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Recent studies have revealed rapid (e.g., hours to days) training-induced cortical
structural changes using magnetic resonance imaging (MRI). Currently, there is great
interest in studying how such a rapid brain structural change affects behavioral
improvement. Structural reorganization contributes to memory or enhanced information
processing in the brain and may increase its capability of skill learning. If the gray matter
(GM) is capable of such rapid structural reorganization upon training, the extent of
volume increase may characterize the learning process. To shed light on this issue,
we conducted a case series study of 5-day visuomotor learning using neuroanatomical
imaging, and analyzed the effect of rapid brain structural change on motor performance
improvement via regression analysis. Participants performed an upper-arm reaching
task under left-right mirror-reversal for five consecutive days; T1-weighted MR imaging
was performed before training, after the first and fifth days, and 1 week and 1 month
after training. We detected increase in GM volume on the first day (i.e., a few hours
after the first training session) in the primary motor cortex (M1), primary sensory cortex
(S1), and in the hippocampal areas. Notably, regression analysis revealed that individual
differences in such short-term increases were associated with the learning levels after
5 days of training. These results suggest that GM structural changes are not simply
a footprint of previous motor learning but have some relationship with future motor
learning. In conclusion, the present study provides new insight into the role of structural
changes in causing functional changes during motor learning.

Keywords: arm-reaching, longitudinal study, mirror-reversal transformation, rapid plasticity, voxel-based
morphometry
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INTRODUCTION

The adult brain has a remarkable ability for learning new
motor skills and adapting to novel environments (Dayan and
Cohen, 2011). In addition to behavioral or computational
approaches to reveal the mechanism of a motor learning
system (Shadmehr and Mussa-Ivaldi, 1994; Krakauer et al.,
2000), much attention nowadays has been focused on the
neuronal changes underlying behavioral changes. Especially,
the development of magnetic resonance imaging (MRI) has
enabled us to non-invasively investigate the functional and
structural neurophysiological alterations resulting from motor
learning. For example, Draganski et al. (2004) demonstrated an
increase in the gray matter (GM) volume in the mid-temporal
area and left posterior intraparietal sulcus after 3 months
of juggling training. Subsequent investigations also showed
potential structural changes in the human brain associated
with motor training (Draganski et al., 2004; Boyke et al.,
2008; Driemeyer et al., 2008; Taubert et al., 2010; Landi
et al., 2011; Gryga et al., 2012; Sampaio-Baptista et al.,
2014). In addition, a pioneering study reported the association
between navigational experience and volume of the posterior
hippocampus in taxi drivers, inferring structural plasticity
induced by spatial learning (Maguire et al., 2000, 2006)
Animal studies also have demonstrated that structural neural
substrates contribute to motor skill learning and spatial
navigation and memory (Yang et al., 2009, 2014; Sagi et al.,
2012).

Recently, short-term brain plasticity in the period of hours to
days was revealed, both in the white matter (Hofstetter et al.,
2013) and GM (Sagi et al., 2012; Taubert et al., 2016). Such
short-term brain plasticity is considered to represent cellular
processes during motor learning subsequently contributing to
synaptogenesis, such as astrocytic or microglial remodeling
(Blumenfeld-Katzir et al., 2011; Lerch et al., 2011; Kassem
et al., 2012; Sagi et al., 2012). Further, Taubert et al. (2016)
demonstrated cortical thickness changes in such timescale
occurred in a task-relevant manner (i.e., linearly increased
across the training session). In addition, a previous study
(Bailey and Chen, 1989), using the associative learning of
Aplysia californica, demonstrated an increase in the number
of varicosities and active zones 24–48 h after the training of
sensitization, and the following time course of the structural
changes was similar to the duration of the memory retention.
Therefore, we hypothesized that short-term structural plasticity
can occur in accordance with neural changes due to ongoing
motor learning.

Further, the relationships between the degree of structural
changes and behavioral performance improvement have been
recently demonstrated. The GM changes before and after
training correlated with the performance improvement over
5 days in a sequential pinch force task (Gryga et al., 2012), and
with the final performance after 4 weeks of juggling training
(Sampaio-Baptista et al., 2014). Based on the aforementioned
studies, we hypothesized that short-term brain structural changes
could predict an individual’s performance gains. Therefore, the
purpose of the current study was to investigate how short-term

structural changes induced by motor training contribute to
further performance improvement in human participants.

