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Abstract
Graft-versus-host disease (GVHD) is a major source of morbidity andmortality following allogeneic hematopoietic stem cell transplant
(allo-HSCT), one of the most effective approaches to treat hematopoietic malignancies.1 However, current prophylaxis regimens and
treatments that reduce the detrimental effect of acute GVHD can be offset by increased incidence in opportunistic infections and
relapse of the primary malignancy.2 In addition, the majority of the approaches that inhibit T cell responses are non-specific, resulting
in the inhibition of both alloreactive T cells and protective T cells from the donor. Therefore, there is an increase in the demand to
develop novel approaches that selectively target alloreactive T cells. One potential means to address this issue is to take advantage of
the unique metabolic profile of activated T cells.
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1. INTRODUCTION

Graft-versus-host disease (GVHD) occurs when immune
responses are directed against foreign antigens. Patients whose
immune system or failing organs that need replacement from
donors are at risk for GVHD, given that the donor and the
recipient are genetically non-identical. In those with aggressive
hematologic malignancies or immunodeficiencies, hematopoietic
stem cell transplant (HSCT) from an allogeneic donor can be
performed as a curative option. However, GVHD accounts for a
major source of morbidity andmortality aside from relapse of the
primary disease.1

T cells, as part of the adaptive immunity, are one of the primary
causes for the development of GVHD.3 In Major histocompati-
bility (MHC)-mismatched donor-recipient pairs, allogeneic T
cells are activated upon recognition of the alloantigen presented
by the mismatched-MHC molecule, causing damage in target
tissues.1 Such reactions can also be mediated by minor
histocompatibility antigens (MiHAs), which arise from differ-
ences in single nucleotide polymorphisms (SNPs) among
individuals.4 In HSCTs, recipient antigen presenting cells (APCs)
activate donor T cells to elicit damage in target organs.3
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Therapies including T cell depletion from the donor bone
marrow have been used in the clinic to reduce the risk of
GVHD.5,6 However, this procedure also offsets the graft-versus-
tumor (GVT) effect that is required to prevent relapse of the
primary disease, particularly in the case of allogeneic HSCT.7

Since activated alloreactive T cells exhibit a unique fine-tuning
profile of metabolic pathways, such signatures can be utilized to
improve the treatment of GVHD by using a T cell-specific
targeting approach.
2. T CELL METABOLISM

In the resting phase, T cells remain naïve and primarily depend
on oxidative phosphorylation (OXPHOS) to sustain survival and
trafficking.8 Compared to aerobic glycolysis, OXPHOS priori-
tizes energy conservation, which produces 36 Adenosine
triphosphate (ATP) molecules in contrast to 2 ATPmolecules.9,10

This mode of metabolism best matches the functional demands of
a resting T cell. Although migration through circulation,
including secondary lymphoid organs, can be an ATP-exhausting
process, immune surveillance is required for resting naïve T cells
to screen for foreign antigens prior to activation, hence the
requirement for efficient energy production.8

T cell priming occurs with T cell receptor (TCR) ligation and
stimulation of the costimulatory molecules by APCs. Upon
priming, T cell metabolism is fundamentally reprogrammed to
adapt to the energetic demands of an activated T cell. Rather than
predominately relying on OXPHOS, T cells rapidly increase the
rate of aerobic glycolysis.11 Although OXPHOS is much more
efficient in ATP generation, glycolysis provides various interme-
diate metabolites for nucleotide and amino acid production to
support cell growth and division.8,11

Early T cell activation occurs from minutes to hours, and is
largely independent of transcription and translation.12 Therefore,
although increased aerobic glycolysis is initiated during this
phase, glucose uptake and glycolytic enzymes are not yet affected.
Rather, during this process, pyruvate dehydrogenase kinase
(PDHK1) is activated via TCR ligation to redirect pyruvate to
lactate production rather than entering the tricarboxylic acid
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(TCA) cycle.12 Essentially, PDHK1 acts as a metabolic switch
that determines the fate of pyruvate by deactivating pyruvate
dehydrogenase through phosphorylation, blocking the conver-
sion of pyruvate into acetyl-CoA. Therefore, PDHK1 activation
directly ensures that pyruvate, a metabolic intermediate of
glucose, is directed toward aerobic glycolysis.
During late T cell activation, which can take hours to days,

