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ABSTRACT

Pharmacotranscriptomics has become a power-
ful approach for evaluating the therapeutic effi-
cacy of drugs and discovering new drug targets.
Recently, studies of traditional Chinese medicine
(TCM) have increasingly turned to high-throughput
transcriptomic screens for molecular effects of
herbs/ingredients. And numerous studies have ex-
amined gene targets for herbs/ingredients, and link
herbs/ingredients to various modern diseases. How-
ever, there is currently no systematic database orga-
nizing these data for TCM. Therefore, we built HERB,
a high-throughput experiment- and reference-guided
database of TCM, with its Chinese name as Ben-
CaoZuJian. We re-analyzed 6164 gene expression
profiles from 1037 high-throughput experiments eval-
uating TCM herbs/ingredients, and generated con-
nections between TCM herbs/ingredients and 2837
modern drugs by mapping the comprehensive phar-
macotranscriptomics dataset in HERB to CMap, the
largest such dataset for modern drugs. Moreover, we
manually curated 1241 gene targets and 494 modern
diseases for 473 herbs/ingredients from 1966 refer-
ences published recently, and cross-referenced this
novel information to databases containing such data
for drugs. Together with database mining and statis-
tical inference, we linked 12 933 targets and 28 212
diseases to 7263 herbs and 49 258 ingredients and
provided six pairwise relationships among them in
HERB. In summary, HERB will intensively support

the modernization of TCM and guide rational modern
drug discovery efforts. And it is accessible through
http://herb.ac.cn/.

INTRODUCTION

Having a complete understanding of the molecular ef-
fects of chemical compounds facilitates strategic selec-
tion of candidates for advancement in modern drug dis-
covery (1). To evaluate the molecular effects of active
compounds, functional assays using cell lines and animal
models are often utilized to study whole-transcriptomic
changes by using high-throughput technologies to iden-
tify the effects of various treatments or perturbations (2).
The largest such database for modern drugs, called Con-
nectivity Map (CMap), includes transcriptomic-level per-
turbation datasets for thousands of well-annotated small
molecules profiled in a core set of nine cell lines (3). Further-
more, there are other similar data available from databases
storing functional genomics datasets, e.g. the Gene Expres-
sion Omnibus (GEO) repository (4). The recent explosion
of availability of such transcriptomics perturbation datasets
has transformed the field of pharmacology and helped re-
searchers rapidly identify promising chemical compounds
for various diseases (5). For example, researchers recently
identified a compound, celastrol, which acts as a leptin sen-
sitizer to treat obesity, by mapping the gene expression pro-
file of celastrol to that of reduced endoplasmic reticulum
(ER) stress, a condition tightly linked to obesity (6). Sim-
ilarly, withaferin A, another leptin sensitizer for the treat-
ment of obesity, was discovered through a CMap library
analysis of those small molecules that have gene expression
profiles similar to that of celastrol (7).

*To whom correspondence should be addressed. Tel: +86 10 6260 0822; Fax: +86 10 6260 1356; Email: biozy@ict.ac.cn
Correspondence may also be addressed to Yang Wu. Tel: +86 10 6260 0822; Fax: +86 10 6260 1356; Email: wuyang@ict.ac.cn
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://herb.ac.cn/


D1198 Nucleic Acids Research, 2021, Vol. 49, Database issue

Traditional Chinese medicine (TCM) provides a rich ba-
sis for modern drug discovery and development. To date,
97 FDA-approved drugs have been derived from TCM, as
recorded by DrugBank (Supplementary Table S1). For ex-
ample, ephedrine, which is derived from the TCM herb
Ma Huang (Herba ephedrae), is used as an anti-asthmatic
drug (8). Similarly, artemisinin (qinghaosu), derived from
the Chinese herb qinghao (Herba Artemisiae annuae), is
now a first-line drug for malaria (9). The traditional knowl-
edge of Chinese herbs, as well as their combinations as pre-
scriptions, is built upon thousands of years of folk testing,
including iteratively identifying natural products with im-
proved clinical efficacy for the treatment of a wide range of
diseases. Therefore, isolating the active ingredients in TCM
and further dissecting their mechanisms of action provides
a promising starting point for new therapeutics (10,11).

With the advent of next-generation sequencing technol-
ogy, an increasing number of TCM studies have focused
on identifying the molecular effects of active herbs and in-
gredients using high-throughput techniques (12). For ex-
ample, microarray and RNA sequencing approaches have
been used in TCM research since 2006 and 2011, respec-
tively. Through 2019, there were >6000 samples in the
GEO database on cell lines, animals, or patients that were
treated with TCM herbs/ingredients and then analyzed us-
ing these transcriptomic technologies. The rapid accumu-
lation of omics data related to natural products has pro-
vided new opportunities to understand the transcriptional
responses and regulatory changes resulting from the activ-
ity of each herb/ingredient (13). Importantly, these data
can be mapped to CMap to systematically evaluate the
similarities between TCM components and modern drugs,
providing objective, data-driven support for the investiga-
tion of TCM therapies as candidates for novel therapeu-
tics, such as TCM-HUB (14). However, due to the diversity
of data resulting both from varying production platforms
and experimental conditions, there is currently no system-
atic database organizing the data and findings from these
high-throughput TCM experiments.