To accomplish this, we adopted the model-based approach
that has been used for computational motor learning research
(Krakauer et al., 1999; Paz et al., 2003; Diedrichsen et al.,
2005; Wolpert et al., 2011), because using this approach we can
quantify the process of motor learning but not the performance
at a specific time-point. We obtained behavioral data while
participants performed visually guided arm-reaching training
for 5 days. This task has an advantage over the model-
based quantitative analysis for the motor learning process
(Krakauer et al., 1999; Paz et al., 2003; Diedrichsen et al.,
2005; Wolpert et al., 2011), compared with conventional
tasks used for previous studies investigating the relationship
between motor training and brain structural changes (Draganski
et al., 2004; Taubert et al., 2010). To investigate short-term
brain plasticity, MR scans were obtained after arm-reaching
training on the first day of five continuous days of training,
and whole brain analysis was performed using voxel-based
morphometry (VBM). After determining the regions of interest
where a significant volume increase was detected, we assessed
how rapid GM structural changes in these regions affected
further motor learning. To evaluate the association between
GM structural changes and performance improvement, we
performed multivariate regression analyses using model-based
quantitative measures of task performance and the VBM
results. We showed for the first time that the volume of
GM increase in the regions related to visuomotor learning
on the first day predicted the performance improvement after
completing the entire training, providing new insight into the
relationship between structural and functional changes during
motor learning.

MATERIALS AND METHODS

Study Design
The purpose of this pilot study was to investigate how and to what
extent short-term structural changes induced by motor training
contribute to further performance improvement. We therefore
selected a regression experimental design (without control
group) to extract structural variables that explain following
motor performance.

Participants
Fifteen healthy, right-handed participants (21.4 ± 1.4 years,
8 female subjects) participated in the study. The handedness
of each participant was tested using the Edinburgh Inventory
(Oldfield, 1971). A priori statistical test with Cohen’s d was
performed to determine an appropriate sample size. The
effect size was assumed to be 0.84, based on a previous
reports (Gryga et al., 2012) which revealed the association
between GM increase in the primary motor cortex (M1)
and behavioral indexes. Since stepwise regression analysis
eliminates the number of coefficients, we assumed the maximum
and minimum number of coefficients. The sample size was
selected such that the effect size for the multiple regression
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would have a power > 1 − β = 0.8, with α set at 0.05
(Bonferroni-corrected for five regression models). According
to G∗Power (Faul et al., 2007), the required minimum
sample size was 8 for the minimum number of coefficients
(= 1) and 17 for the maximum of coefficients (= 6). We
recruited participants based on this range of sample size.
Finally, 15 participants completed all the experiments without
dropping out.

The participants reported normal or corrected-to-normal
eyesight and did not have any neurological or psychiatric
disorders. In addition, all participants were not smokers. This
study was conducted in accordance with the Declaration of
Helsinki, and the experimental procedures were approved by
the ethical committees of Faculty of Science and Technology,
Keio University. Written informed consent was obtained from
all participants prior to experimentation. All participants
participated in all the behavioral experiments and MR scanning
sessions.

Apparatus
Participants were instructed to perform a visually guided
reaching task to a target using a robotic arm device (KINARM
Exoskeleton, BKIN Technologies, Kingston, ON, Canada),
permitting elbow and shouldermovement in the horizontal plane
(Scott, 1999). Projected target lights and hand feedback were
presented in the plane of the arm using a television monitor
and semitransparent mirror. Participants were instructed to use
their right hand to move a white circular cursor indicating the
fingertip position (6 mm diameter) from the starting position
(16 mm diameter) to the target (16 mm diameter), randomly
presented at one of the five locations described below, on the
virtual reality display (72 × 35 cm). The distance between
the starting point and each target was 10 cm. The target
was presented at 0◦, ± 15◦, and ± 30◦ positions. During
the training task, the left-right relationship between the arm
movement and visual feedback was reversed (i.e., mirror-
reversal transformation; Figure 1). The position of the cursor
was initially converted using an analog-digital converter at
1.129 kHz, and then re-sampled and recorded at 1 kHz for offline
analysis.

