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Neutrophils are crucial elements of innate immune system, which assure host defense via a
range of effector functions, such as phagocytosis, degranulation, and NET formation. The
latest literature clearly indicates that modulation of effector functions of neutrophils may
affect the treatment efficacy. Pharmacological modulation may affect molecular
mechanisms activating or suppressing phagocytosis, degranulation or NET formation.
In this review, we describe the role of neutrophils in physiology and in the course of
bacterial and viral infections, illustrating the versatility and plasticity of those cells. This
review also focus on the action of plant extracts, plant-derived compounds and synthetic
drugs on effector functions of neutrophils. These recent advances in the knowledge can
help to devise novel therapeutic approaches via pharmacological modulation of the
described processes.
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NEUTROPHILS IN HEALTH AND DISEASE

Role in Health
Neutrophils are produced in the venous sinuses of the bone marrow, where they derive from a
common myeloid progenitor cells (Figure 1; Nerlov and Graf, 1998). Recently, a novel classification
of bone marrow neutrophil-lineage cells emerged. Progenitor stem cells evaluate into a pool of
preneutrophils, further differentiating into non-proliferative immature neutrophils and, eventually,
mature neutrophils, equipped with numerous machineries to combat pathogens. Maturation of this
lineage is orchestrated by transcription factors such as GFI1 and Pu.1 (Evrard et al., 2018).
Neutrophils are continually generated in the bone marrow (daily production may reach up to
2 × 1011 cells), where also begin the maturation process (Borregaard, 2010). Granulocyte-colony
stimulating factor (G-CSF) is the main agent responsible for their development, production and
release (Lieschke et al., 1994). In vivo studies showed that neutrophils may circulate in human blood
for ∼10 h (Athens et al., 1961a; McMillan and Scott, 1968) to 5 days (Pillay et al., 2010). Nonetheless,
in the course of the development of inflammatory reaction, neutrophils become active, and their
lifespan is extended. This is a result of interactions with various cytokines, (e.g. IL-1 beta, tumor
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necrosis factor (TNF), IFN-gamma), as well as bacterial products,
such as lipopolysaccharide (LPS) (Colotta et al., 1992; Summers
et al., 2010; Kim et al., 2011). Mature neutrophils (with segmented
nuclei and fully formed granules) may also proliferate outside of
the bone marrow—in the spleen after infection (Deniset et al.,
2017) or when they come in contact with serum amyloid A (De
Santo et al., 2010). Longer lifespan allows them to shape many
processes: tissue healing, inflammation resolution and modulation
of adaptive immune responses, but also may cause adverse effects,
including tissue damage (Liew and Kubes, 2019). Neutrophils’
maturation and aging goes in parallel with natural drift in their
phenotype and function in the absence of inflammation. These
cells undergo daily modifications (Casanova-Acebes et al., 2013),
such as: expression of adhesion molecules affecting tissue
trafficking, (e.g. CD62L, CD11b, and CD49 days), expression of
chemokines receptors, (e.g. CXCR2 and CXCR4), pathogen
receptors (Toll-like and NOD-like receptors), activity of
pathways related to cell activation (such as NF-kB and MAPK
signaling), and cell death (as revised in (Adrover et al., 2016)). This
process is influenced by the microbiome, as its depletion with
broad-spectrum antibiotics reduces neutrophil number and aging,
which can be reversed by LPS stimulation. Similar results were
observed in germ-free and TLR2, TLR4, and Myd88 knock-out
mice. Neutrophils not stimulated by microbiota are less responsive
to pathogens, e.g., their NET formation is decreased (Zhang et al.,
2015). The circadian cycle affects the function of neutrophils,
possibly as a result of cyclic release of newly formed cells from
the bonemarrow (Ella et al., 2018). Such a regulation has an impact
on the neutrophils’ functions in immunity and inflammation (He
et al., 2018).

Over 50 years ago, study of Mauer et al. showed that
granulocytes rapidly disappear from circulation when injected
into healthy volunteers (Mauer et al., 1960), with further
conclusion that total blood granulocyte pool is made up of two
compartments, i.e., circulating granulocyte pool and marginal
granulocyte pool. They are in an equilibrium with each other
and it is possible to move cells from the latter to the former
compartment by stimuli like epinephrine or physical exercise
(Athens et al., 1961b). Further studies revealed that in absence
of inflammation neutrophils can be found in other compartments,
including bone marrow (where they inhibit hematopoietic niches
and trigger the release of hematopoietic progenitor cells into the

bloodstream), spleen (mainly in the marginal zone and red pulp;
supporting B cell maturation and antibody production), liver, lung
(where they prevent formation of melanoma metastases and affect
lung transcriptome in diurnal pattern), intestine (where
phagocytosis of incoming neutrophils by resident macrophages
regulates cytokine production and participates in the remote
regulation of bone marrow niches), white adipose tissue, skin,
skeletal muscle, peripheral lymph nodes, intestine (as isolated
patches in the intestine) kidneys, and heart. Only immune-
privileged organs, i.e., ovaries, testes, and brain are free from
neutrophils. Apoptotic neutrophils located in skin, muscle, and
intestine are phagocyted by dendritic cells andmacrophages, which
inhibits IL-23 expression and thus controls granulopoiesis by
regulating G-CSF production (Casanova-Acebes et al., 2013).
How neutrophils persist in these organs is not fully elucidated
yet. Intravascular transit time in the liver is around 2 min (Peters
et al., 1985), in the spleen and bone marrow—10min (Peters et al.,
1985; Ussov et al., 1995). Recently, two pools of neutrophils were
identified in the spleen. Mobile neutrophils were roaming around
the red pulp, while the stationary ones remained in the perivascular
area, both populations differ in terms of Ly6G expression. Mature,
(i.e. Ly6Ghigh) splenic neutrophils were necessary to eradicate
Staphylococci during systemic infection. This process takes place
mainly in the red pulp, whereas immature neutrophils, (i.e.
Ly6Gint), residing perivascular area, undergo emergency
proliferation and mobilization (Deniset et al., 2017) Using
intravital microscopy large quantities of neutrophils resident in
the lung under normal conditions were visualized (Kreisel et al.,
2010). Other study showed that neutrophils in this location are not
simply “stuck” in the capillary bed, but rather are on the
move–tethering, crawling or adhered to cell surfaces (Yipp
et al., 2017). Lung is an organ with a high number of
neutrophils in marginated pool, maintained due to expression
of adhesion molecules on neutrophils themselves and on
endothelial cells. After stimulation, such as infection, profile of
adhesionmolecules evolve quickly, allowing transmigration (Sibille
and Marchandise, 1993). Moreover, the persistence time in this
organ is way longer than the mean neutrophil intravascular transit
time estimated for other organs (Peters et al., 1985; Lien et al., 1987;
Ussov et al., 1995).

Granulocytes’ clearance from the circulation takes place
mainly in the liver, spleen, and bone marrow (Shi et al., 2001;

FIGURE 1 | The granulocyte formation.
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Hong et al., 2012). As they grow older, the expression of CXC-
chemokine receptor 4 (CXCR4) increases, which probably leads
them back to the bone marrow, where they are eliminated
(Casanova-Acebes et al., 2013). The same receptor also
negatively regulates release of the newly formed neutrophils
from the bone marrow (Eash et al., 2009; Summers et al.,
2010). CXCR4 is not the only factor responsible for the
destruction of neutrophils as cells that lack this receptor have
the same half-life as the wild type neutrophils (Eash et al., 2009).
Granulocytes may also die in the blood vessels and are later
removed by the Kupffer cells (liver-resident macrophages) (Shi
et al., 2001). The neutrophils clearance by Kupffer or dendritic
cells is regulated, in part, by the IL-23, IL-17 and granulocyte
colony-stimulating factor (G-CSF) cytokine axis. These
mediators stimulate granulocyte production in the bone
marrow as well (Stark et al., 2005). There are still significant
gaps in the knowledge about the neutrophil clearance by other
cells. Neutrophils die primarily by an intrinsic mechanism of
apoptosis, regulated by Bcl-2 protein family. MCL-1 is the key
anti-apoptotic agent, antagonizing the pro-apoptotic effects of
remaining Bcl-2 family members. Severe neutropenia without
affecting other cells circulating in the blood was observed in
MCL-1 knock-out mice (Csepregi et al., 2018). During the
resolution of inflammation, macrophages dispose apoptotic
neutrophils by phagocytosis, releasing lipid mediators. These
molecules play a role in re-establishing homeostasis and their
absence likely leads to chronic inflammation (Buckley et al.,
2014). Some neutrophils sacrifice themselves, releasing
neutrophil extracellular traps (NETs) to fight pathogens
(Brinkmann et al., 2004; Stark et al., 2005). Neutrophils are
also capable of vital netosis–i.e., releasing NETs by a living cell
(Yipp and Kubes, 2013).