various glycolytic enzymes are upregulated to maximize aerobic
glycolysis. This second spike of aerobic glycolysis is associated
with transcriptional reprogramming in aMyc-dependent manner
process.13 In addition, Akt (also known as protein kinase B) and
hypoxia-inducible factor 1 (HIF-1a) activation also contribute to
this process.14 Glucose transporters, primarily Glut1, import
extracellular glucose to keep up with the increased demand for
glycolysis.15 During activation, surface expression of glucose
transporters is rapidly increased following Akt activation.15 Late
during the T cell activation phase is also accompanied by the
clonal expansion phase, during which T cells undergo rapid
division. This phase requires the efficient engagement of both
glycolysis and OXPHOS. Several metabolites derived from the
TCA cycle can be used for de novo synthesis components
required for cell growth. Among these metabolites, citrate and
oxaloacetate can be used to fuel lipid and nucleotide
synthesis, respectively.16,17

During the effector phase, aerobic glycolysis continues to play
a critical role. The increase in effector functions can be achieved
through the overall upregulation of translation as directed by
mammalian target of rapamycin complex 1 (mTORC1) activa-
tion.18–20 Not only does aerobic glycolysis meet the demand for
growth and rapid cell division, increased biosynthesis also
supports the production of effector molecules, including
proinflammatory cytokines, IFN-g, and cytotoxic molecules
such as TNF-a and perforin.12 Overall, the increased output of
the proinflammatory molecules can initiate and sustain the
damage of alloreactive T cells on recipient tissues. In addition,
many glycolytic enzymes act as a switch to control effector
cytokine production. When glycolysis is rapidly upregulated, the
translation of many cytokines become activated due to alleviated
suppression by corresponding glycolytic enzymes.21 Prior studies
demonstrated that T cell effector function, primarily cytokine
production, is regulated by aerobic glycolysis through posttran-
scriptional changes. Specifically, these studies showed that many
glycolytic enzymes are linked to cytokine production by binding
to AU-rich elements (AREs).12,21 When not actively engaged in
glycolysis (resting T cells), glycolytic enzymes bind to AREs
located in the 30UTR of cytokine mRNAs, blocking their
translation. For example, Glyceraldehyde-3-Phosphate Dehydro-
genase (GAPDH) represses Ifng translation when the glycolytic
flux is low.22 Besides regulating Ifng, the lactic acid dehydroge-
nase (LDH) can also control the translation of Tnfa, Il2, limiting
the synthesis of proinflammatory cytokines.12 However, cyto-
toxic granules including perforin and granzyme B lack the ARE
component, and are not under the control of glycolytic enzymes
like cytokines.12 Nevertheless, the translational process is tightly
coordinated with aerobic glycolysis through mTORC1 activa-
tion, indicating that cytotoxic granules are controlled through
translation.
In terms of differences among distinct T cell lineages, CD4+ T

cell subsets also display unique signatures of metabolic require-
ments. Though differences exist, Th1, Th2, and Th17 cells
preferentially utilize aerobic glycolysis.8,23,24 In contrast, regula-
tory T cells (Tregs) favor fatty acid oxidation (FAO).25,26

Manipulation of metabolic pathways can also influence T helper
www.blood-science.org
cell differentiation.8 The addition of lipids favors the generation
of Tregs, rather than other effector lineages.27 Similarly, memory
T cells predominately rely on FAO,28,29 accompanied by
increased expression of the lipid transporter, carnitine palmi-
toyltransferase 1A (CPT1A), located on the mitochondrial
membrane.30,31 Other relevant metabolic reprogramming of
memory T cells include increased mitochondrial biomass and
spare respiratory capacity, conferring greater resistance to
metabolic stress.11,28 These metabolic changes are critical to
ensure memory T cell survival following an immune response.
Similar to CD4+ T cells, the activation of CD8+ T cells into

cytotoxic effector T cells also requires the upregulation of aerobic
glycolysis to keep upwith the biosynthetic demands.15 Both rapid
division and production of proinflammatory cytokines, as well as
cytolytic granules are highly dependent on this process.