Visuomotor Task
The participants performed two sets of 150 trials under the
mirror-reversal transformation for an hour on five consecutive
days. Before the training task, the participants practiced
approximately 150 trials without mirror-reversal transformation.
Skill retention was assessed at 1 week and 1 month after the
training period using the same procedure employed during the
training task. Before each trial, they had to place the cursor
at the starting point, and the gray target appeared 2 s later.
After an additional randomly selected holding time (1–2 s),
the target color changed to red (the ‘‘go’’ cue). In all tasks,
the participants were instructed to perform ballistic reaching
within 2 s of the target’s appearance. They were also required
to maintain the peak velocities as constantly as possible across
the trials. To facilitate this, a warning message was presented
on the screen if the speed of the handle was either above (fast)

FIGURE 1 | Experimental setup. During the experiments, visual information is
displayed on a horizontal virtual reality display above the hand. The upper
magenta circles indicate the targets, the green circle at the bottom of the
display indicates the starting position, and the small white circle indicates the
cursor. The solid and dotted lines indicate the cursor and hand paths,
respectively. The x-coordinate of the cursor is obtained by flipping the sign of
the x-coordinate of the fingertip, defining the starting position as the origin.
Image modified from Dexterit-E Explorer 1.1 (BKIN Technologies Ltd.,
Kingston, ON, Canada).

or below (slow) the speed of 470 ± 45 mm/s. The speed range
was defined based on the minimum jerk theory (Flash and
Hogan, 1985), assuming that the participants move 10 cm for
400 ms.

Behavioral Data Analysis
All trials where movement onset was detected after the go cue
and offset was detected within 850 ms of onset were included
in the subsequent offline analyses (850 ms indicates that the
movement was too slow for 10 cm-reaching; Klassen et al.,
2005). The position and velocity data of the hand obtained
from KINARM was low-pass filtered using a zero-lag fourth-
order Butterworth filter (cut off frequency, 8 Hz). Movement
onset was defined as the time at which the hand velocity first
exceeded 5% of the estimated peak velocity. Movement offset
was defined as the time at which the hand velocity dropped
below 5% of the estimated peak velocity for at least 100 ms.
An initial angular error was defined as the absolute angle

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2018 | Volume 12 | Article 209

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kodama et al. Brain Plasticity Predicts Performance Improvement

from a line connecting the starting position and the target
to a line connecting the starting position and the point the
cursor reached 150 ms after movement onset. An endpoint
angular error was defined as the absolute angle from a line
connecting the starting position and the target to a line
connecting the starting position and the point where movement
offset was detected. Counterclockwise and clockwise directions
were defined using positive and negative directional values,
respectively. For each participant, the errors of 300 trials for
each day were averaged during offline analyses. To support
the hypothesis that brain changes accompanying motor training
are specifically associated with learning, we also calculated an
averaged peak velocity across the 300 trials for each day as
a control behavioral parameter that is independent of motor
learning.

Behavioral data for each day were normally distributed
(Kolmogorov-Smirnov test). A two-way repeated measures
analysis of variance (ANOVA), with time and error types
as factors, was performed to detect significant differences
between the initial angular error and the endpoint
angular error. Tukey’s honest significant difference (HSD)
tests were performed to compare the first and last days
of training. A paired t-test was performed to test the
difference in the average peak velocity between the first
and last days of training. The significance threshold was set
at P < 0.05.