There have been a large number of studies recently pub-
lished aiming to decode gene targets of the active com-
ponents of TCM, and link them to modern diseases. The
most recent efforts to curate these references were the HIT
(15) and TCMID (16) databases published in 2011 and
2012, respectively. HIT contains 1,301 gene targets related
to 586 herbal ingredients gathered from PubMed min-
ing, and TCMID contains 680 herbal targets from Chi-
nese articles mined from the WeiPu database. However,
the typical sets of associations between herb-target, herb-
disease, and ingredient-disease, have not previously been
collected and curated from published references. Curated
information is of significantly higher value than previous
efforts that indirectly linked them using intermediate com-
ponents, such as targets. Thus, the bulk of studies published
within the last decade required manual curation in order
to develop a high-confidence database linking targets, dis-
eases, and TCM herbs/ingredients. Such a system would of-
fer high-quality, evidence-based connections between TCM
and modern drugs.

Therefore, we built HERB (BenCaoZuJian as its Chi-
nese name), a high-throughput experiment- and reference-

guided database of TCM. HERB integrates multiple TCM
databases and thus contains the most comprehensive list
of herbs and ingredients created to date. We gathered and
uniformly reanalyzed public data from all available high-
throughput experiments (i.e. microarrays and RNA-seq ex-
periments) that tested herbs or their active ingredients. In
this manner, we generated a library containing 6164 gene
expression profiles from 1037 experiments evaluating herbs
or ingredients and built data-driven connections among
herbs, active ingredients, and 2837 modern drugs with phar-
macotranscriptomics datasets in CMap. Furthermore, we
collected 17,886 TCM-related papers that were published
since 2011 by PubMed text mining and manually con-
nected 1241 gene targets and 494 modern diseases for 473
herbs/ingredients from 1966 of those references. This newly
curated target and disease information for TCM is of high
quality due to its manual confirmation, and was cross-
referenced to databases for modern drugs, including the
TTD (17), DisGeNet (18), HPO (19), and Disease Ontology
(20) databases. Together with database mining and statisti-
cal inference, we linked 12 933 targets and 28 212 diseases to
7263 herbs and 49 258 ingredients within HERB. The ob-
jective, data-based connections between TCM and modern
medicines described in HERB provide strong support for
further pharmacological studies of TCM as a fundamental
arm of modern drug discovery efforts.

MATERIALS AND METHODS

Catalogs of TCM herbs and ingredients

In HERB, we first prepared a list of herbs and ingredi-
ents and determined their relationships by integrating mul-
tiple TCM databases including SymMap (21), TCMID 2.0
(22), TCMSP 2.3 (23) and TCM-ID (24). To obtain a
non-redundant list, we merged herbs/ingredients with the
same IDs, names, or aliases. In case of discrepancies across
databases, we selected the entry with the most recent pub-
lication date. Note that the molecule formula and molecule
smile information for all ingredients were standardized ac-
cording to SciFinder (25) and PubChem (26), two authori-
tative chemical databases. We then mapped the TCM ingre-
dients to the DrugBank database (27) and labeled a subset
of TCM ingredients as approved drugs. Last, we searched
an authoritative database of active herbal ingredients, the
‘National Database for Chemical Composition in TCM’
(http://cintmed.cintcm.com/cintmed/), which has been con-
tinuously maintained for several decades by the Institute
of Information on Traditional Chinese Medicine, China
Academy of Chinese Medical Sciences.

High-throughput experimental data for TCM herbs and in-
gredients

We gathered public data from GEO high-throughput ex-
periments that studied treatments with herbs or ingredients
in multiple cell types or animal models. We only retained
those datasets that were generated in Homo sapiens or Mus
musculus and that were obtained by a typical bulk RNA se-
quencing platform (Illumina) or microarray studies. Then,
we built different pipelines for uniformly reanalyzing RNA-
seq and microarray data.

http://cintmed.cintcm.com/cintmed/
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For RNA-seq data, we first downloaded the raw reads in
fastq format for each sample (with unique GSM numbers
in GEO) using fasterq-dump 2.9.2 (28). Then, we filtered
adaptor sequences and low-quality reads by using Trim
Galore 0.6.4 (http://www.bioinformatics.babraham.ac.uk/
projects/trim galore/) with the parameters ‘–quality 20 –
length 20 –consider already trimmed 10’. Next, we mapped
the filtered reads to the genome of Homo sapiens (assem-
bly hg38 and annotation v100) or Mus musculus (assembly
mm10 and annotation v100) using STAR 2.7.3a (29). Sam-
ples with a mapping rate lower than 60% were discarded.
Finally, we quantified the read counts for each gene in each
sample using featureCounts 2.0.0 (30), preprocessed and
quantile-normalized the data into a gene expression matrix
using the ‘voom’ function in the R package limma 3.42.2
(31).

For microarray data, we reanalyzed the samples with raw
data provided. We first extracted the probe expression pro-
file from the raw data using R package oligo 1.50.0 (32)
for the Affymatrix platform, or using R package limma
3.42.2 (31) for the Agilent platform. Next, we normalized
the probe expression profile with the robust multichip av-
erage algorithm (rma). For other samples without accessi-
ble raw data, we directly used their normalized expression
profile for probes. Finally, we transformed the probe pro-
file into the normalized gene expression matrix by system-
atically constructing the conversion relationships between
probes from diverse array platforms to genes. When multi-
ple probes could be converted to the same gene, the probe
with the median expression level was selected to represent
that gene. To that end, we provide an automatic conversion
script named probe2gene, which embeds conversion files in
SOFT format for 105 platforms downloaded from NCBI
and automatically conducts the probe-to-gene conversion
according to the SOFT files.