Significant heterogeneity and functional versatility are observed
among neutrophils (Scapini et al., 2016; Silvestre-Roig et al., 2016;
Deniset and Kubes, 2018). Both, in steady state and in the course of
inflammation, these cells undertake various roles, not always
beneficial. It is still unclear whether this variety results from
different programs of neutrophils’ maturation and activation or
is somehow influenced by external factors. In patients with
autoimmune disorders, low density neutrophils/granulocytes
were more frequent, though their functions are not precisely
defined (Hacbarth and Kajdacsy-Balla, 1986; Scapini et al.,
2016). Polymorphonuclear myeloid-derived suppressor cells
(PMN-MDSCs) are responsible for the failure of many cancer
therapies and poor clinical outcomes. They derive from
pathologically activated neutrophils, however, the exact
mechanism is of their action is unclear (Gabrilovich, 2017).
Two distinct fractions of tumor-associated neutrophils are
identified in cancer patients. N1—a pro-inflammatory and anti-
tumor subset, induced by TGF-β blockade and N2–a protumor
group, increasing in number, following stimulation by TGF-β
(Fridlender et al., 2009). The concept of neutrophils’
heterogeneity cannot be universally summarized. We still see
the vast gaps in the knowledge that preclude a succinct
explanation for this phenomenon. Nevertheless, this
heterogeneity may have a significant impact on choosing
potential targets for future therapeutic agents (Nemeth et al., 2020).

To exert their effects, neutrophils must first reach the target
tissue. The recruitment of granulocytes into the inflamed site
involves tethering, rolling, adhesion, crawling and transmigration
(Kolaczkowska and Kubes, 2013). The entire process is initiated
via activated endothelium that exposes adhesion molecules, that
enable leukocytes recruitment. Activation occurs via stimulation
by mediators such as histamine, cysteinyl-leukotrienes and
cytokines, usually released by resident leukocytes, when the
pathogens are present (Ley et al., 2007). Endothelial cells may
also be activated directly. If pattern-recognition receptor (PRR)
connects with its ligand, the number of adhesion molecules
increases on the endothelium surface. P-selectin and E-selectin
are responsible for further neutrophil recruitment steps (Petri
et al., 2008). They bind to their ligands, including P-selectin
glycoprotein ligand 1 (PSGL1), capturing free-flowing
neutrophils to the endothelium surface and promote
subsequent granulocytes’ rolling along the vessel. Adhesion,
crawling and transmigration depend, to a large extent, on
integrin interactions with cell adhesion molecules (CAMs)
(Phillipson et al., 2006). Luminal surface of endothelium
exposes chemokines, which activate rolling neutrophils, thus
inducing conformational changes and completing the
extravasation process. Neutrophils are capable of returning to
the bloodstream via a process called reverse transendothelial cell
migration (rTEM). Neutrophils that underwent rTEM are
characterized by high CD54 and low CXCR1 expression and
are identified more frequently in case of systemic inflammation
than in healthy donors (Buckley et al., 2006). Other forms of
neutrophils’ motility are: 1) reverse luminal crawling—moving
along blood vessel against blood flow; 2) reverse abluminal
crawling—occurs while seeking essential directional cues to
fully breach venular walls and 3) reverse interstitial
migration–a movement directed away from inflammation site
within interstitium, which may result in remote organ damage, as
documented in ischemic injury (Nourshargh et al., 2016).

Role in Disease
Neutrophils play key roles in many diseases, protecting against
pathogens and regulating innate and adaptive immunity. On the
other hand, when hyperactive or abnormally stimulated, they
may lead to tissue damage and exacerbate existing pathology.

During sepsis, neutrophils show enhanced responsiveness to
chemokines, resulting in their accumulation at the infection site
(Angus et al., 2001; Martin et al., 2003; Sônego et al., 2016). Some
hypotheses suggest that sepsis is associated with an early
overwhelming innate immune response, characterized by
dysregulation of the overproduction of cytokines (TNF-α, IL-
1β, IL-6, IL-8) (Benjamim et al., 2004; Faix, 2013; Chousterman
et al., 2017). Concentrations of circulating pro-inflammatory
cytokines are low or undetectable in healthy individuals but
their production is stimulated during invasion by pathogenic
microorganisms. In human and experimental animal models of
sepsis, cytokines are released in a sequential manner resulting in a
“cytokine cascade” (Steinhauser et al., 1999). It is initiated when a
stimulus, such as Gram-negative bacterial endotoxin, (e.g.
lipopolysaccharides released by E. coli), induces production of
the “early inflammatory cytokines,” like TNF-α and IL-1β. TNF-α
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was shown to be a central factor of immune regulation and
mediator of the pathophysiological changes associated with
bacteremia and sepsis syndrome (Benjamim et al., 2004).
Overproduction of TNF-α correlates with enhanced properties
of phagocytes. In contrast, IL-1β serum levels are only slightly
increased during sepsis. The release of “early inflammatory
cytokines,” intensifies the production of the “late inflammatory
cytokines”—IL-6 and IL-8. IL-6 was recognized as a marker of
sepsis with high specificity (Kuster et al., 1998). The increased
plasma IL-8 concentration in adult sepsis-occurring patients may
correlate with mortality (Marty et al., 1994). Although various
pro-inflammatory cytokines contribute to the inflammatory
cascade, other cytokines also display anti-inflammatory
properties, serving to counterbalance a potentially inadequate
pro-inflammatory state. In sepsis, interleukin 10 has been shown
to act as the primary endogenous modulator of inflammatory
response.

The dysregulation of “cytokine balance” influences of the
immune cells functions including phagocytosis and NETosis.
The question is: how may cytokine profile affect those
processes? Where is the balance between “too much” and “not
enough?” A similar question was asked by Garner and colleagues
(Garner et al., 1996), who showed that the increasing
concentration of TNF-α and IL-1β may suddenly upregulate
Fc receptor (FcγR)-mediated phagocytosis by human
polymorphonuclear neutrophils (PMN). Nevertheless, the
mechanisms of this enhanced phagocytosis remain unknown.
This same issue was investigated by Erwig and colleagues. They
exposed macrophages on single cytokine and cytokine mixture
(IFN-γ, TNF-α, TGF-β, IL-4, IL-6, and IL-10). After 48 h their
function was evaluated for nitric oxide (NO) generation, uptake
of apoptotic neutrophils, and β-glucuronidase expression. The
phagocytic properties of leukocytes were augmented by TNF-α
(40 vs 29% controls) and decreased by IFN-γ, IL-10, and IL-4
(Erwig et al., 1998).

Similarly to phagocytosis, NET formation (Galluzzi et al.,
2018) may be effective anti-microbial mechanism in the course
of sepsis, however with time it may contribute to tissue and
endothelial damage, finally leading to disseminated intravascular
coagulation (DIC), with high mortality rate. Interestingly, both
SOFA (Sequential Organ Failure Assessment) score and acute
kidney injury (AKI) correlates with cell-free DNA, measured in
septic patient serum (Klopf et al., 2021).

Some studies highlight neutrophils contribution to antiviral
immunity (Saitoh et al., 2012; Jenne et al., 2013). In the course of
COVID-19, neutrophils-to-lymphocytes ratio was established as
an independent prognostic factor (Wang et al., 2020). Recent
study showed that increased amounts of reactive oxygen species
(ROS) and the release of NETs are associated with intensive
thrombi formation–one of the most prevalent and serious
COVID-19 complications (Arcanjo et al., 2020). In COVID-19
patients, cell-free DNA, MPO-DNA complexes, and citrullinated
histone H3 have been assessed and appeared to be elevated.
Interestingly, cell-free DNA and MPO-DNA complexes were
significantly higher in the blood from mechanically ventilated
vs. non-ventilated patients. It was suggested that vascular
damage, resulting in acute respiratory distress syndrome

(ARDS) and multiorgan dysfunction, may be due to NET
formation (Klopf et al., 2021). The abovementioned findings
may link cytokine storm (as discussed in (Ragab et al., 2020)),
microangiopathic occlusions and ARDS, and justifies use of
steroids, (i.e. dexamethasone, as shown in RECOVERY trial
(Horby et al., 2021)) and tocilizumab (Zhang et al., 2020b) in
COVID-19 treatment.