To further investigate the process of motor learning
(i.e., learning speed and final error level), two kinds of errors of
the participants during the training period (i.e., 1–5 days) were
fitted with a simple exponential function (Equation 1):

f (d) = Ae−λd + C (1)

where f (d) is a learning curve as a function of day d; A,
λ and C (constrained by A = 28.65 for initial error and
24.45 for endpoint error; λ > 0; C > 0) are the parameters
determining error reduction, learning speed and final error

level, respectively. First, we determined a fixed parameter A
by fitting the data of an across-participants average of the
initial or endpoint error calculated in a day-by-day manner
using the exponential function (Equation 1). Then, for each
participant, we fitted the data of the initial error, endpoint
error, or peak velocity using the exponential function to estimate
parameters λ and C (Table 1). We set the parameter A as
a common constant across participants, because if we set all
the three constants (A, λ and C) as free parameters, the
results often converged to abnormal local minima or failed to
converge. Compared with λ and C, the variability of parameter
A across participants can be relatively constrained due to
the experimental setup (i.e., mirror-reversal and the target
positions). Therefore, we considered it reasonable to set A as a
constant to avoid the aforementioned failure of model-fitting. In
addition, using learning curves averaged across-participants to
estimate the constant A would also average the bias between the
participants.

We used the exponential function, instead of other models
(e.g., state-space model), to explain the behavioral changes
because: (i) the computational learning model of mirror-
reversal transformation is still under debate (Lillicrap et al.,
2013); and (ii) the exponential function was sufficient to
explain a gradual reduction of errors without a priori
assumption regarding learning rules. A Mann-Whitney U-test
was performed to detect a significant difference in the
behavioral parameters (λ and C) between the male and female
participants.

MRI Data Acquisition
Data was acquired using a 1.5 T SIGNA EXCITE II scanner
(GE Healthcare, Chalfont St. Giles, United Kingdom) using an
8-channel head coil. We used the same scanner, without any
software updates, throughout the study period. In each scanning
session, we acquired three axial T1-weighted anatomical
images using a 3-dimensional fast spoiled gradient sequence

TABLE 1 | Parameters estimated using exponential fit.

Participant Initial error Endpoint error

A λ C R2 A λ C R2

All 28.65 0.8177 10.78 0.9994 24.45 0.9162 4.471 0.9924
A 28.65 0.9184 5.054 0.9905 24.45 3.281 4.822 0.0398
B 28.65 0.5479 11.92 0.9442 24.45 1.753 5.665 0.9021
C 28.65 0.9895 8.818 0.9144 24.45 0.6345 3.399 0.8323
D 28.65 0.9356 7.290 0.9470 24.45 0.6934 2.787 0.8005
E 28.65 0.6268 8.931 0.9583 24.45 1.072 5.169 0.9622
F 28.65 0.9798 9.995 0.9437 24.45 0.6222 4.114 0.9036
G 28.65 0.4406 6.442 0.9760 24.45 0.7053 2.618 0.8574
H 28.65 1.341 17.63 0.5276 24.45 0.7995 4.064 0.9485
I 28.65 1.162 9.704 0.8926 24.45 1.777 4.039 0.9722
J 28.65 0.1693 5.019 0.6294 24.45 1.194 4.034 0.2585
K 28.65 1.407 7.810 0.9216 24.45 2.119 3.392 0.9531
L 28.65 1.574 7.540 0.9333 24.45 1.904 4.501 0.9350
M 28.65 0.1407 7.494 0.8756 24.45 0.2337 3.178 0.7318
N 28.65 0.8371 9.299 0.9649 24.45 2.163 4.068 0.8466
O 28.65 0.4265 9.863 0.8394 24.45 0.4425 5.991 0.7313

The top row of the parameters indicates the results estimated by the average data. We used A derived by fitting the curve, with the average data as a fixed parameter for
the subsequent fitting for each individual participant.
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FIGURE 2 | Performance changes during the experiment (15 participants). (A) Initial errors recorded 150 ms after movement onset, as the index for accuracy of
feed-forward motor control. (B) Endpoint errors recorded at movement offset, as the index for the combination of feed-forward and feedback motor control
accuracies. Black horizontal bars from days 1 to 5 indicate the training period.

(TR = 7.644 ms, TE = 3.144 ms, flip angle = 15◦, voxel
size = 1 × 1 × 1.4 mm3, field of view = 256 × 256 mm,
126 slices covered cerebellum). For each scanning session, the
acquisition time of three T1 images was about 20 min. The
MRI scans were obtained 4.7 ± 3.1 days (3–12 days) prior to
the first day of training for baseline evaluation (i.e., prior to
all behavioral measurements, including practice session without
mirror-reversal transformation), 6.8 ± 1.8 h (3–8 h) after the
daily training, on the first and fifth days, and 1 week and
1 month after the 5-day training protocol. The MRI scans
on 1 week and 1 month after the last day of training were
obtained prior to the behavioral retention test; thus, the retention
tests did not affect the scans. All scans were performed in
the evening. Three sets of images were lost due to data-saving
issues (participant M on day 1, participants K and L on day 5).
For statistical analyses, these cases were treated as missing
values.