Differential expression analysis and functional enrichment
analysis

We conducted differential expression analysis for each
TCM herb/ingredient. First, we manually extracted the
comparative relationship between samples. In NCBI-GEO,
an experiment with a unique GSE number always contains
several samples (with unique GSM numbers), and the sam-
ples included control samples as well as samples treated with
each herb/ingredient in varying biological/physiological
conditions. We defined a comparison as a set of control sam-
ples and treatment samples that were performed in the same
condition, called an HERB experiment (EXP) hereafter. To
ensure reproducibility, we required at least two biological
replicates of treatment samples (≥2 GSMs) in each EXP. As
there can be one or many EXPs for each herb/ingredient, we
performed downstream analysis individually for each EXP
and then merged the analyzed results from multiple EXPs
later. Note that data from EXPs performed in Homo sapiens
or Mus musculus were merged and displayed separately.

For each EXP, we performed differential expression anal-
ysis using the R package limma 3.42.2. In brief, we first
fit linear models from the normalized gene expression ma-
trix using the ‘lmFit’ function and then computed the em-
pirical Bayes statistics using the ‘eBayes’ function. Finally,

we selected genes with sufficient expression difference, i.e.
|log2(fold change)| ≥ 0.5 and P ≤ 0.05, as differentially ex-
pressed genes (DEGs). Based on the DEG list for each EXP,
we conducted further functional enrichment analysis for
each EXP using the R package clusterProfiler 3.14.3 (33).
We used the ‘enrichGO’ function for GO enrichment and
the ‘enrichKEGG’ function for KEGG enrichment. En-
riched GO terms and KEGG pathways were selected when
P ≤ 0.05. Of note, we conducted separate GO/KEGG anal-
yses in each EXP for all genes, up-regulated genes, and
down-regulated genes, respectively.

Then, we merged the analyzed results for each
herb/ingredient that had multiple EXPs. We firstly
transformed the initial two-tailed P-values for EXPs to
two one-tailed P-values, P/2 and 1 −P/2, for considering
up-regulation and down-regulation. Then, we merged two
unified probabilities for each gene, one for up-regulation
(P-up), and the other for down-regulation (P-down) using
Fisher’s method (34). The test statistic (X2) following a
chi-square distribution is shown below.

χ2 = −2
k∑

i=1

ln(pi )

We used the ‘fisher.method’ function in the R package
metaseqR (35) to compute the statistics and the correspond-
ing P-values. Genes with only one significant P-value (ei-
ther P-up < 0.05 or P-down < 0.05) were retained in the
DEG list, and the directions of their dysregulations were
determined by assessing which P-value was significant. Sim-
ilarly, we also required an average |log2(fold change)| ≥ 0.5
based on those EXPs with significant differences in the in-
dividual tests. Based on the merged set of differentially ex-
pressed genes for each herb/ingredient, we performed sepa-
rate GO and KEGG enrichment analyses for all, up and
down-regulated genes, respectively. Furthermore, we ad-
justed up and down P-values separately to account for false
discovery rates (FDRs) using the BH method (36).

Data-driven mapping of TCM herbs/ingredients with modern
drugs

Once we established the gene expression profiles for TCM
herbs/ingredients, we further evaluated the similarities be-
tween TCM herbs/ingredients and modern drugs by map-
ping HERB-EXP to CMap, which contains pharmacotran-
scriptomics datasets for thousands of well-annotated small
molecules. We thus built the data-driven connections by first
mapping the DEG list derived from each EXP to CMap and
then merged the mapped results from all EXPs from a given
herb or ingredient. Note that data from EXPs performed in
H. sapiens or M. musculus were mapped and displayed sep-
arately.

For each EXP, the list of differentially expressed genes
was submitted to the CMap website (https://clue.io/query)
in batch query mode. Of note, a maximum of the top 300
genes in the DEG list were retained (5). It is noteworthy that
the DEG genes from mouse EXPs were firstly converted
to their human orthologs by using the R package homolo-
gene with the conversion table from NCBI (ftp://ftp.ncbi.
nih.gov/pub/HomoloGene/build68/) (Supplementary Table

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://clue.io/query
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/
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S2), and then the human genes for each mouse EXP were
submitted for CMap calculation. The CMap dataset we
queried, called Touchstone, consisted of perturbation data
for 2837 compounds that were tested in nine cell lines. Using
the connectivity map method (3), the similarities between
the input DEG list and the gene expression profiles for all
these 2837 perturbagens were evaluated and ranked by their
connectivity map scores, τ , ranked from −100 to 100. A τ
of +90/−90 indicates that only 10% of random perturba-
tions showed stronger connectivity to the input DEG list,
and ‘plus’ or ‘minus’ represents a positive or negative cor-
relation, respectively.

Then, we merged the connectivity results for each
herb/ingredient with multiple EXPs. We followed the
method of maximum quantile statistic in CMap (3) to merge
the connectivity map scores derived from each comparison
(EXP). The summarized connectivity map score for each
herb/ingredient was calculated according to the following
formula,

Scoreh,p =
{

Qhigh(scoree,h,p) if|Qhigh(scoree,h,p)| ≥ |Qlow(scoree,h,p)|
Qlow(scoree,h,p) otherwi se

where the final scoreh,p stands for the overall similarity mea-
sure between a herb/ingredient h in HERB and a per-
turbagen p in the CMap database, and the scoree,h,p indi-
cates the individual similarity measure between each EXP e
related to the herb/ingredient h and the perturbagen p. This
procedure compares the Qhigh and Qlow quantiles of scoree,h,p
and retains whichever is of higher absolute magnitude. The
scores of Qhigh and Qlow were set to be 0.67 and 0.33 respec-
tively, as suggested by CMap.