In the respiratory system, neutrophils act like a double-edged
sword. On the one hand, they defend organism against
pathogens, but on the other they cause extensive tissue
damage in e.g., acute lung injury, chronic obstructive
pulmonary disease, or neutrophilic asthma (Grommes and
Soehnlein, 2011; Meijer et al., 2013; Krishnamoorthy et al.,
2018). Neutrophils also contribute to formation and
destabilization of atherosclerotic plaques (Soehnlein, 2012).
The accumulation of these cells is associated with a greater
risk of plaque rupture (Ionita et al., 2010). Moreover,
neutrophils accumulated at the plaque site may release NETs,
which leads to smooth muscle cells damage, prompting
destabilization (Silvestre-Roig et al., 2019).

In ischemic diseases, such as myocardial infarction or stroke,
inflammatory processes cause severe tissue damage, especially
after reperfusion (Eltzschig and Eckle, 2011). In myocardial
infarction model, Ly6Chigh monocytes and neutrophils
contributed comparably to proteolysis, which may result in left
ventricle rupture (Anzai et al., 2017). As mentioned above,
neutrophils may undergo rTEM, stimulated by LTB4, from
area of ischemia-reperfusion injury and contribute to distant
organ damage (Colom et al., 2015).

The role of NET formation in autoimmune disease was
reviewed by Mitsios et al. (Mitsios et al., 2016) and Lee et al.
(Lee et al., 2017). Some authors suggest that the anti-DNA
immunization in systemic lupus erythematosus may be
initiated by NETs. Released nucleic acid activates the dendritic
cells, which in turn prompt antibodies production by B cells,
causing systemic autoimmunity (Garcia-Romo et al., 2011; Lande
et al., 2011). Consistently, citrullinated histones, present in NETs
were suggested as the trigger activating anti-citrullinated peptide
autoantibodies (ACPAs) production, prevalent in rheumatoid
arthritis (Khandpur et al., 2013). Release of proteinase 3 (PR3)
and myeloperoxidase (MPO) may initiate antineutrophil
cytoplasmic antibody-associated vasculitis (Kessenbrock et al.,
2009).

Cancer biology is influences by neutrophils’ behavior. As
mentioned before, neutrophils may exert pro-inflammatory or
pro-tumoral effects (Fridlender et al., 2009). This phenotypic
switch and overall plasticity may explain the vast spectrum of
neutrophil activities, both harmful and beneficial to the host (Sagiv
et al., 2015). Some of the undesirable effects include suppression of
T cell-mediated antitumor immunity (Coffelt et al., 2015; Steele
et al., 2016) or elastase-mediated degradation of IRS1 (Houghton
et al., 2010), enhancing cancer cell proliferation. On the other hand,
some studies reported that neutrophils prevent metastasis
formation (Granot et al., 2011) or inhibit early cancer growth
(Blaisdell et al., 2015). In solid tumors, increased neutrophils
number in tumor microenvironment is a negative outcome
predictor (Templeton et al., 2014; Gentles et al., 2015).
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TO PHAGOCYTOSE, TO DEGRANULATE
OR TO MAKE EXTRACELLULAR TRAPS?

Neutrophils are crucial elements of innate immune system, which
assure host defense via a range of effector functions, such as
phagocytosis, degranulation, and NET formation (Figure 2;
Kolaczkowska and Kubes, 2013).

Phagocytosis is a fundamental mechanism for the effective
elimination of disease-causing agents (Schumann, 2016). It
enables clearance of microbes, but also dead cells and tissue
debris (Jaumouillé and Waterman, 2020). Thus, phagocytosis is a
fundamental component responsible for tissue homeostasis and
the innate immune response (Jaumouillé and Waterman, 2020).
This process is initialized by internalization of targeted organism/
particle. Two different mechanisms have been identified for the
internalization of diverse particulate material: 1) the trigger
mechanism where discreet signaling initiates formation of
plasma membrane protrusions, shaped by actin, that surround
nearby material, and 2) the zipper mechanism where cell surface
receptors sequentially bind to ligands on the target particle, which
leads to a complete wrapping of the particle by the plasma
membrane (Nordenfelt and Tapper, 2011). Only a small
number of pathogens, (e.g., Salmonella or Shigella) is able to
initiate the process, whereas the zipper mechanism, involving a
wide spectrum of phagocytic receptors, allows to successfully

bind many species of pathogen/particles (Jaumouillé and
Waterman, 2020). The essential phagocytic receptors are Fcγ
class receptors, which recognize IgG, the complement receptor 3
(αMβ2 integrin). While TLRs and NOD receptors are not
classified as phagocytic receptors, their activation may increase
phagocytosis (Nordenfelt and Tapper, 2011). Receptor activation
initiates signaling cascades that re-model lipids in the cell
membrane and leads to rearrangement of actin cytoskeleton in
order to extend the cell membrane around the particle. After
reconstructing the plasma membrane of the phagocyte, bacteria
are ultimately internalized in phagosome (Fairn and Grinstein,
2012). The dynamics of phagosome maturation is highly
dependent on the several regulators like Rab proteins
synthesis. Among known Rab proteins, Rab5 and Rab7 are
directly involved in regulation of phagosome functions
(Mottola, 2014).

Unlike macrophages, maturation of neutrophilic phagosomes
is dependent on fusion with preformed granules (Nordenfelt and
Tapper, 2011; Gierlikowska et al., 2020b). Membrane proteins
and granule contents are directed to distinct locations by precise
trafficking and fusion/fission processes (Nordenfelt and Tapper,
2011). Activation of granules is assisted by recruitment of
NADPH oxidase (Johansson et al., 1995). It is suggested that
an early alkalization of neutrophil phagosomes leads to the
oxidative burst in the phagosomes (Segal et al., 1981).

FIGURE 2 | The killing mechanisms of neutrophils: phagocytosis, degranulation, and extracellular traps release.
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Besides ROS production, neutrophils eliminate pathogens via
production of microbicidal molecules following degranulation
(Mortaz et al., 2018).

Degranulation is important for pathogen killing, but also
modulates the immune response during infectious or non-
infectious diseases (Mortaz et al., 2018). Different granule types
are released sequentially (Kolaczkowska and Kubes, 2013). At the
beginning, tertiary granules are released, (e.g. cathepsin, gelatinase,
known as metalloprotease 9), then secondary granules, (e.g.
lactoferrin, alkaline phosphatase, lysozyme, cathelicidin,
NADPH oxidase and collagenase). At the end, primary granules
are secreted containing the most pro-inflammatory and
antimicrobial proteins, such as elastase, MPO, cathepsin G,
defensins (HNP-1, HNP-2 and HNP-3 peptides) and bacterial
permeability increasing protein (BPI) (Faurschou and Borregaard,
2003). Normal neutrophil degranulation involves the release of
primary and secondary granules mainly into the phagosome,
which prevents host tissue damage (Sengeløv et al., 1995).
Bacteria are able to disrupt, dysregulate, or induce excessive
neutrophil degranulation, in order to diminish the protective
effects of neutrophil degranulation in a way that ultimately
benefits the pathogen and extend the disease course, thus
pharmacological modulation may potentially bring promising
results for recovering (Eichelberger and Goldman, 2020).

Neutrophils use a few strategies to counteract infections. Two
of those strategies have been thoroughly studied and are
described above: phagocytosis and degranulation. They can
also utilize NADPH oxidase to form ROS which have
antimicrobial potential (Mantovani et al., 2011). A new
mechanism that combats infections—NET formation–has been
described in 2004 (Brinkmann et al., 2004). Once the process is
initiated, the chromatin in neutrophils’ DNA loosens up and it
forms complexes with numerous granular and cytoplasmic
proteins, which are subsequently released into the extracellular
space. Depending on the origin of proteins, they could by
classified as histones (H1, H2A, H2B, H3, and H4),
azurophilic granules (MPO, elastase, defensins, cathepsin G),
specific granules (lactoferrin, alkaline phosphatase, NADPH
oxidase, lysozyme, collagenase), tertiary granules (gelatinase,
cathepsin) and cytosol proteins (LL-37, proteinase 3,
neutrophil serine protease 4 and tryptase) (Brinkmann et al.,
2004). The biological function of extracellular traps is to sequester
a specific space, enabling accumulation of high concentration of
antimicrobial agents, preferably at the site of infection. Thus
extracellular traps immobilize and kill microorganisms, which
prevent them from dissemination (Manda et al., 2014).

Modulations of killing mechanisms (like phagocytosis,
degranulation, or NET formation) could be of interest, as it
may potentially boost pathogen killing or protect host from
own tissue damage.