MRI Data Processing and Analysis
First, three images for each participant, scanned on the same day,
were co-registered and averaged to yield a single high-quality
image for each time-point. For quality assessment, all images
were visually checked, and those containing artifacts due to
body movement were excluded during averaging of images. We
excluded a volume image if the noise exceeded 10% of the area.
The number of excluded volume images was five.

Pre-processing of T1-weighted images was performed
using SPM8 (Wellcome Trust Center for Neuroimaging)
and VBM8 Toolbox1 running in a MATLAB environment
(MathWorks, version 8.0, Natick, MA, USA). The T1-weighted
images were then processed using the ‘‘Process Longitudinal
Data’’ pipeline implemented in the VBM8 Toolbox. In this
pipeline, all longitudinal high-quality images for each participant
were realigned, signal inhomogeneity-corrected, averaged,

1http://dbm.neuro.uni-jena.de/vbm8/

segmented for gray/white matter, and spatially normalized
into a standard anatomical space. Spatial normalization was
performed using DARTEL (Ashburner, 2007), applying a
single deformation field estimated from a longitudinally
averaged image to images for all time-point to preserve warping
consistency. The warped GM images were scaled using the
Jacobian determinants of the deformations to account for
local compression and expansion during linear and nonlinear
transformations. Finally, the modulated GM volumes were
smoothed using a Gaussian kernel of 8 mm full-width at half
maximum.

To detect the cortical areas that showed significant GM
structural changes during motor training, we performed
statistical tests on the results from VBM analysis. GM increase
from the baseline was tested at each time-point (i.e., day
1 vs. baseline, day 5 vs. baseline, 1 week follow-up vs.
baseline and 1 month follow-up vs. baseline) in a two-factor
(time and participant) full-factorial test. In each statistical
test, the contrast weight for the time-point was set to
be −1 for baseline image, 1 for each time-point to be
tested, and 0 for other time-points. The weight for each
participant was also set to be 0. For statistical analysis,
we excluded all voxels with a GM value <0.2 to avoid
possible partial volume effects near the border between the
GM and white matter. For each analysis, cluster size was
corrected according to the local smoothness values, using
non-stationary cluster extent correction at P < 0.05. We have
reported the effects for clusters of voxels exceeding a voxel-
level threshold of P < 0.001 (uncorrected) and cluster size
threshold at P < 0.05 that were family-wise error-corrected for
multiple comparisons, in the context of Gaussian random field
theory.

We extracted the mean GM volume (for each time-
point) using the MarsBar tool2 for SPM in the detected

2http://marsbar.sourceforge.net/
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FIGURE 3 | Gray matter (GM) increase across participants after visuomotor training. On the first day of training, the left primary motor cortex (M1) and primary
sensory cortex (S1) hand areas and bilateral hippocampi and parahippocampi showed significant increases with learning. The same areas showed increase in GM
volume on the fifth day of training. GM increases were also detected in the bilateral hippocampi and parahippocampi 1 week and 1 month after training.

clusters on the first day that were previously subdivided
using the Automated Anatomical Labeling atlas (Tzourio-
Mazoyer et al., 2002). Then, the GM volume increase
ratio over the baseline scan was calculated for each
area.