Manually curated reference data for TCM herbs and ingredi-
ents

We collected TCM-related papers from 2011 to 2020
through PubMed text mining. The names and aliases of
herbs and ingredients were used as key words, and the key
words were required to be present in the title or abstract. In
order to narrow down the initial paper set, we first required
that references should be published in journals with an im-
pact factor above five according to the Journal Citation Re-
port 2019, and we only selected from articles classified in
the biomedical-related categories according to the classi-
fication system of the National Science Library, Chinese
Academy of Sciences (http://www.fenqubiao.com/). Then,
we restricted our search to research articles that were not
labeled as review papers in PubMed. Third, we only kept
those papers that were related to active herbal ingredients
that were included in the National Database for Chemical
Composition in TCM (see the first section in Materials and
Methods). After PubMed mining and hierarchical filtering,
we obtained a list of 17 886 references for manual curation.

Ten Ph.D. candidates were recruited to read, select,
and extract information from this set of 17 886 refer-
ences, with senior students performing a secondary verifi-
cation. This effort resulted in a set of usable information on
gene targets and diseases related to TCM herbs/ingredients
from 1966 of these references, called HERB-REF, most
of which had evidence from low-throughput experiments.
Thus, the resulting data included information not only on

herb/ingredient and target/disease relationships, but also
on the cell line, animal model, or patients used in the exper-
iments. We further standardized gene names for the newly
curated TCM targets according to the NCBI nomenclature
and GeneCards database (37), and then cross-referenced
them with the TTD database (17), a widely used ther-
apeutic target database for modern compounds. Then,
we standardized the disease information to MeSH terms
(https://www.nlm.nih.gov/mesh/meshhome.html) and the
DisGeNet database (18), and cross-referenced them with
the HPO and Disease Ontology (20) databases. Further,
we curated a number of clinically relevant phenotypes in
HERB-REF for users’ convenience. Finally, we transferred
the relationships between targets and diseases from Dis-
GeNet (18) to HERB. As a result of this approach, HERB
offers a set of data-based connections linking TCM and
modern drugs, built on basis of high-quality manual cura-
tion of references.

Other associations among HERB components

Prior to HERB-REF, databases like SymMap (21),
HIT (15), TCMSP (23) and TCMID (22) have also
curated ingredient-target relationships. Therefore, we
merged together the ingredient−target pairs from ref-
erence and database mining. Other relationships, e.g.
ingredient−disease, herb−target and herb−disease, were
generally indirectly linked by combining two or more
direct relationships. For example, the indirect relationship
between ingredient and disease can be obtained using the
gene targets as a middle component (Supplementary Figure
S1A). As HERB contains the most comprehensive list of
herbs and targets, we calculated the indirect associations
for these three relationships again using Fisher’s exact
test, which is called statistical inference and adopted from
SymMap. Taking the ingredient-disease relationship as
an example, we first acquired all indirect associations
by linking ingredient-target and target-disease relation-
ships together and then selected reliable associations
(FDR < 0.01) from them using Fisher’s exact test followed
by multiple test corrections using the BH method (36).
This strategy was also used to infer the herb−target and
herb−disease relationships by using ingredient and target
as the middle components, respectively (Supplementary
Figures S1B, C). Finally, we combined the associated pairs
from statistical inference and reference mining together.

Implementation of HERB

In summary, HERB provides information about herbs, in-
gredients, their gene targets, diseases in modern terms, and
the relevant high-throughput experimental data and man-
ually curated references. HERB provides a convenient web
interface for users to browse, search, visualize, and down-
load data. HERB is freely accessible at http://herb.ac.cn
without a need for user registration. The HERB website was
built using the Python-Flask, Nginx and React JavaScript
frameworks and is compatible with most major browsers.
The HERB data are stored in a MySQL database.

http://www.fenqubiao.com/
https://www.nlm.nih.gov/mesh/meshhome.html
http://herb.ac.cn
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Table 1. Overview of the data curated in HERB

Components Amount Data source

Herbs 7263 Integrated from SymMap, TCMID, TCMSP and TCM-ID databases
Ingredients 49 258 Integrated from SymMap, TCMID, TCMSP and TCM-ID databases
Experiments 1037 Downloaded, manually curated, and automatically analyzed from the NCBI GEO database
References 1966 Downloaded, manually curated, and extracted information from the NCBI PubMed database
Targets 12 933 Partially from the manual curation from PubMed references and others from previous databases

including SymMap, HIT, TCMSP, and TCMID
Diseases 28 212 Partially from the manual curation from PubMed references and others from the DisGetNet

database

RESULTS

Data contents in HERB

HERB contains a comprehensive list of TCM herbs (7263)
and ingredients (49 258) by integrating multiple TCM
databases. HERB was created through reanalysis of 6164
gene expression profiles from 1037 high-throughput exper-
iments of herbs/ingredients and a collection of 1966 TCM-
related references, from which 1241 gene targets and 494
modern diseases for 473 herbs/ingredients, as well as 709
clinical-relevant phenotypes were curated. Further, HERB
includes information on targets and diseases gathered by
database mining and statistical inference, resulting in a fi-
nal total of 12 933 targets and 28 212 diseases related to
herbs and ingredients. These data statistics are shown in
Table 1. We also provided the statistics of six pairwise re-
lationships among herbs, ingredients, targets, and diseases
that were gathered from reference mining, database min-
ing, and/or indirect association through statistical inference
(Supplementary Table S3). HERB contains two important
novel features lacking from previous TCM databases. First,
HERB presents a comprehensive pharmacotranscriptomics
data set for TCM herbs and ingredients, allowing mapping
to modern drugs with data in CMap. Second, HERB pro-
vides manually curated data of targets and diseases mined
from recent literature, providing high-confidence informa-
tion for ranking TCM herbs and ingredients as promising
candidates for therapeutic development.