PHARMACOLOGICAL MODULATION OF
PHAGOCYTOSIS VIA MEDICAL PLANTS

Therapies targeted at innate immune response modulation via
medicinal plants and metabolites isolated from them experience a

renaissance in recent years (Ríos, 2010; Licciardi and Underwood,
2011; Grigore et al., 2020; Behl et al., 2021).

After performing a literature search using relevant MeSH
terms and keywords, we identified 53 plant extracts, which
were tested on neutrophil model and their influence on
phagocytic properties were evaluated (Table 1). Selected plants
belonged to diverse families: Anacardiaceae, Araceae, Araliaceae,
Arecaceae, Apocynaceae, Asphodelaceae, Asteraceae,
Boraginaceae, Capparaceae, Celastraceae, Convolvulaceae,
Cucurbitaceae. Elaeocarpaceae, Euphorbiaceae, Fabaceae,
Geraniaceae, Hypericaceae, Lamiaceae, Lythraceae, Malvaceae,
Melastomataceae, Meliaceae, Menispermaceae, Moraceae,
Moringaceae, Phyllanthaceae, Poaceae, Ranunculaceae,
Rosaceae, Rubiaceae, Santalaceae, Sapindaceae, Saxifragaceae,
Theaceae, Zingiberaceae, and Zosteraceae. Plant materials were
collected in Europe, Asia, Southern and Northern America and
Africa. The geographic location directly determines the
phytochemical composition of plants and their
pharmacological activity (Czerwińska and Melzig, 2018; Kiss
et al., 2020). Thus, evaluation of the medical plants collected
from different locations, may highlight future directions for
searching other plants (with similar chemical composition),
and then select them for compounds isolation (Gierlikowska
et al., 2020a). We noticed that 33 of the selected plant extracts
stimulated phagocytic activity of neutrophils, 18 decreased
phagocytic activity and 2 extracts did not affect the process.

Pharmacological modulation of phagocytosis may affect the
uptake of pathogens, biochemical changes inside of phago- and
lysosomes, phagolysosomes formation and modulation of
intracellular killing via oxygen-dependent and oxygen-
independent degradation (Table 1).

Among selected plant extracts, two of them, obtained from
Tinospora crispa (L.) and Heliotropium sarmentosum (Lam.),
modulated expression of surface receptors. The neutrophils
treated with T. crispa as well as H. sarmentosum extracts
overexpressed MAC-1 cell surface receptor leading to
increased phagocytic activity (Chen et al., 2014; Ahmad
et al., 2015). MAC-1 is a complement receptor (“CR3”)
consisting of CD11b (integrin αM) and CD18 (integrin β2)
(Todd, 1996). The integrin CD11b is responsible for direct
binding to intercellular adhesion molecule-1 (ICAM-1)
leading to firm adhesion to endothelium and transmigration
of phagocytes to infected tissues (Ross and Vĕtvicka, 1993).
Considering that T. crispa has been used traditionally in the
treatment of rheumatoic arthritis, urinary tract infections,
fever, inflammation, fracture, and hypertension (Ahmad
et al., 2015), the modulation of phagocytic properties of
neutrophils creates new research perspectives for further
evaluation. Based on the use in traditional medicine, H.
sarmentosum has demonstrated anti-inflammatory,
antinociceptive and antipyretic activities (Chen et al., 2014),
thus similarly to T. crispa modulation of phagocytosis may
point to unknown immunomodulatory properties of this
extract.

Pharmacological stimulation of C3b and Fcγ expression on
neutrophil surface was proved for Echinacea purpurea (L.)
Moench (Melchart et al., 1995; Isaykina et al., 2008).
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TABLE 1 | List of selected plant material with documented impact on phagocytosis.

Plant family Species Plant
material

Cellular target
and mechanism

of action

Effect on
phagocytosis

References

1 Anacardiaceae Semecarpus
anacardium L.f

Plant
extract

Increase of reactive oxygen species
production and lysosomal enzymes
activity (acid phosphatase and
cathepsin D)

Increased phagocytic
activity

Ramprasath et al. (2006)

2 Araceae Lemna minor L Plant
extract

n.d Increased phagocytic
activity

Hu et al. (1995)

3 Araliaceae Panax ginseng C.A.Mey Plant
extract

n.d Increased phagocytic
activity

Hu et al. (1995)

4 Arecaceae Areca catechu L Plant
extract

Suppression of CR1, CR3, CR4 and fcγ
receptors expression, decrease of F-actin
stability

Inhibition of phagocytic
activity

Hung et al. (2006); Lee et al.
(2014)

5 Apocynaceae Leptadenia pyrotechnica
(forssk.) decne

Plant
extract

n.d Increased phagocytic
activity

Rasheed et al. (2016)

6 Asphodelaceae Aloe vera (L.) Burm.f Plant
extract

Reduction the availability of intracellular
free Ca2+ and inhibition of reactive oxygen
species production

Increased phagocytic
activity

Ou. (1991)

7 Asteraceae Echinacea purpurea (L.)
moench

Plant
extract

Stimulation of C3b and fcγ receptors Increased phagocytic
activity and digestive
capacity

Melchart et al. (1995); Yang
et al. (2002); Isaykina et al.
(2008)

8 Asteraceae Echinacea pallida (nutt.)
nutt

Plant
extract

n.d Increased phagocytic
activity

Melchart et al. (1995)

9 Asteraceae Anacyclus pyrethrum
(L.) lag

Plant
extract

n.d Increased phagocytic
activity

Sharma et al. (2010)

10 Asteraceae Santolina
chamaecyparissus L

Plant
extract

n.d Inhibited phagocytic
activity

Boudoukha et al. (2016)

11 Asteraceae Baccharis
dracunculifolia DC.

Plant
extract

n.d Inhibited phagocytic
activity

Figueiredo-Rinhel et al. (2017)

12 Asteraceae Centaurea pumilio L Plant
extract

n.d Increased phagocytic
activity

Mostafa et al. (2019)

13 Boraginaceae Echium amoenum fisch.
and C.A.Mey

Plant
extract

Increase of reactive oxygen species
production

Increased phagocytic
activity

Asadollahi et al. (2015)

14 Boraginaceae Heliotropium
sarmentosum (lam.)
craven

Plant
extract

Increase of MAC-1 cell surface
expression and activation of AKT
signaling pathway

Increased phagocytic
activity

Chen et al. (2014)

15 Capparaceae Capparis zeylanica L Plant
extract

n.d Increased phagocytic
activity

Ghule et al. (2006)

16 Celastraceae Tripterygium wilfordii
Hook.f

Plant
extract

n.d Inhibited phagocytic
activity

Chang et al. (1997)

17 Convolvulaceae Ipomoea batatas (L.) lam Plant
extract

Stimulation of phagosome-lysosome
fusion

Increased phagocytic
activity

Miyazaki et al. (2005)

18 Convolvulaceae Cuscuta epithymum (L.) L Plant
extract

Stimulation of syk phosphorylation Increased phagocytic
activity

Sudam et al. (2017)

19 Convolvulaceae Ipomoea batatas (L.) lam Plant
extract

Stimulation of syk phosphorylation Increased phagocytic
activity

Sudam et al. (2017)

20 Cucurbitaceae Cucumis
maderaspatanus L

Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

t Hart et al. (1990)

21 Elaeocarpaceae Elaeocarpus angustifolius
blume

Plant
extract

n.d Increased phagocytic
activity

Kakalij et al. (2014)

22 Euphorbiaceae Euphorbia hirta L Plant
extract

Stimulation of syk phosphorylation Increased phagocytic
activity

Sudam et al. (2017)

23 Fabaceae Guilandina bonduc L Plant
extract

n.d Increased phagocytic
activity

Shukla et al. (2009)

24 Fabaceae Vigna mungo (L.) hepper Plant
extract

n.d Increased phagocytic
activity

Solanki and Jain, (2010)

25 Geraniaceae Geranium sanguineum L Plant
extract

n.d Increased phagocytic
activity

Toshkova et al. (2004)

26 Hypericaceae Hypericum perforatum L Plant
extract

n.d Increased phagocytic
activity

Fidan et al. (2008)

27 Lamiaceae Ocimum tenuiflorum L Plant
extract

Stimulation of lysosomal enzymes activity Increased phagocytic
activity

Mukherjee et al. (2005)

28 Lamiaceae Ajuga reptans L Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

Toiu et al. (2019)

(Continued on following page)

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6667327

Gierlikowska et al. Pharmacological Modulation of Neutrophilic Functions

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


E. purpurea has a well-documented biological effect in a variety of
diseases, particularly bacterial and viral infections. Recently,
many studies are focused on immunomodulatory effects of
echinacea. The phytochemical analysis confirmed that
alkamides, flavonoids, derivatives of quercetin, kaempferol and
caffeic acid, are considered important for biological activity
(Barnes et al., 2005).