Regression Analysis for Behavioral and
Neuroimaging Data
We performed a stepwise regression analysis using Equation 2 to
investigate the relationship between GM volume changes and
motor task performance:

Y = a+ b1X1 + b2X2 + . . . (2)

In this model, Xi denotes the ratio of increase in GM
volume from baseline values to the GM volume on the first
day. The number of data points used for the estimation

of parameters a and b (i.e., X and Y) was same as the
number of participants (N = 14, excluding participant M, for
whom the image from the first day was unavailable). In the
multiple regression analysis, we included the regions where
GM volume significantly increased on the first day; Y denotes
behavioral parameters λ and C of the initial and endpoint
errors (‘‘Behavioral Data Analysis’’), and λ of the peak velocity
calculated by exponential fitting of the 5-day error curve. In
the current study we focused on the former two parameters
because we considered them to be the most meaningful for
accounting for longitudinal learning effects. λ of the peak velocity
was included to the analysis as a null control index. The
significance level for adding/removing possible parameters was
set to P < 0.05. We performed stepwise multiple regression
analysis because the number of explanatory variables was not
determined a priori.
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RESULTS

Behavioral Results
The average time to the peak velocity from the trial onset
was 211.6 ± 26.7 ms. The average peak velocity was
445.6 ± 20.3 mm/s. Both the initial and endpoint errors
decreased across the 5 days of training, demonstrating that
training led to significant performance improvement (two-
way repeated-measures ANOVA, main effect of error type,
F(1,140) = 77.7, P = 4.19× 10−15; main effect of day, F(4,140) = 21.8,
P = 5.48 × 10−14; interaction effect, F(4,140) = 0.36, P = 0.84;
Figure 2). The lack of significant interaction effect suggests
that there was no difference in progression between error
types. Further, there was no difference in peak velocities
between the first and last days (paired t-test, t(14) = −1.26,
P = 0.22).

The estimated parameters λ and C for each participant,
and the constant A estimated from the average learning curve
are shown in Table 1. These values were used to analyze the
relationship between motor learning and structural changes in
the brain (‘‘Regression Analysis for Behavioral and Neuroimaging
Data’’). Finally, there was no difference in the estimated
parameters λ and C between the male and female participants
(Mann-Whitney U-test; P > 0.05).

Neuroimaging Results
On the first day of training, GM volume increases
were detected in the hand area of the left M1/primary
sensory cortex (peak voxel: t = 4.10; MNI coordinates:
−28, −27, 48; spatial extent = 413 voxels) and bilateral
hippocampi and parahippocampi (left peak voxel:
t = 4.46; MNI coordinates: −26, −30, −11; spatial
extent = 951 voxels; and right peak voxel: t = 4.21; MNI
coordinates: 34, −34, −6; spatial extent = 636 voxels;
P < 0.05, corrected for multiple comparison; Figure 3).
No significant GM increases were observed in any other
areas.

The areas where significant volume increases were detected
on the first day changed over the course of the study. The
GM increase in the left M1/S1 persisted on the fifth day of
training (Figure 3) but was not detected 1 week or 1 month
after training. In the bilateral hippocampi and parahippocampi,
the GM increase persisted on day 5 of training and 1 week and
1 month after training. GM volume increase ratios over the
baseline scan for each area are described in Supplementary
Figure S1.

Regression Results for Behavioral and
Neuroimaging Data
We performed stepwise multiple regression analysis to
investigate the relationship between GM structural alterations
and behavioral changes. For a subset of brain areas, the ratio of
increase in GM volume on the first day predicted the subsequent
motor learning. The ratio of increase in GM volume in the left
M1 and S1 were significant predictors of learning speed (λ)
of endpoint error (P = 0.036, r2 = 0.52, b = 1.95, 3.16 for the

FIGURE 4 | Relationship between the increase in GM volume in the right
hippocampus on the first day of training and final error level (C) of the endpoint
error. Participants whose right hippocampal GM volume exhibited a greater
increase showed a lower final error level after training.

left M1 and S1). The ratio of increase in GM volume in the
right hippocampus was a significant predictor of final error
level (C) of endpoint error (P = 0.032, r2 = 0.33, b = −15.0;
Figure 4). All significant combinations of the ratio of increase in
GM volume and behavioral parameters are shown in Figure 5.
However, none of the brain areas that showed GM increase
in the first day predicted learning speed (λ) of peak velocity,
suggesting that GM structural alterations exhibit functional
specificity for motor learning rather than habituation for the
task.