3. T CELL METABOLISM DURING GVHD: THE ROLE
OF DIFFERENT METABOLIC PATHWAYS IN
ALLOREACTIVE T CELLS

3.1. Aerobic glycolysis
Aerobic glycolysis is classically defined in theWarburg effect as

the conversion of pyruvate into lactate as opposed to being
utilized for TCA cycle even in the presence of sufficient
oxygen.9,32,33 Though a concept familiar to cancer studies as
this pathway is highly upregulated in many types of tumor cells, it
is now becoming increasingly clear that activated lymphocytes,
including T cells, also rely on aerobic glycolysis for rapid
biosynthesis and proliferation.15,34

Previous studies showed that aerobic glycolysis supports T cell
growth and proliferation.15,35 Although this process is less
efficient at generating ATP compared to OXPHOS, the various
intermediate metabolites generated through this pathway
support cell growth and division. Immediately following TCR
ligation, aerobic glycolysis is rapidly initiated through PDHK1,
which allows for the conversion of the end product of glycolysis,
pyruvate, into lactate rather than feeding the TCA cycle.
Subsequently, costimulatory molecule ligation by the APC
(CD28) activates the PI3K-Akt-mTOR signaling pathway.36

Akt can upregulate glycolysis by phosphorylating glycolytic
enzymes such as hexokinase (HK) to increase the glycolytic
flux.13,37 In alloreactive T cells, not only is HK1 upregulated, the
expression of a second isoform, HK2, is also enhanced to
drastically increase the rate of glycolysis.37 Akt is also critical for
the surface trafficking of Glut1 to achieve increased glucose
uptake.38 Downstream of Akt, the mTORC1 is activated and
promotes translational efficiency through the phosphorylation of
eukaryotic translation initiation factor 4E binding protein 1
(4EBP-1) and p70S6 kinase (p70S6K).39

We and other have shown that alloreactive T cells preferen-
tially upregulate glycolysis when activated by alloantigens
(Fig. 1).15,37 This was demonstrated by increased glycolytic
activity in T cells isolated from transplant recipients, as well as the
requirement for Glut1 to mediate GVHD development in a
murine bone marrow transplant model. Compared to syngeneic
transplants, in which T cells also upregulate glycolysis during
homeostatic expansion in response to cytokines or self-ligands,
allogeneic transplants differ in that alloreactive T cells upregulate
glycolysis much higher than the syngeneic counterparts.
In addition, aside from the upregulation of Glut1 by alloreactive
T cells, Glut3 expression is also increased to further
enhance glycolysis compared to T cells derived from syngeneic
recipients.37
17
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Figure 1. Metabolism of alloreactive T cells. Following the transfer of donor T cells into the allogeneic recipient, resting alloreactive T cells, which rely primarily on
fatty acid oxidation (FAO), become activated upon recognition of alloantigens. Early during activation, aerobic glycolysis is immediately upregulated to support the
biosynthetic depends required for growth and expansion. Glutamine uptake is also elevated to support biosynthesis. During the effector phase, aerobic glycolysis is
required for effector functions such as proinflammatory cytokines. During the transition into the memory phase, aerobic glycolysis is downregulated, along with
glutamine metabolism. In contrast, FAO is upregulated to support memory T cell function.
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In terms of the role of aerobic glycolysis in CD4+ T cell subset
differentiation and function, Th1, Th2, Th17 are pathogenic in
the context of GVHD and prefer the use of glycolysis.40 In
contrast, Tregs are suppressive and prevent the progression of
GVHD, favoring the use of FAO.8,41–43 The corresponding key
metabolic regulators for each subset differ: while both Th1 and
Th17 are regulated by mTORC1,8 Th17 also requires hypoxia
inducible factor 1 subunit alpha (HIF-1a).44,45 However, Th2 is
predominantly dependent on mTORC2.8,46 Prior murine studies
demonstrated that mTOR and mTORC1 are involved in Th1-
mediated GVHD progression.37 In recipients of donor T cells
deficient in either components, the number of IFN-g-producing T
cells in the target organ was markedly reduced. It was further
determined in this study that the number of induced Tregs
(iTregs) was markedly increased in the absence of mTORC1
(Raptor KO T cell recipients).37 This is in line with the finding
that glycolysis is required for Th1 differentiation mediated by
mTORC1. The absence of mTORC1 hence promotes iTreg
differentiation. Moreover, the interference of pathogenic Th17
has been demonstrated to effectively reduce GVHD development,
and has been linked to the modulation of Th17 metabolism
through the blockade of IL-1 signaling.47 It was demonstrated
that the treatment reduced Th17 induction and was accompanied
by a significant decrease in the expression of glycolytic enzymes.
Upon transfer of treated donor cells, the severity of GVHD
development was markedly reduced, with decreased percentages
of Th17 donor T cells and increased induction of iTregs in the
target organ.47