Popov and colleagues showed that Bergenia crassifolia (L.)
treatment resulted in stimulation of neutrophilic uptake capacity
(Popov et al., 2005). This observation justifies the traditional use
of B. crassifolia as a treatment of bacterial infections (Shikov et al.,
2014). The plant presents a multitude of bioactive agents,
including tannins (pedunculagin, tellimagrandin I),
polysaccharides, flavonoids (bergenin, kaempferol, and

TABLE 1 | (Continued) List of selected plant material with documented impact on phagocytosis.

Plant family Species Plant
material

Cellular target
and mechanism

of action

Effect on
phagocytosis

References

29 Lamiaceae Ajuga genevensis L Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

Toiu et al. (2019)

30 Lythraceae Punica granatum L Plant
extract

n.d No influence on
phagocytosis

Oliveira et al. (2010)

31 Malvaceae Grewia asiatica L Plant
extract

Stimulation of reactive oxygen species
production

Increased phagocytic
activity

Mesaik et al. (2013)

32 Melastomataceae Osbeckia octandra DC. Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

t Hart et al. (1990)

33 Meliaceae Azadirachta indica A.Juss Plant
extract

n.d Inhibited phagocytic
activity

van der Nat et al. (1986)

34 Meliaceae Melia azedarach L Plant
extract

n.d No influence on
phagocytosis

Benencia et al. (1994)

35 Meliaceae Cedrela fissilis vell Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

Benencia et al. (1995)

36 Meliaceae Trichilia glabra L Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

Benencia et al. (2000)

37 Meliaceae Guarea kunthiana A.Juss Plant
extract

n.d Increased phagocytic
activity

Jerjomiceva et al. (2016)

38 Menispermaceae Tinospora cordifolia (willd.)
Hook.f. and thomson

Plant
extract

Stimulation of lysosomal enzymes activity Increased phagocytic
activity

Rege et al. (1993); Mukherjee
et al. (2010); Sharma et al.
(2012)

39 Menispermaceae Tinospora crispa (L.)
Hook.f. and thomson

Plant
extract

Increase of MAC-1 cell surface
expression

Increased phagocytic
activity

Ahmad et al. (2015)

40 Moraceae Ficus racemosa L Plant
extract

n.d Increased phagocytic
activity

Heroor et al. (2013)

41 Moringaceae Moringa oleifera lam Plant
extract

n.d Increased phagocytic
activity

Gupta et al. (2010); Sudha
et al. (2010)

42 Phyllanthaceae Phyllanthus debilis
J.G.Klein ex willd

Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

t Hart et al. (1990)

43 Phyllanthaceae Phyllanthus amarus
schumach. and thonn

Plant
extract

Inhibition of MAC-1 cell surface
expression

Inhibited phagocytic
activity

Ilangkovan et al. (2015)

44 Poaceae Saccharum officinarum L Plant
extract

Stimulation of reactive oxygen species
production

Increased phagocytic
activity

El-Abasy et al. (2002); Lo et al.
(2005); Chen et al. (2012)

45 Ranunculaceae Nigella sativa L Plant
extract

n.d Inhibited phagocytic
activity

Haq et al. (1995)

46 Rosaceae Crataegus laevigata
(poir.) DC.

Plant
extract

Inhibition of superoxide anion generation Inhibited phagocytic
activity

Dalli et al. (2008)

47 Rubiaceae Ixora coccinea L Plant
extract

Inhibition of reactive oxygen species
production

Inhibited phagocytic
activity

Wickramasinghe et al. (2014)

48 Santalaceae Viscum album L Plant
extract

n.d Increased phagocytic
activity

Hajto et al. (1989); Fidan et al.
(2008)

49 Sapindaceae Acer pictum subsp. Mono
(maxim.) H.Ohashi

Plant
extract

Stimulation of reactive oxygen species
production

Increased phagocytic
activity

An et al. (2013)

50 Saxifragaceae Bergenia crassifolia (L.)
fritsch

Plant
extract

Improved neutrophilic uptake capacity Increased phagocytic
activity

Popov et al. (2005)

51 Theaceae Camellia sinensis (L.)
kuntze

Plant
extract

Reduction of TLR-4, IkK and CD11 b
expression

Inhibited phagocytic
activity

Albuquerque et al., (2016)

52 Zingiberaceae Zingiber zerumbet (L.)
roscoe ex sm

Plant
extract

Decreased oxidative burst and ROS
production

Inhibited phagocytic
activity

Akhtar et al. (2019)

53 Zosteraceae Zostera marina L Plant
extract

n.d Increased phagocytic
activity

Zaporozhets et al. (1991)

n.d.- not defined
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quercetin derivatives) aldehydes (2,4-heptadienal, benzaldehyde),
terpenes (thymol, geraniol), phenolics (arbutin, ellagic acid,
hydroquinone), phenolic acids (caffeoyl quinic acid, gallic acid,
quinic acid) and other compounds (bergenan) (Shikov et al.,
2014). The selected compounds are typical for Bergenia species
and exerts anti-inflammatory, antimicrobial, antioxidant, and
immunomodulating properties (Shikov et al., 2014). A well-
studied compound is bergenin, which stimulates the uptake of
apoptotic human neutrophils and then intensifies the ROS
production by mouse macrophages (Shikov et al., 2014).

Tinospora cordifolia (Willd.), Ocimum tenuiflorum L. and
Semecarpus anacardium L. stimulated lysosomal enzymes
activity increasing phagocytic properties of neutrophils
(Mukherjee et al., 2005; Ramprasath et al., 2006; Sharma et al.,
2012). T. cordifolia extract was tested on Escherichia coli-induced
peritonitis in a mice model—both phagocytic and intracellular
bactericidal capacities of neutrophils were enhanced by extract
treatment (Thatte et al., 1992). The reduction of bacterial
colonization in mice model was also observed after O.
tenuiflorum treatment (Saini et al., 2009).

Ipomoea batatas (L.) was identified as an extract capable of
stimulating phagolysosome formation inside of neutrophils
(Miyazaki et al., 2005).

Inside of newly formed phagolysosomes, ROS are producedmore
intensively (Nathan, 2006; Urban et al., 2006). One of the major
functions of phagocytes is to produce ROS during the oxidative burst
(Brungs et al., 2015). Thus, stimulating this process may have
beneficial effects during bacterial infections. Echium amoenum
Fisch (Asadollahi et al., 2015), Grewia asiatica L. (Mesaik et al.,
2013), Saccharum officinarum L. (El-Abasy et al., 2002) and Acer
pictum subsp. mono (Maxim.) stimulated ROS production and
enhanced phagocytosis efficiency. These plants have documented
antioxidant and immunomodulatory properties (Abed et al., 2012;
Akram et al., 2014; Mehmood et al., 2020).

The signaling pathway leading to ROS release is highly dependent
on spleen tyrosine kinase (Syk) activation (Brungs et al., 2015). Three
plant extracts (Cuscuta epithymum (L.), Ipomoea batatas (L.) and
Euphorbia hirta L.) stimulated Syk phosphorylation resulting in a
more pronounced ROS production and an increased phagocytic
activity (Sudam et al., 2017).

Besides the plant extracts that stimulated phagocytosis, we also
presented plant materials that inhibited this process or had no
effect on it (Table 1). As mentioned above, 18 plant extracts
decreased phagocytic activity of neutrophils and 2 extracts did
not affect this process. Only few molecular mechanisms
responsible for suppression of phagocytosis were identified.
They were dependent on the inhibition of MAC-1 cell surface
expression (Phyllanthus amarus, Camellia sinensis (L.))
(Ilangkovan et al., 2015; Albuquerque et al., 2016), suppression
of CR1, CR3, CR4, and Fcγ receptors expression (Areca catechu
L.) (Hung et al., 2006) and inhibition of ROS production
(Cucumis maderaspatanus L. Ajuga reptans L. Ajuga
genevensis L. Osbeckia octandra DC, Cedrela fissilis Vell,
Trichilia glabra L. Phyllanthus debilis, Crataegus laevigata
(Poir.), Ixora coccinea L. Zingiber zerumbet (L.)) (t Hart et al.,
1990; Benencia et al., 1995; Benencia et al., 2000; Dalli et al., 2008;
Wickramasinghe et al., 2014; Akhtar et al., 2019; Toiu et al., 2019).

Two plant extracts: Punica granatum L. (Oliveira et al., 2010)
and Melia azedarach L. (Benencia et al., 1994) did not affect
phagocytosis. P. granatum, is known as a medical plant used for
hypertension, diabetes, as well as a few types of cancer, but not for
bacteria-induced diseases (Ge et al., 2021).M. azedarach was also
used for the cancer-related disease treatment (Ervina et al., 2020;
Shrestha et al., 2021).