DISCUSSION

In this study, we used VBM to evaluate brain structural
changes that occurred following novel visuomotor training.
Similar to previous VBM studies (Landi et al., 2011; Sampaio-
Baptista et al., 2014), we found that GM volume increased
in the M1/S1, hippocampus and parahippocampus. We also
detected GM structural changes induced by motor training on
a short timescale (e.g., hours), which is consistent with the
results of a previous report (Taubert et al., 2016). Further,
we found that the volume of GM increase on the first day
correlated with performance improvement after a 5-day training
period.

Some recent studies have reported that structural changes,
on VBM analysis, were observed only 1 h after body
balancing task (Taubert et al., 2016), and on diffusion tensor
imaging they were observed 2 h after a spatial learning and
memory task in both humans and rats (Sagi et al., 2012;
Hofstetter et al., 2013). Compared with these investigations, the
current study is novel because our results show that the degree
of rapid structural plasticity predicts subsequent motor learning.
Importantly, the participants whose GM structure did not change
exhibited less motor performance improvement, suggesting a
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FIGURE 5 | Multiple regression analysis summary. Red arrows indicate
positive predictors. Circles in the upper panel indicate the ratio of increase in
GM volume from baseline value. Lines in the lower panel indicate parameters
calculated by exponential fitting of the 5-day error curve.

relationship between GM structural changes and future motor
learning.

Localized GM Changes Associated With
Visuomotor Training
Consistent with previous reports (Landi et al., 2011; Sampaio-
Baptista et al., 2014), we detected GM volume increases in
the M1 and S1, which are involved in motor execution
(Nudo et al., 1996; Scott et al., 2001; Matyas et al., 2010;
Pruszynski et al., 2011), motor memory (Robertson, 2012)
and skill acquisition (Karni et al., 1998; Lohse et al., 2014).
The GM increases in the M1 and S1 were correlated with
learning speed (λ) of endpoint error, which seem reasonable
since M1 and S1 are assumed to be involved in feedback
control, as traditionally suggested (Lacquaniti and Maioli,
1989). Thus, brain changes in this area may contribute to
visuomotor learning. In addition, we also detected GM increase
in the hippocampus and parahippocampus, which have not
been reported earlier in human motor learning studies, such
as studies involving visuomotor rotation tasks (Landi et al.,
2011). Unlike a rotation task, a mirror reversal task requires
more explicit (i.e., declarative) strategy (Telgen et al., 2014)
to aim at the memorized mirror-reversed position of the
visual target. Such type of learning is considered to be a
model of motor skill learning (Shmuelof et al., 2012, 2014),
which is distinct from error-based forward model adaptation
(Diedrichsen et al., 2005). According to the previous studies
reporting that hippocampus and parahippocampus are involved
in declarative and spatial memory (Nadel and Moscovitch, 1997;
Leutgeb et al., 2005), these areas are considerably activated
when the participants imagined making reaching movements
toward the mirror-reversed direction of the presented target or
pointed to the memorized target located at the mirror-reversed
target position. Consistent with this hypothesis, animal studies

have demonstrated that hippocampal inactivation impaired
motor skill learning (Wächter et al., 2010; Yang et al.,
2014).

We acknowledge that it is not possible to conclude that
the mirror-reversal task was necessary for these structural
changes because we did not instruct the participants to
perform repetitive normal reaching without any virtual
transformation. However, our findings indicate that the
structural changes detected by MRI could reflect the functional
contribution of the M1/S1 cortices and hippocampal areas
in a repetitive arm-reaching task. While the results would
have been more convincing if we had included a control
group (i.e., motor activity without learning) and distinguished
between regional GM volume changes driven by mere motor
activity vs. GM changes due to visuomotor learning, we can
assume that at least a part of the GM changes was driven
by visuomotor learning because there was a significant
correlation between the GM changes and visuomotor task
performance. The result demonstrating no relationship between
the changes in peak velocities (i.e., a null control index that is
independent of learning) and the GM increases also supports
this assumption.

The present study shows the impact of the GM change
on the first day on the subsequent behavioral performance
duringmotor learning. Further comprehensive analysis is needed
to reveal the complete timescale of the relationship between
brain structure and behavior, while considering their interaction,
such as performance improvement due to volume increase and
volume changes due to experience.