Although both alloreactive CD4+ and CD8+ T cells rely on
glycolysis, there are subtle differences between the metabolic
requirements of the two subsets, which may have important
clinical implications. In the context of allo-HSCT, CD4+ T cells
are more dependent on glycolysis than their CD8+ counter-
parts.15 This provides implications for the impact of glycolytic
18
inhibition on GVHD versus GVT. Since the GVT effect is
primarily mediated by cytotoxic donor T cells recognizing the
tumor antigen, it would be beneficial for CD8+ tumor-specific T
cells to survive from glycolytic inhibition.

3.2. OXPHOS
As a critical the energy-conserving component of the catabolic

pathway, OXPHOS is a tightly regulated process that allows
lymphocytes to adapt to metabolic stress and changes in cellular
needs. OXPHOS is tied to the regulation of aerobic glycolysis due
to the competition for pyruvate availability. Since aerobic
glycolysis is under the control of the energy sensor adenosine
monophosphate-activated protein kinase (AMPK), the activity of
AMPK can regulate mitochondrial oxidative capacity via
OXPHOS.48–50 In resting T cells and memory T cells, AMPK-
mediated oxidative metabolic state promote cell survival and help
them adapt to the corresponding energetic needs.8,51

In activated T cells, AMPK activation is triggered immediately
following T cell activation due to increased LKB1 signaling and
escalated intracellular calcium level, which is a transient
process.52,53 This is followed by the activation of mTORC1,
which is preceded by the inhibition of AMPK.48 Therefore,
activated T cells have lower AMPK activity and higher glycolytic
rate to support growth and effector functions. These findings
have implications in the setting of an inflammatory response.
Indeed, CD8+ T cells deficient in AMPKa become more potent
proinflammatory cytokine producers.53 Previous studies using
murine allo-HSCT models suggest that OXPHOS is actively
utilized at comparable levels in both syngeneic and allogeneic
BMT in mouse studies.37 In addition, lower levels of TCA cycle
metabolites such as citrate, fumarate, and malate were found in
alloreactive T cells compared to T cells derived from syngeneic
HSCT transplants.37 This result points to the possibility that
pyruvate molecules were predominately converted to lactate
www.blood-science.org
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rather than TCA intermediates, highlighting a dominant role for
aerobic glycolysis instead of OXPHOS during GVHD develop-
ment. Interestingly, ROS production as a result of increased
OXPHOS has been shown to be required for T cell activation.54 It
is possible that this mechanism is also utilized by activated
alloreactive T cells. Hence, it may be optimal to simultaneously
inhibit aerobic glycolysis and OXPHOS, despite a more
dominant role for glycolysis.

3.3. Lipid metabolism
During T cell activation,Myc not only mediates transcriptional

changes in glucose metabolism, but also regulates genes for fatty
acid synthesis (FAS).13 Moreover, lipid metabolism has been
shown to regulate T cell fate.55 It was demonstrated that
enhanced lipid synthesis promotes the proinflammatory
effector T cell phenotype while lipid oxidation favors iTreg
differentiation.27

Previous studies using murine models demonstrated that
alloreactive T cells not only displayed a tendency for the
accumulation of long-chain fatty acids, but also upregulated
enzymes associated with FAS, indicating that FAS may be able to
promote GVHD development.56 In line with this hypothesis, a
separate murine study showed that inhibition of FAS by
interfering with acetyl-CoA carboxylase 1 (TACC1) prevented
clonal expansion of alloreactive T cells in vitro.57 Furthermore,
transfer of treated donor T cells was able to arrest the
development of GVHD. Collectively, these findings indicate that
the regulation of FAS, a component of anabolic metabolism
similar to glycolysis, may be useful to inhibit the pathogenicity of
alloreactive T cells.
As the catabolic branch of lipid metabolism, there are also

studies testing the role of FAO. However, results from different
groups appeared to report conflicting findings about the role of
FAO in GVHD.37,56 Alloreactive T cells have been shown to
display increased FAO by Ferrara’s group.56 However, other
studies appeared to suggest that FAO plays a less important role,
as indicated by the decreased amount of key metabolites required
for FAO and TCA cycle in T cells derived from allogeneic HSCT
recipients compared to syngeneic recipients in murine models.37