We identified a few 9) plant-derived compounds regulating
the neutrophils’ phagocytosis (Table 2). Seven compounds
stimulated this process (gingerol, arecoline, 11-
hydroxymustakone, N-methyl-2-pyrrolidone,
N-formylannonain, magnoflorine, and tinocordiside) (Hung
et al., 2006; Sharma et al., 2012; Jin et al., 2016) and two did
not affect phagocytosis (cordifolioside A, syringin) (Sharma et al.,
2012). Gingerol was isolated from Pinellia pedatisecta Schott,
arecoline from Areca catechu L. and the rest of the selected
compounds were isolated from Tinospora cordifolia (Willd.).
P. pedatisecta as well as A. catechu are well-known in Chinese
medicine as anti-inflammatory agents (Li et al., 2017; Wang et al.,
2019). T. cordifolia is also known in Asian traditional medicine as
an anti-inflammatory agent (Yates et al., 2021).

PHARMACOLOGICAL MODULATION OF
PHAGOCYTOSIS BY SELECTED DRUGS

Some papers reported the effects of synthetic drugs on phagocytic
function of neutrophils, but the data are scarce (Table 3).
Numerous macrolide antibiotics stimulate phagocytosis
performed by macrophages (Hodge et al., 2006; Xu et al., 2019),
at least for some of the compounds using phosphatidylserine
receptor-dependent pathway (Yamaryo et al., 2003). These
results encouraged researchers to test influence of erythromycin
(Cuffini et al., 2009) and azithromycin (Pohl et al., 2020) on
neutrophil’s phagocytosis, which revealed that the former
indeed stimulates phagocytosis, whereas the latter does not
affect it. Fosfomycin was shown to enhance intracellular killing
of S. aureus in both macrophages and neutrophils (Shen et al.,
2016). Among antibiotics, chloramphenicol was also tested
showing no significant results (Bystrzycka et al., 2017). Clinical
significance of those findings remains uncertain, nevertheless
testing the influence of other antibiotics, especially macrolides,
on phagocytic function should be encouraged.

The interaction between melatonin and immune system is
being widely explored, as discussed previously (Carrillo-Vico
et al., 2013). Among others, its influence on neutrophil-
mediated phagocytosis was tested, showing its inhibitory role in
this phenomenon (Xu et al., 2019). The data on beneficial role of
melatonin against polymicrobial sepsis also exist (Xu et al., 2019),
thus further studies on the exact role of melatonin are needed.

PHARMACOLOGICAL MODULATION OF
DEGRANULATION VIA MEDICAL PLANTS

We have identified 14 plant extracts, whose impact on
degranulation was tested (Table 4). All the extracts inhibited
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the degranulation, but only in 5 cases the mechanism of action
was explained. Decreased degranulation resulted from inhibiting
the elastase and MPO synthesis and release. An elastase-
inhibitory effect was observed after Typhonium roxburghii
treatment (Korinek et al., 2016), as well as Panax notoginseng
(Jin et al., 2007), Lobelia chinensis Lour (Kuo et al., 2011) and
Tamarindus indica L. (Paula et al., 2009). Selected plants were
widely used to treat cancer and inflammatory-related diseases (Jin
et al., 2007; Kuo et al., 2011; Korinek et al., 2016).

Anti-MPO activity was observed for Anvillea garcinii subsp.
radiate (Boukemara et al., 2016). This plant was used for
symptomatic treatment of cold (Perveen et al., 2020), but the
successful treatment was related to the presence of flavonoids and
sesquiterpene lactones, which show significant antibacterial and
antifungal properties (Perveen et al., 2020). Thus, based on
traditional use of A. garcinii, further evaluation of
phagocytosis seems to be worth exploring.

For the rest of tested extracts (Cnidium monnieri (L.), Angelica
gigas Nakai, Carthamus tinctorius L. Cinnamomum cassia (L.),
Guarea kunthiana A. Juss. Prunus persica (L.), Rehmannia
glutinosa (Gaertn.), Eugenia aurata, and Eugenia punicifolia)
authors documented only final effect on degranulation without

identifying the molecular basis of the observed effect (Park et al.,
2004; Costa et al., 2016; Jerjomiceva et al., 2016).

Chung and colleagues identified Hypericum geminiflorum
Hemsl. as a source of compounds modulating degranulation
(Table 5). Gemichalcone A and gemichalcone B. isolated from
H. geminiflorum decreased the degranulation of neutrophils
(Chung et al., 2002). Plants belonging to the Hypericum species
were used as diuretics, analgetics, antiphlogistics and antidepressant
agents (Zhang et al., 2020a). Immunomodulatory, anti-
inflammatory or antimicrobial properties of Hypericium species
are unknown. Another example of a plant-derived compound
decreasing degranulation of neutrophils is quercetin (Kanashiro
et al., 2007; Pečivová et al., 2012). Although quercetin is widespread
in many plant species, in both mentioned articles quercetin was
used as a synthesized compound. Quercetin is a plant molecule that
has shown many pharmacological activities, such as antimicrobial,
antiviral, anticancer, having potential for treating metabolic,
allergic, and inflammatory disorders, cardiovascular diseases, and
arthritis (Batiha et al., 2020). The documented pharmacological
effects encouraged to introduction of quercetin to the
pharmaceutical market, however, low solubility in water, which
is a key factor in drug absorption and its bioavailability, limits its use

TABLE 2 | List of selected compounds isolated from plant material with documented impact on phagocytosis.

Plant family Species Compound Cellular target
and mechanism

of action

Effect on
phagocytosis

References

1 Araceae Pinellia pedatisecta schott Gingerol n.d Increased phagocytic
activity

Jin et al. (2016)

2 Arecaceae Areca catechu L Arecoline Increased uptake of bacteria Increased phagocytic
activity

Hung et al. (2006)

3 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

11-
Hydroxymustakone

Increased oxidative burst and ROS
production

Increased phagocytic
activity

Sharma et al.
(2012)

4 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

N-methyl-2-
pyrrolidone

Increased oxidative burst and ROS
production

Increased phagocytic
activity

Sharma et al.
(2012)

5 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

N-formylannonain Increased oxidative burst and ROS
production

Increased phagocytic
activity

Sharma et al.
(2012)

6 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

Cordifolioside A n.d No influence on
phagocytosis

Sharma et al.
(2012)

7 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

Magnoflorine Increased oxidative burst and ROS
production

Increased phagocytic
activity

Sharma et al.
(2012)

8 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

Tinocordiside Increased oxidative burst and ROS
production

Increased phagocytic
activity

Sharma et al.
(2012)

9 Menispermaceae Tinospora cordifolia (willd.) Hook.f.
and thomson

Syringin n.d No influence on
phagocytosis

Sharma et al.
(2012)

n.d.- not defined.

TABLE 3 | List of selected synthetic drugs with documented impact on phagocytosis.

Synthetic drug/s Cellular target and
mechanism of action

Effect on phagocytosis References

1 Azithromycin n.d No influence on phagocytosis Pohl et al. (2020)
2 Chloramphenicol n.d No influence on phagocytosis Bystrzycka et al. (2017)
3 Erythromycin n.d Increased phagocytic activity Cuffini et al. (2009)
4 Fosfomycin Increased ROS production and strengthened oxidative burst process Increased phagocytic activity Shen et al. (2016)
5 Melatonin n.d Decreased phagocytic activity Xu et al. (2019)

n.d.- not defined.
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(Batiha et al., 2020). Further attempts to increase the quercetin
solubility are urgently needed. Interestingly, quercetin, as well as
described above gemichalcone A and gemichalcone B belong to
flavonoids (Panche et al., 2016), which may indicate a specific
chemical group of plant-derived compounds that modulate
neutrophil degranulation.

Another source of compounds modulating degranulation is
Salvia officinalis L.–it contains salvianolic acid capable to
stimulate degranulation (Wang et al., 2010). Although
mentioned data refer to mast cells the observed
pharmacological effect is noteworthy, and in our opinion
further studies on neutrophil model may also bring
promising results S. officinalis was used for the treatment of
inflammation, gout, paralysis, ulcers, rheumatoid arthritis,

dizziness, tremor, diarrhea, and hyperglycemia (Ghorbani
and Esmaeilizadeh, 2017). Salvianolic acid is considered a
chemo-preventive agent which suppresses oxidative stress
and apoptosis (Wang et al., 2021). It was also documented
that salvianolic acid may also be an antioxidant and anti-
inflammatory agent which modulates PI3K/Akt/mTOR
signaling pathway (Jin et al., 2021).