High-throughput data analyzed in HERB

Through GEO mining using herbs and ingredients as
key words, we gathered 472 high-throughput GEO
datasets containing 6164 GEO samples. Each GEO
dataset performed by a specific lab had a unique GSE
number. Each GEO sample conducted in a particular
biological/physiological condition also had a unique GSM
number. We manually obtained the herb/ingredient-centric
classification of these data by defining a HERB experiment
(EXP), as a set of control and treatment GEO samples
related to a herb/ingredient in one GEO dataset. This
resulted in 1037 EXPs in HERB, with 83.9% of them
consisting of microarray data and the remaining 16.1% as
RNA-seq data; 10.4% of HERB-EXPs are related to herbs
and 89.6% of them are related to ingredients (Figure 1A-1).
The average number of biological replicates for control and
treatment samples in HERB-EXPs were 4.0 ± 2.9 and 3.7
± 2.6 respectively. Of note, 83.2% and 74.1% of control and
treatment samples had at least three replicates, respectively
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Figure 1. Construction and characterization of HERB-EXP. (A) A
schematic diagram of the data processing framework in HERB-EXP
in four consecutive steps: 1. download data from GEO experiments
(GSE) and samples (GSM), extract HERB experiments (EXP) for each
herb/ingredient, and show the number of GSE/GSM/EXPs for each data
type in bar plots. 2. For each EXP, illustrate the number of biological repli-
cates for control and treatment samples in violin plots. 3. Automatically
analyze RNA-seq and microarray data according to different pipelines
for each EXP first, and then merge results from multiple EXPs together
for each herb/ingredient. 4. Visualize the results of differential expression
analysis, GO and KEGG enrichment, or CMap connectivity for each EXP,
and then for each herb/ingredient, in volcano plot, bar plot, dot plot or
network respectively. (B) The differential expression of four known targets
(CDKN1A, DES, TNFRSF10B and DDIT3) for four TCM ingredients
(curcumin, resveratrol, rotenone, and thapsigargin) in multiple EXPs re-
lated to these ingredients are shown in volcano plots. The X-axis shows the
expression change compared to control samples and the Y-axis shows sta-
tistical significance. The four colors correspond to four target-ingredient
pairs, and the two shapes indicate the species information for each EXP
(mouse/human). (C) Classification of all herbs/ingredients with HERB-
EXP data, according to their mapped compounds in CMap.

(Figure 1A-2). Sufficient numbers of replicates facilitate
downstream analysis of these high-throughput data.

Then, we built automatic pipelines to analyze the mi-
croarray and RNA-seq data of each individual EXP (Fig-
ure 1A-3). To process the RNA-seq data, we used raw data
as an input, mapped the filtered reads to the genome, and
got the normalized read count for each gene. For microar-
ray raw data, we first processed the data into a probe profile
and then converted it into normalized gene expression data.
If no raw data were available, the former step was skipped.
Based on the normalized gene expression matrix for control
and treatment samples in each EXP, we identified DEGs
for each EXP and then merged the results into a ranked
DEG list for each herb/ingredient. We visualized the DEG
list for herbs and ingredients by volcano plot (Figure 1A-4).
Based on the DEG list, we visualized the enriched GO terms
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and KEGG pathways in bar plots and dot plots, for all,
up and down-regulated genes (Figure 1A-4), respectively.
Moreover, we queried the CMap data containing pharma-
cotranscriptomics datasets for 2837 modern drugs while us-
ing the DEG lists of each herb/ingredient as the query. The
connections between the TCM herb/ingredienst and their
map-able modern drugs were visualized with a interactive
network (Figure 1A-4).

In summary, there were an average of 1801 DEGs upon
EXP-level analysis (Supplementary Figure S2A) and 2864
DEGs, on average, for herbs/ingredients after merging the
results from multiple EXPs (Supplementary Figure S2B).
For GO terms, the average numbers were 1083 and 1260
for the EXP-level and herb/ingredient-level results (Supple-
mentary Figure S3). For KEGG pathways, the two numbers
were 44 and 50, respectively (Supplementary Figure S4). We
also illustrated the GO/KEGG enrichment results for up-
regulated and down-regulated genes (Supplementary Fig-
ures S3 and S4). Next, we selected all DEGs related to TCM
ingredients that were described in previously published pa-
pers and explored their expression changes in the HERB ex-
periments. Across 325 such ingredient-target pairs, 208 of
them (64%) showed consistent patterns of differential ex-
pression (Supplementary Table S4). Other inconsistencies
may be caused by post-transcriptional regulation issues, as
evidences from references are mainly based on protein ex-
pression levels. We also showed 4 distinguished ingredient-
gene pairs in Figure 1B. The direction of regulation for
them, including the curcumin-CDKN1A (38), resveratrol-
DES (39), rotenone-TNFRSF10B (40) and thapsigargin-
DDIT3 (41), were the same as identified in their corre-
sponding references, and cross-validated by both human
and mouse data that are merged separately. Thus, they are
most likely to be the bona fide targets that are highly related
to the downstream pathways affected by these ingredients.