Neurobiological Candidates for Rapid GM
Increase
The GM increase detected using VBM could be due to
different signal intensities as a result of changes in the brain
tissue composition. Such alterations can occur within a day,
whereas it is unlikely that morphological changes occur on
such a short timescale. Although it is difficult to clarify the
underlying biological mechanisms resulting in increased GM
signal on MRI, recent animal studies have provided new
molecular and cellular evidence of experience-dependent GM
structural changes (Kleim et al., 2002; Dong and Greenough,
2004; Kolb et al., 2008; Zatorre et al., 2012). The cellular-
level candidates include neurogenesis, axon sprouting, dendritic
branching, synaptogenesis, glial swelling, glial increase, vascular
volume change and angiogenesis (Zatorre et al., 2012). Among
these, glial swelling and vascular volume changes are thought to
occur within minutes to hours (Macvicar et al., 2002; Takano
et al., 2006; Theodosis et al., 2008); thus, the signal changes
detected in the current study may be attributed to these cellular
mechanisms.

Candidate Mechanism Underlying the
Relationship Between Performance
Improvement and Initial GM Increase
The most insightful finding of the current study is that
performance improvement (i.e., functional change) can be
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predicted by the initial increase in GM volume (i.e., structural
change). Although the current study design was insufficient
to provide evidence for a causal relationship between the
two, if we assume that the increased GM signal observed
was due to structural changes in glia and blood vessels,
this finding could be the result of structural plasticity,
inducing subsequent neural plasticity or functional changes. In
support of this hypothesis, a recent study has revealed that
a structural change in the astrocytic domains, in response
to increased neural activity, promoted excitatory synapse
stability (Bernardinelli et al., 2014). Astrocytic plasticity has
also been proposed to play critical roles during dendritic spine
maturation (Nishida and Okabe, 2007) and synapse elimination
(Chung et al., 2013). Moreover, astrocytes mediate vasodilation,
and help to increase the supply of neuronal metabolites
(Takano et al., 2006), such as lactate, an organic chemical
that is necessary for memory and learning (Newman et al.,
2011).

Limitations
This study has several limitations. First, VBM is less accurate
in normalization and segmentation processes than surface-
based algorithms (Lerch et al., 2017). In addition, due to the
difference in the deformation procedure, the smoothness of the
VBM signals is inferior to that of surface-based algorithms,
and thus, statistical sensitivity may also decrease (Lerch et al.,
2017). Second, the large number of regression models tested and
predictors included in the model may inflate the risk of type I
error. Therefore, although we still cannot completely eliminate
the risk of type I error, in the current study we reduced the
number of models and predictors to five behavioral parameters
that would be most meaningful for describing performance
changes, and six brain regions that showed significant increase
in GM volumes from baseline to the first day of training.
Third, we should also be cautions when interpreting our
results, because the longitudinal analysis tools in VBM8 can
be biased toward a particular MRI time-point. However, in
this study we focused on short-term structural changes, where
large-scale changes which modify a deformation field are not
known to occur. In such a case, separate preprocessing for each
scanning time-point, which generates a separate deformation
field for each normalization process, may not be appropriate
because it increases the risk of artifact formation. Therefore,
we consider it better to use longitudinal preprocessing with
a unique deformation field that is common between time-
points, in order to reduce the normalization error between time-
points. In addition, the age range (20–23 years old) of the
participants enrolled in this study is narrow. Finally, we should
also be cautions in interpreting results from this and other VBM
studies because GM volume is affected by hydration status and
fasting.

CONCLUSION

In the current study, we found that GM structural changes
in areas involved in visuomotor learning were detected even
after the first training session in a mirror-reversal experimental

setup. Moreover, the degree of increase in the GM volume
noted in the first MR scan was associated with the performance
assessed after 5 days of training. Our findings demonstrate
that structural changes are not simply a footprint of previous
motor learning; rather, they are related with future motor
learning. Individual differences in GM structural changes and
behavioral improvements are important questions for future
studies. The predictability of motor learning consequences,
based on initial structural changes, may be applied to
develop novel training regimes in sports and rehabilitation,
with the potential to considerably increase the benefit of
practice.
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