PHARMACOLOGICAL MODULATION OF
DEGRANULATION VIA DRUGS

Number of synthetic drugs known to regulate neutrophils
degranulation is even lower than that affecting phagocytosis

TABLE 4 | List of selected plant material with documented impact on degranulation of neutrophils.

Plant family Species Plant
material

Cellular target
and mechanism

of action

Effect on
degranulation

References

1 Apiaceae Cnidium monnieri (L.) cusson Plant extract n.d Decreased
degranulation

Park et al. (2004)

2 Apiaceae Angelica gigas nakai Plant extract n.d Decreased
degranulation

Park et al. (2004)

3 Araceae Typhonium roxburghii schott Plant extract Inhibition of elastase release Decreased
degranulation

Korinek et al. (2016)

4 Araliaceae Panax notoginseng (burkill) F.H.Chen Plant extract Inhibition of elastase release Decreased
degranulation

Jin et al. (2007)

5 Asteraceae Carthamus tinctorius L Plant extract n.d Decreased
degranulation

Park et al. (2004)

6 Asteraceae Anvillea garcinii subsp. Radiata (coss. and
durieu) anderb

Plant extract Inhibition of myeloperoxidase
(MPO) release

Decreased
degranulation

Boukemara et al.
(2016)

7 Campanulaceae Lobelia chinensis lour Plant extract Inhibition of elastase release Decreased
degranulation

Kuo et al. (2011)

8 Fabaceae Tamarindus indica L Plant extract Inhibition of elastase release Decreased
degranulation

Paula et al. (2009)

9 Lauraceae Cinnamomum cassia (L.) J.Presl Plant extract n.d Decreased
degranulation

Park et al. (2004)

10 Meliaceae Guarea kunthiana A.Juss Plant extract n.d Decreased
degranulation

Jerjomiceva et al.
(2016)

11 Myrtaceae Eugenia aurata Plant extract n.d Decreased
degranulation

Costa et al. (2016)

12 Myrtaceae Eugenia punicifolia Plant extract n.d Decreased
degranulation

Costa et al. (2016)

13 Orobanchaceae Rehmannia glutinosa (gaertn.) DC. Plant extract n.d Decreased
degranulation

Park et al. (2004)

14 Rosaceae Prunus persica (L.) batsch Plant extract n.d Decreased
degranulation

Park et al. (2004)

n.d.- not defined.

TABLE 5 | List of selected compounds isolated from plant material with documented impact on degranulation of neutrophils.

Plant family Species Compound Cellular target
and mechanism

of action

Effect on
degranulation

References

1 Hypericaceae Hypericum geminiflorum hemsl Gemichalcone A n.d Decreased degranulation Chung et al. (2002)
2 Hypericaceae Hypericum geminiflorum hemsl Gemichalcone B n.d Decreased degranulation Chung et al. (2002)
3 Lamiaceae Salvia officinalis L Salvianolic acid n.d Increased degranulation Wang et al. (2010)

n.d.- not defined.
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(Table 6). Similarly, two macrolide antibiotics were tested,
and it was shown that erythromycin stimulates
degranulation (Abdelghaffar et al., 1997), whereas
azithromycin does not affect this process (Pohl et al.,
2020). Chloramphenicol was also investigated, but exerted
no effect on this function (Bystrzycka et al., 2017). Again,
whether these effects are of clinical significance, remains
unclear.

PHARMACOLOGICAL MODULATION OF
NETOSIS VIA MEDICAL PLANTS

A few plant extracts were tested for their influence on NETosis
(Table 7), showing that extracts obtained from Anacardium
occidentale L. (Hollands et al., 2016), Verbesina erstediana
Benth (Yaseen et al., 2017), and Guarea kunthiana A. Juss
(Jerjomiceva et al., 2016) increased it, whereas Salvia

TABLE 6 | List of selected synthetic drugs with documented impact on degranulation of neutrophils.

Synthetic drug/s Cellular target and
mechanism of action

Effect on degranulation References

1 Azithromycin n.d No influence on degranulation Pohl et al. (2020)
2 Chloramphenicol n.d No influence on degranulation Bystrzycka et al. (2017)
3 Erythromycin Decreased oxidative burst and ROS production Increased degranulation Abdelghaffar et al. (1997)

n.d.- not defined.

TABLE 7 | List of selected plant material with documented impact on NET formation.

Plant family Species Plant
extract/s

or
compound/s

Cellular target
and mechanism

of action

Effect on
NET formation

References

1 Anacardiaceae Anacardium
occidentale L

Plant extract Activation of PI3 kinase and surface-expressed G protein-coupled
sphingosine-1-phosphate (S1P) receptors

Increased NET
formation

Hollands et al.
(2016)

2 Asteraceae Verbesina
erstediana benth

Plant extract n.d Increased NET
formation

Yaseen et al.
(2017)

3 Lamiaceae Salvia miltiorrhiza
bunge

Plant extract Inhibition of myeloperoxidase (MPO) and NADPH oxidase (NOX)
activity

Decreased NET
formation

Tao et al. (2018)

4 Meliaceae Guarea kunthiana
A.Juss

Plant extract n.d Increased NET
formation

Jerjomiceva et al.
(2016)

5 Myrtaceae Eugenia aurata Plant extract n.d Decreased NET
formation

Costa et al. (2016)

6 Myrtaceae Eugenia punicifolia Plant extract n.d Decreased NET
formation

Costa et al. (2016)

n.d.- not defined.

TABLE 8 | List of selected compounds isolated from plant material with documented impact on NET formation.

Plant-derived
compound

Cellular target and
mechanism of action

Effect
on NET formation

References

1 Anacardic acid Activation of PI3 kinase and surface-expressed G protein-coupled
sphingosine-1-phosphate (S1P) receptors

Increased NET
formation

Hollands et al.
(2016)

2 Catechin hydrate Decreased ROS production Decreased NET
formation

Kirchner et al.
(2013)

3 Celastrol Downregulation the SYK-mek-erk-nf?b signaling cascade Decreased NET
formation

Yu et al. (2015)

4 Epicatechin Decreased ROS production Decreased NET
formation

Kirchner et al.
(2013)

5 Polydatin Decreased ROS production Decreased NET
formation

Liao et al. (2018)

6 Rutin trihydrate Decreased ROS production Decreased NET
formation

Kirchner et al.
(2013)

n.d.- not defined.
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miltiorrhiza Bunge (Tao et al., 2018), Eugenia aurata (Costa et al.,
2016), and Eugenia punicifolia (Costa et al., 2016) decreased it.

A. occidentale has shown significant antibacterial activity and
might have potential applications as new antibacterial drug
(Shabeeba and Rathinasamy, 2018). A. occidentale extract has
been tested in mice and rat models as a therapy of gastric-related
conditions (Konan and Bacchi, 2007; Morais et al., 2010; Goulart
da Silva et al., 2021). Thus, further evaluation of its
immunomodulatory properties may open novel prospects. V.
erstediana and G. kunthianawere were used in the folk medicine
in treatment of bacterial infections, especially S. aureus
(Jerjomiceva et al., 2016; Yaseen et al., 2017). Thus,
documented antimicrobial properties justify the traditional use.

It is unknown why E. aurata and E. punicifolia extracts
decreased NET release. For S. miltiorrhiza it has been
speculated that decreased NET formation may results from the
inhibition of MPO and NADPH oxidase (NOX) activity (Tao
et al., 2018).

Six plant-derived compounds were investigated (Table 8).
Anacardic acid, as the only substance, was able to increase NET
production (Hollands et al., 2016), whereas catechin hydrate,
epicatechin, rutin trihydrate (Kirchner et al., 2013), celastrol (Yu
et al., 2015), and polydatin (Liao et al., 2018) decreased it. Anacardic
acid belongs to phenolic lipids (Hollands et al., 2016), a diversified
group of compounds derived from mono and dihydroxyphenols
(Stasiuk and Kozubek, 2010). Anacardic acid shows antioxidant
capacity, what may be related with suppression of superoxide
generation (Trevisan et al., 2006). According to Hollands et al.
inhibition of ROS production (inter alia superoxide generation)
directly affects NET formation (Hollands et al., 2016).

Other compounds (catechin hydrate, epicatechin, rutin
trihydrate, celastrol, and polydatin) classified as NET formation
inhibitors belong to different chemical groups, thus an unambiguous
assignment of a chemical structure to a biological function is not
possible. Interestingly, excluding celastrol, compounds decreased
NET formation via modulation of ROS production. Although

TABLE 9 | List of selected synthetic drugs with documented impact on NET formation.