Next, we connected TCM herbs and ingredients to mod-
ern pharmaceutic compounds using connectivity mapping
between HERB-EXP data and CMap data. In total, 20
herbs and 152 ingredients could be mapped to 978 CMap
compounds using a cutoff of absolute connectivity score
above 95. The clinical status for 383 out of 978 CMap com-
pounds could be classified as approved drugs, investiga-
tional drugs, experimental drugs, or other compounds, by
connecting their IDs (InChiKey or PubChem ID) docu-
mented in CMap to DrugBank. Thus, we further classified
herbs/ingredients according to the type of compounds to
which they were mapped. Out of 247 herbs/ingredient with
high-throughput data in HERB, there were 136 (55.1%)
herbs and ingredients that could be mapped to approved
drugs. Another 9 (3.6%) and 8 (3.2%) herbs/ingredients
could be mapped to investigational drugs that were in clini-
cal trials and experimental drugs that were under preclinical
research, respectively (Figure 1C). Taken together, the gene
expression patterns for >60% of herbs/ingredients were
similar or antagonistic to modern drugs. These findings il-
lustrate the potential for other TCM herbs/ingredients to
be investigated in pharmaceutic development. We have pro-
vided a detailed list of the mapped drugs for the TCM
herbs/ingredients in Supplementary Table S5. Note that for
mouse EXP, a total of 15 123 mouse DEG genes can be con-
verted to their human orthologs, from which 15 060 mouse
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Figure 2. Overview of HERB-REF. (A) Statistics on the number of
herb/ingredient-related references published in each year. The blue line
represents the total references from manual curation, and the red line
represents the references with curated targets/diseases. (B) The num-
ber of curated herbs/ingredients, targets/diseases, and their associations
from HERB-REF are shown in bar plots, with the four facets show-
ing four types of associations: herb-target, herb-disease, ingredient–target,
and ingredient–disease. (C) HERB-REF datasets were used to search
and rank promising herbs or ingredients for cancer-related diseases that
could be connected to immuno-oncology related targets. The number of
herbs/ingredients obtained by target-based search and/or disease-based
search was shown in a Venn plot. (D) The selected herbs/ingredients that
were supported by both target-based and disease-based search were illus-
trated in a dot plot, with the X- and Y-axis showing the number of refer-
ences from each search, respectively. The density of dots representing the
number of dots at the same point are represented in color scales.

genes were converted in a one-versus-one manner. On av-
erage, 65.3% of mouse DEG genes in these EXPs can be
mapped (Supplementary Figure S5). As a result, the CMap
mapping results based on mouse data maybe incomplete. So
the mouse data was just provided as an auxiliary informa-
tion.

References curated in HERB

We collected TCM-related papers from 2011 to 2020 by
PubMed text mining and obtained a list of 17 886 refer-
ences for manual curation after hierarchical filtering (Fig-
ure 2A, blue line). The number of published papers re-
lated to TCM herbs/ingredients has increased dramatically
in the past three years, with 2905 relevant papers pub-
lished in 2019 at the top (with partial data for 2020). Af-
ter manually reading, selecting, and extracting information
from the initial 17 886 references, 1966 references were se-
lected, from which we collected a large amount of high-
quality data on gene targets and modern diseases for TCM
herbs/ingredients. The pattern of the final set of references
with curated targets/diseases (Figure 2A, red line) was quite
similar with the initial set of references under manual cu-
ration (Figure 2A, blue line), suggesting that the process
of manual curation by 10 Ph.D. candidates was unbiased.
Only 10.9% of the initial set of references were selected, be-
cause we carefully filtered out a large number of references
without relevant or reliable information. Finally, we manu-
ally extracted 1241 gene targets of 39 herbs and 370 ingre-
dients and manually connected 494 modern diseases with
40 herbs and 354 active ingredients (Figure 2B). The num-
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ber of newly curated targets was similar to that of HIT 2011
(1301), and larger than TCMID 2012 (680), demonstrating
that a continuous number of recent TCM studies have fo-
cused on molecular and mechanistic studies. This new set
of curated disease information included direct experimen-
tal data, and is thus likely of external validity than prior
approaches that indirectly linked herbs/ingredients to dis-
eases using gene targets as intermediates. Further, 709 clin-
ically relevant phenotypes, although not diseases themself,
were curated and presented for users’ convenience.

Next, we ranked herbs or ingredients that were promis-
ing for a particular disease with a set of candidate tar-
gets, based on the newly curated HERB-REF data. For
example, as TCM has been shown to have clinical bene-
fits for regulating the immunity of cancer patients (42), we
used the targets and diseases related to immuno-oncology
as the input to query HERB-REF. We first collected a list
of 400 target genes related to immuno-oncology, accord-
ing to external published papers (43–45). Then, we searched
the 1,966 references in HERB-REF for 53 cancer-related
diseases using the key words ‘neoplasm’, ‘tumor’, ‘can-
cer’ or ‘carcinoma’. We intersected the two lists with the
target-related or disease-related herbs or ingredients (Fig-
ure 2C). This resulted in 282 herbs/ingredients that had
targets in the immuno-oncology related list and were sup-
ported by 745 of the references in HERB-REF, and ob-
tained 178 herbs/ingredients that could be connected to
immuno-oncology related diseases and supported by 396
references. When we required both target and disease rela-
tionships, we were left with a final list of 9 herbs and 137 in-
gredients that were highly related to immuno-oncology. The
list of 146 herbs/ingredients is provided in Supplementary
Table S6.

