly surgical) interventions
using biotechnologies also has great potential for improving
type 2 diabetes prevention and treatment.
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