In addition, fatty acid uptake was also found to be lower in
alloreactive T cells, contrary to the former reports. Factors
contributing to discrepancies between these reports include the
varying use of controls. In the first study, resting cells were used as
control while donor T cells derived from syngeneic HSCT were
used for the second study. Syngeneic donor T cells may be a more
appropriate control in GVHD models as it accounts for
background signal contributed by homeostatic proliferation.58

3.4. Glutamine metabolism
Glutamine can be used by activated T cells as an alternative

carbon source for TCA cycle.36 The process begins through the
conversion of glutamine to glutamate. Eventually, a-ketogluta-
rate (a-KG), a citrate precursor, is generated via glutaminol-
ysis.59,60 In addition to replenishing metabolites in TCA cycle,
glutamine can also be used as a source for anabolic pathways to
support cell growth.61 The production of a-KG can be used to
generate citrate, which forms the backbone during lipid synthesis
once converted to acetyl-CoA in the cytosol.62 In addition,
glutamine can also be used for nucleotide synthesis. Specifically,
during activation of alloreactive T cells, both CD4+ and CD8+ T
cell subsets utilize as substrates for ribose synthesis, promoting
DNA replication during proliferation. Another facet of
glutamine metabolism in GVHD is the upregulation of glutamine
www.blood-science.org
transporters expressions in alloreactive T cells. In particular, the
expression of glutamine transporters, including SLC3a2 and
SLC5A1, is controlled by Myc.63 Interestingly, Myc-regulated
GLS1 expression further promotes the conversion of glutamine
to glutamate.64,65

3.5. Pentose phosphate pathway
The pentose phosphate pathway (PPP) is another component

of anabolic metabolism, and is preferentially utilized by
alloreactive T cells to promote cell growth and proliferation.37

PPP generates carbon donors (ribose-5 phosphate) for nucleotide
synthesis.66 In alloreactive T cells, the glycolysis intermediate,
glucose-6-phosphoate (G-6P), is used as the main substrate for
PPP to produce the end product and fuel nucleotide genera-
tion.67,68 Therefore, both PPP and glycolysis activities are
enhanced in alloreactive T cells. In addition, PPP also produces
NADPH to support the synthesis of antioxidants,69 potentially
alleviating the oxidative stress during T cell activation.
4. TARGETING ALLOREACTIVE T CELL
METABOLISM WHILE PRESERVING GVT EFFECT

Activated alloreactive T cells display distinct metabolic
signatures to promote their survival, clonal expansion, and
proinflammatory effector functions during GVHD development.
However, the use of broad immunosuppressant drugs, such as
glucocorticoids and calcineurin inhibitors, not only can lead to
many complications, but also suppresses both alloreactive and
antitumor T cells, thus unable to separate GVHD targeting and
the GVT effect. Therefore, studies characterizing the metabolic
signatures of alloreactive T cells provide key insights for the
development of drugs that will improve the specific inhibition of
alloreactive T cells.
For GVHD-targeting, blockade of aerobic glycolysis has

shown efficacy for alleviating disease development in murine
studies. We have also demonstrated using a murine model for
allo-HSCT that the deletion of Glut1 significantly alleviates
GVHD development by impairing glycolysis.15 However,
targeting glycolysis with small molecule inhibitors such as
2DG (interfering the HK step of glycolysis),37 3-(3-pyridinyl)-1-
(4-pyridinyl)-2-propen-1-one (3-PO) (inhibiting PFKFB3, a
regulatory and a rate-limiting factor in the glycolytic path-
way),37,70,71 and rapamycin (inhibiting mTORC1 activation)
may be more practical as a treatment regimen in the clinic.72–74