We further visualized the 146 herbs/ingredients re-
lated to immuno-oncology in Figure 2D. Most of these
herbs/ingredients were supported by a small number of ref-
erences from either target-based search or disease-based
search, as indicated by the high density of dots in the
bottom-left corner. The dots in the upper-right corner rep-
resent higher confidence estimates with large numbers of
supporting references. For example, curcumin, an active in-
gredient produced by the Curcuma longa plant, inhibits the
COP9 signalosome 5 (CSN5) and diminishes the expres-
sion of PD-L1 in cancer cells, which is a well-known tar-
get for cancer immune therapies (46). As a result, curcumin
may represent a promising candidate for combination ther-
apy in cancer. In our HERB-REF search, the connection of
curcumin to immuno-oncology was supported by 65 refer-
ences, with 51 target-based references, 22 disease-based ref-
erences, and 8 references from both searches, demonstrat-
ing the power of HERB-REF for searching and ranking
TCM solutions for a given disease. Cannabidiol, a phyto-
cannabinoid from cannabis plants, has long been shown
to have anti-tumor activity (47). In both cell lines and an
animal model of triple-negative breast cancer, cannabid-
iol significantly inhibits epidermal growth factor (EGF)-
induced proliferation and inhibits the recruitment of tumor-
associated macrophages (47). In HERB-REF, cannabid-
iol was supported by 6/17/4 references from only target-
based search, disease-based search, and both searches, re-
spectively.

BA

D
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E

Click on tabs to change the data source 
of related-targets

Click on tabs to change the data source 
of related-diseases

Figure 3. An illustration of an HERB search. (A) The search page of
HERB shows the main 4 components of HERB, including herbs, ingre-
dients, targets, and diseases. (B) The experiment page of HERB shows all
high-throughput data related to herbs/ingredients and analyzed by HERB.
(C) The reference page of HERB shows all published references with cu-
rated targets/diseases information for herbs/ingredients. (D) The details
page for an example ingredient, triptolide. The summary panel comes first,
and shows relevant descriptive information for this ingredient. The follow-
ing panels show the herbs, gene targets, and diseases related to this ingre-
dient, respectively. Users can click on the tabs in each panel to navigate
information from different data sources. (E) The subsequent detailed page
for triptolide. Four figures were used to visualize the high-throughput data
related to triptolide. For example, the DEGs are shown in a volcano plot
(upper-left). The enriched GO terms and KEGG pathways are shown in
bar plot and dot plot (lower-left and upper-right). The connectivity be-
tween triptolide and its related compounds in CMap are shown in a net-
work. Note that all figures are implemented in an interactive way where
users can see the details of each dot/bar/node/edge upon mousing over
them.

Aside from reference mining, we merged 157 722
ingredient-target pairs related to 7781 ingredients and 12
838 gene targets from previous TCM databases, including
SymMap, HIT, TCMSP and TCMID. We statistically in-
ferred the indirect relationships between ingredient-disease,
herb-target, and herb-disease (Supplementary Table S3).
The number of each component and their relationships,
based on different cutoffs, are shown in Supplementary Fig-
ure S6. As a result, we ultimately linked 12 933 targets and
28 212 diseases to 7263 herbs and 49 258 ingredients to
obtain HERB, the most comprehensive database for TCM
available to date.

Using the HERB database

HERB is freely accessible at http://herb.ac.cn. It provides
browse and search pages for users to navigate herbs, in-
gredients, targets, and diseases. Examples and the types of
searchable keywords are shown in or below the search menu
for each component (Figure 3A). For the two novel features
added in HERB, experiments and references, we provide ad-
ditional browsing and searching pages. In the experiment
search page (Figure 3B), users can click on an experiment
ID to view the details page for each EXP. Descriptive in-
formation about each EXP includes experimental subjects,
experimental conditions, administration methods, sample
information for treatment groups and control groups, etc.
These descriptions can be found in both the search page and
detailed page of each EXP. The analyzed results of EXP-

http://herb.ac.cn
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level, high-throughput data are shown in the details page of
experiments in the same format as herbs/ingredients, which
are described in the following paragraph. In the reference
search page (Figure 3C), users can click on the reference
ID to view the detail page for each REF. Details of ref-
erences shown in the browse and details page include the
journal name, publication date, experimental subjects, ex-
perimental type, and PubMed ID. In the detailed page, we
show the pairing relationships between herbs/ingredients
and targets/diseases that were manually curated from each
corresponding reference. Furthermore, we visualized the
abstract for each reference by using a word cloud.