Synthetic drug/s Cellular target and
mechanism of action

Effect
on NET formation

References

1 Amoxicillin n.d Increased NET
formation

Bystrzycka et al. (2016)

2 Amphotericin B n.d Decreased NET
formation

Decker et al. (2018)

3 Azithromycin n.d Decreased NET
formation

Bystrzycka et al. (2017)

4 Cefotaxime n.d No effect on NET
formation

Manda-Handzlik et al. (2017)

5 Clarithromycin n.d Increased NET
formation

Konstantinidis et al. (2016);
Arampatzioglou et al. (2018)

6 Chloramphenicol n.d Decreased NET
formation

Bystrzycka et al. (2017)

7 Clozapine n.d No effect on NET
formation

Irizarry-Caro et al. (2018)

8 Enrofloxacin Increased expression of PAD (peptidylarginine deiminase) 4 protein,
increased presence of citrullinated H3

Increased NET
formation

Jerjomiceva et al. (2014)

9 Erythromycin n.d Decreased NET
formation

Zhang et al. (2019)

10 17-β-estradiol n.d Increased NET
formation

Yasuda et al. (2019)

11 Gentamicin n.d Decreased NET
formation

Manda-Handzlik et al. (2017)

12 Hydralazine n.d Increased NET
formation

Irizarry-Caro et al. (2018)

13 Mannitol hypertonic
saline

Suppresses NOX2-dependent NETosis is via neutrophil dehydration Decreased NET
formation

Nadesalingam et al. (2018)

14 Melatonin n.d Increased NET
formation

Xu et al. (2019)

15 Memantine Stimulates the production of MPO Increased NET
formation

Peng et al. (2020)

16 Metformin Reduction of elastase, proteinase-3 and histones concentration Decreased NET
formation

Menegazzo et al. (2018)

17 Minocycline n.d No effect on NET
formation

Irizarry-Caro et al. (2018)

18 Procainamide n.d Increased NET
formation

Irizarry-Caro et al. (2018)

19 Voriconazole n.d Decreased NET
formation

Decker et al. (2018)

n.d.- not defined.
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anacardic acid also decreased ROS production, the biological effect
was opposite to the one observed for other compounds. Because
ROS production is crucial for efficient pathogen killing and NET
formation, the dependency between chemical structure and
pharmacological effect, as well as potential cytotoxicity need to be
evaluated in the future.

PHARMACOLOGICAL MODULATION OF
NET FORMATION VIA DRUGS

We identified 19 drugs, whose impact onNET formation was tested,
mostly antibiotics and antimycotics (Table 9). β-lactams belong to
the most widely used class of antibiotics (Bush and Bradford, 2016),
but only two drugs from this group were tested. Amoxicillin
increased NET formation (Bystrzycka et al., 2016), whereas no
such effect was observed for cefotaxime (Manda-Handzlik et al.,
2017). Three representatives of macrolides were investigated with
different results. Clarithromycin increased NETosis (Konstantinidis
et al., 2016; Arampatzioglou et al., 2018), erythromycin decreased it
(Zhang et al., 2019), whereas azithromycin exerted no effect
(Manda-Handzlik et al., 2017). Among other groups single
particles were tested. Enrofloxacin (fluoroquinolone used in
veterinary medicine (López-Cadenas et al., 2013)) increased NET
formation (Jerjomiceva et al., 2014), chloramphenicol (Bystrzycka
et al., 2017) and gentamicin (Manda-Handzlik et al., 2017) decreased
it, whereas minocycline (tetracycline used in acne vulgaris, but with
some safety issues, as revised in (Garner et al., 2012)) did not affect
this effect (Irizarry-Caro et al., 2018).

Neutrophils play an essential role in counteracting mycoses,
including NET release, as recently revised (Urban and Nett,
2019). Both amphotericin B, usually used in severe cases
(Hamill, 2013), and voriconazole, a drug of choice in invasive
aspergillosis (Malani et al., 2015), decreased NET formation
(Decker et al., 2018).

Above-mentioned data clearly reveal the complexity of the
issue. It obvious that stimulation of NET production during an
infection is beneficial, as it increases pathogen clearance and thus
infection control, on the other hand it can participate in host
tissue’s damage, as it is observed in acute respiratory distress
syndrome (Grégoire et al., 2018), or even promote bacteria
proliferation (Czaikoski et al., 2016). The effects of
antimicrobial drugs are not easy to interpret due to difficulties
in separating direct antimicrobial and immune-modulating
properties. To further investigate this matter, in vivo studies
on combinations of antibiotics or antimycotics with NET-
modulating particles are needed. The substances discussed
below can be used as such particles.

It was demonstrated that acidification inhibits ROS-
dependent NET release (Behnen et al., 2017), whereas more
alkaline pH stimulates NET formation mediated by both
NOX2-independent (Naffah de Souza et al., 2017) and NOX2-
dependent (Khan et al., 2018) pathways. These results are of
interest since hypoperfusion-induced lactic acidemia is common
in sepsis and septic shock and should be managed accordingly
(Rhodes et al., 2017). It is worth verifying whether increasing pH
affects NET release during the treatment.

Mannitol and hypertonic saline, agents administered to patients
with intracranial edema (Burgess et al., 2016) may suppress of
NOX2-dependent NET production (Nadesalingam et al., 2018).
Again, the clinical significance of this observation is not clear.

Metformin remains the first line of pharmacological treatment
in type 2 diabetes mellitus (Baker et al., 2021) and may be
beneficial in numerous other conditions (Lv and Guo, 2020).
Studies showed that it decreases NET release through inhibition
of elastase, proteinase-3 and histones (Menegazzo et al., 2018).
Clinical significance of this phenomenon is not clear, nevertheless
it should be noted, that in sepsis and septic shock accompanied
with hyperglycemia insulin is a drug of choice (Rhodes et al.,
2017). As mentioned, NET formation seems to play a role in
atherosclerosis (Soehnlein, 2012), which may be prevented by a
long-term metformin treatment (as revised in (Luo et al., 2019)).

Melatonin was also tested for its effect on NET production and
increased it (Xu et al., 2019). Among other hormones only 17-
β-estradiol was tested–it also increased NET formation (Yasuda
et al., 2019). Since women have overall stronger immune
responses, as revised in (Moulton, 2018), further studies are of
interest.

Memantine is a drug approved for Alzheimer’s disease and
tested for other applications (Lu and Nasrallah, 2018). It was
shown that through stimulation of MPO production, it increases
NET formation (Peng et al., 2020). Clozapine, the first atypical
antipsychotic drug, whose side effects involve agranulocytosis
(Khokhar et al., 2018) was also tested and was shown to exert no
influence on NET formation (Irizarry-Caro et al., 2018).

Drug-induced lupus is a condition similar to systemic lupus
erythematosus and triggered by initiation of a certain drug,
usually resolving after the medication’s withdrawal (Borchers
et al., 2007). Carmona-Rivera et al. demonstrated a role of
NETosis in this pathology (Carmona-Rivera et al., 2017). In
this context, an interesting approach was proposed by
(Irizarry-Caro et al., 2018), who focused on drugs related to
drug-induced lupus. They investigated hydralazin, a direct-acting
vasodilator (Kandler et al., 2011) and procainamide, and showed
that both drugs indeed increase NET production, which may
contribute to autoimmunity.

CONCLUSION AND PROSPECTS

The Chinese and European Pharmacopeia convincingly report
possible modulations of the immune response via medical plants.
So far, natural products classified as immunomodulators were
cursorily explored, without comprehensive identification of
molecular mechanisms responsible for the observed effects.
Firstly, there is a need to perform detailed phytochemical
analyses of plant extracts, then select pure compounds for
further biological evaluation. A specific assessment of purified
compounds could help to identify cellular targets, determine
bioactive dosage, biodistribution and kinetics. The knowledge of
molecular mechanisms regulated by plant-derived compounds
may potentially help to identify therapeutic targets, as well as
potentially limit the spread of an infection. Moreover, the
chemical structures of selected secondary metabolites can
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serve as lead structures for synthesis of new substances. Similar
conclusions could be drawn for synthetic drugs. Only few
synthetic drugs were tested for their influence on
immunomodulatory neutrophil functions and most of the
data brought interesting results, thus further studies are
urgently needed. For synthetic drugs, two areas seem to be
the most important: identifying new substances, which affect
effector functions of neutrophils, and testing approved drugs,
especially antibiotics, antimycotics and these responsible for
autoimmune reactions re, for their impact on
immunomodulatory functions of neutrophils.
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