This approach may be promising as murine alloreactive T cells
have been shown to be susceptible to glycolysis inhibitors in vitro.
However, such procedures must be developed with caution to
decrease the off-target effects of non-specific targeting if given
systemically. Other modulators, such as programmed death 1
(PD-1), have been shown to modulate glucose metabolism in T
cells. Ligation of PD-1 reduces the capacity to engage in
glycolysis, causing pre-activated T cells to switch the glycolytic
program in favor of FAO.75 Thus, PD-1 ligating elements such as
the soluble PD-L1 protein, are able to inhibit alloreactive T cells.
The effect of PD-1/PD-L1 interaction has been demonstrated in
murine studies, which showed rapid increase in mortality in PD-
L1-deficient hosts, compared to wild type recipients with
upregulation of PD-L1 during GVHD.76 On the other hand,
AMPK activators, including metformin and AICAR,77 can be
used to suppress aerobic glycolysis in activated T cells by
modulating mTORC1. Furthermore, pharmacological activation
of AMPK or mTORC1 inhibition may have the potential to
promote iTreg polarization while preventing the generation of
19
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pathogenic Th17 cells,78 as it has been shown in vitro. Another
advantage of glycolytic inhibitors is that it has the potential to
separate GVHD from the GVT effect, given that tumor-specific T
cells, which are CD8+ T cells that mediate direct killing, may be
more resistant to metabolic inhibition than their CD4+ counter-
part. Although both CD4+ and CD8+T cells upregulate glucose
metabolism upon activation, the metabolism of CD8+T cells is
more glycolytic while capable of better utilizing glutamine as an
alternate energy source, and was demonstrated to be more
tolerant to glycolytic inhibition in in vitro assays using murine T
cells.79 In addition, memory CD8+ T cells that mediate GVT
preferentially depend on FAO, as opposed glycolysis. Past studies
have indicated that the use of glycolytic inhibitors can further
enhance the antitumor activity of CD8+ memory T cells, possibly
due to increased FAO to compensate for the lack of energy
derivation from glycolysis.80

AlthoughalloreactiveT cells primarily relyonaerobic glycolysis,
OXPHOS is also increased, with ROS as a byproduct to support T
cell activation. Consequently, alloreactive T cells exhibit an
oxidative phenotype and are more susceptible to superoxide-
induced apoptosis. Inmurine allo-HSCT studies, the use of Bz-423
(induces the generation of superoxide by inhibiting mitochondrial
F1F0 ATP synthase) alleviated GVHD.81–83 Therefore, it is
tempting to target multiple metabolic pathways simultaneously,
such as OXPHOS and aerobic glycolysis, in the clinic.
Inhibitors of lipid metabolism, including etomoxir (suppres-

sion of FAO by inhibition of CPT1), can also be used to treat
GVHD in the allo-HSCT setting.56 Etomoxir, which inhibits
CPT1, is a potential option to prevent chronic rejection.
However, a concern with this approach is that iTregs differenti-
ation may be blocked, as they are also dependent on FAO.84

In order to minimize off-target effects and preserve the GVT
effect, ex vivo treatment of donor T cells prior to the transplant
may deliver a much more precise inhibition. Donor T cells, a
heterogeneous pool that contains T cells specific for pathogens,
tumor antigens, and alloantigens, can be subjected to ex vivo
activation with recipient alloantigens in the presence of metabolic
inhibitors such as 2DG. Such treatment would potentially lead to
cell death or anergy of activated alloreactive T cells. By contrast,
the viability and function of beneficial T cells would be preserved
since they cannot react to alloantigens and are less susceptible to
glycolytic inhibition during the ex vivo suppression treatment.
5. CONCLUDING REMARKS

The targeting of metabolic pathways utilized by alloreactive T
cells have demonstrated promising results in murine models, with
increased survival of recipients and reduction in GVHD
pathology, as well as decreased incidences of complications
due to opportunistic infections. Compared to broadly immuno-
suppressive regimens currently available in the clinic, the use of
metabolic signatures appears as a unique and promising strategy
to prevent the development and progression of GVHD. Future
studies should also consider the delivery of pharmacological
inhibitors in a T cell-specific manner, which will reduce
complications caused by systemic administration.
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