The detail page for an example ingredient, triptolide, is
shown in Figure 3D and E. The first section includes de-
scriptive information about triptolide and its related herbs,
gene targets, and diseases (Figure 3D). The summary in-
formation includes the ingredient name, alias, formula,
molecule SMILES, molecular weight, and external IDs
from other databases. Related herbs for triptolide were in-
tegrated from multiple TCM databases. The related targets
and diseases for triptolide were derived from reference min-
ing, database mining, or statistical inference, which are each
displayed separately under different subpages. And help
information about the data source is shown for each ta-
ble. Among these, the records from reference mining, i.e.
manual curation, give the highest-confidence data and can
be cross-referenced into the reference page of HERB. The
records from database mining are also of high quality, with
the original database name and links provided. The signif-
icance of the records from statistical inference, i.e. Fisher’s
exact, is provided, in both P-values and FDRs followed by
BH adjustment.

The high-throughput data analyzed by HERB is visu-
alized in both tables and plots. Users can rank and filter
records according to each column in all tables. We intro-
duced four figures in the website to better visualize the data
in these tables, with each representing an important aspect
of the high-throughput data (Figure 3E). Note that human
and mouse data are displayed separately, and users can nav-
igate between the two datasets using drop-down menus. For
example, the first volcano plot, shown in the upper left,
visualizes the DEGs related to triptolide, which has been
merged from multiple EXPs of triptolide. One dot in this
figure represents a gene, with the color indicating the di-
rection (up or down) of its dysregulation, and the size is
proportional to the number of EXPs that support the gene
as a DEG. The bar plot shown in the lower left and the
dot plot shown in the upper right show the enriched GO
terms and KEGG pathways. Each term in the underlying
tables can be linked back to the GO and KEGG pages (48–
50). Moreover, drop-down menus were provided for users to
navigate GO/KEGG results for all, up, and down-regulated
genes. The three colors in the GO figure represents three
types of GO terms, molecular function (MF), cellular com-
ponent (CC), and biological process (BP). The size of dots
in the KEGG figures indicates the number of EXPs that
support that particular item. Detailed information for each
bar or dot are visible when the mouse is moved over the el-
ement. The last figure in the lower right is a network show-
ing the modern compounds (in CMap) that are mappable to
triptolide. The node in the center is triptolide. Other nodes

around it are related compounds in four different colors that
stand for the data type of the CMap perturbation, includ-
ing compound (CP), perturbational Class (PCL), gene over-
expression (OE), gene knock-down (KD). Furthermore, we
embedded a pie chart in each surrounding node to show the
specific EXPs that support its mapping to triptolide. Edges
between triptolide and its mapped compounds are shown in
two colors, with red for a positive correlation and blue for a
negative correlation between gene expression profiles. The
widths of the edges are proportional to the absolute value
of connectivity score. By default, we visualized mapped re-
sults with an absolute connectivity score >95. Users are free
to select different cutoffs and subsets of the data types of
CMap to focus on specific data of interest. And users can
use the zoom in/out buttons at the upper-left to control the
connectivity figure.

DISCUSSION

Transcriptome analysis allows quantitative measurements
of the transcriptional responses and regulatory changes re-
sulting from the perturbations due to compounds, making
it a powerful approach for discovering drug targets, evaluat-
ing the therapeutic efficacy of drugs, and revealing possible
side effects. In recent years, high-throughput data from lab-
oratory or clinical studies of TCM herbs and ingredients
have quickly accumulated, but to date there has been no
good system of organization. Besides, new TCM-related ref-
erences published within the last decade have not been cu-
rated. As a result, in this work, we reanalyzed all available
microarray and RNA-seq data for TCM herbs/ingredients,
and curated high-confidence targets and diseases informa-
tion from recently published TCM references. Together
with database mining and statistical inference, we ultimately
built HERB, the most comprehensive database for TCM
available to date.

The novelty of the HERB database includes: (i) HERB
provides a comprehensive and unified pharmacotranscrip-
tomics database of TCM, by reanalyzing all available
high-throughput experiments for TCM. Using HERB, re-
searchers and drug developers can view primary data
as well as the data-driven mapping results between
TCM herbs/ingredients and modern compounds, allow-
ing easy exploration of potential mechanism of actions
for herbs/ingredients as well as the identification of new
potentially effective therapeutics. (ii) HERB gives high-
confidence targets and diseases information related TCM
herbs/ingredients based on manual curation of novel refer-
ences published within the last decade, which bridging the
large gap since the creation of HIT (2011) and TCMID
(2012). Using these newly curated references in HERB,
users can easily search and rank promising herbs or ingredi-
ents for a disease with a set of candidate targets. We believe
this intuitive workflow will help researchers make use of the
significant volume of published data related to TCM. (iii)
HERB provides the most comprehensive list of herbs, in-
gredients, targets, and diseases by integrating multiple data
resources. Further, HERB gives comprehensive pairwise re-
lationships among them by combing diverse strategies in-
cluding database mining, reference mining, and statistical
inference.
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HERB provides a convenient web interface for users to
browse, search, visualize and download key information,
and we believed that HERB will intensively support the
modernization of TCM to guide drug discovery efforts.
However, the currently available data set for TCM phar-
macotranscriptomics is remain insufficient, not only in the
number of data sets, but also in the diversity of sequenc-
ing technologies. In the future, we plan to continuously add
as much data as possible. In particular, we would like to
add new types of data, such as proteomic, metabolomic,
and meta-genomic datasets, to HERB for further improve-
ments. With more and diverse data becoming available, fur-
ther studies based on these data will be required for analyz-
ing the gene regulation networks under the herb/ingredient
perturbation (51,52), and identifying new types of disease-
relevant genes (53,54). In a word, we plan to continuously
improve the HERB database to provide a high-quality re-
source for the field of TCM big data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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