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Abstract
2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used

as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier.

HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease,

a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accu-

mulation and/or dysregulated cholesterol metabolism has been described in various malig-

nancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer

effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at

physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against

various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic

leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular

cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle

arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival

in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against

CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyro-

sine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic

stem cells. In addition, colony forming ability of human primary AML and CML cells was

inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant

adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regard-

less of disease or cellular characteristics.
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Introduction
Advances in molecular targeting technologies have revolutionized cancer therapeutics, includ-
ing imatinib mesylate for chronic myeloid leukemia (CML) and gefitinib for lung cancer [1,2].
Molecular-targeted drugs have superior anticancer effects compared to those of conventional
chemotherapeutic agents, and have less adverse effects. However, resistance to chemotherapy,
such as that resulting from point mutations or the existence of cancer stem cells, still hinders
the treatment of cancer patients [3,4]. Thus, alternative therapeutic approaches that enhance
neoplastic cell death are required for successful cancer treatment.

Cholesterol is one of the main components of lipid rafts, which provide signaling platforms
capable of activating various cellular signaling pathways [5,6]. Cholesterol accumulation and/
or dysregulated cholesterol metabolism is reported in various malignancies, including leukemia
[7–9]. For example, breast and prostate cancer cell lines contain elevated levels of cholesterol,
and are more sensitive to cholesterol depletion-induced cell death than their normal counter-
parts [10,11]. Breast cancer cells treated with mevalonate, a cholesterol precursor, demonstrate
increased tumor cell growth in vivo and increased proliferation by accelerating cell-cycle pro-
gression [12]. Freshly isolated acute myeloid leukemia (AML) and CML cells show high rates
of cholesterol import and/or synthesis [13,14]. Drug-resistant myeloid leukemia cell lines
exhibit higher levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate
limiting enzyme of the mevalonate pathway, suggesting that high cellular cholesterol may also
improve leukemia cell survival and impart relative resistance to chemotherapy [14,15]. Taken
together, modulation of cholesterol homeostasis might be a rational target for the development
of anticancer agents.

Cyclodextrins (CyDs) are cyclic oligosaccharides, which have hydrophilic external faces and
hydrophobic internal environments. The internal cavity of CyD has the ability to encapsulate
lipophilic compounds and solubilize them in aqueous solutions (Fig 1A) [16]. CyDs are widely
used in the pharmaceutical industry because of their ability to improve drug solubility and bio-
availability [17,18]. CyDs interact with cell membrane components, such as cholesterol and
phospholipids, resulting in the induction of hemolysis at high concentrations [19,20]. Amongst
them, methyl-β-cyclodextrin (M-β-CyD) (Fig 1B) is used as a lipid raft disrupting agent
through extraction of cholesterol and sphingolipids from these microdomains [21–24]. Several
in vitro studies demonstrated that M-β-CyD induces apoptosis of various cancer cells [25–27].
However, systemic use of M-β-CyD is limited because of potential toxicities, such as its hemo-
lytic effect on erythrocytes, and nephrotoxicity due to its high surface activity and inclusion
ability [19,28,29].

2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) (Fig 1C) is used clinically as a pharmaceuti-
cal excipient for poorly water-soluble drugs. HP-β-CyD is available in registered oral, buccal,
rectal, ophthalmic, and intravenous products [16]. Oral and intravenous solutions containing
HP-β-CyD in complex with itraconazole, a broad-spectrum triazole antifungal agent, are
widely used [30]. Furthermore, HP-β-CyD has recently been approved for the treatment of
Niemann-Pick Type C disease (NPC), a lysosomal lipid storage disorder [31,32]. However,
the potential anticancer activities of HP-β-CyD have not yet been noted. Given that cellular
cholesterol accumulates in many malignancies and that HP-β-CyD is already used in clinical
practice, we suspected that HP-β-CyD itself could be used as a novel anticancer agent by
directly modulating cholesterol homeostasis in cancer cells. We therefore investigated anti-
cancer activities of HP-β-CyD using various leukemic cell lines in vitro and leukemia mouse
models in vivo.
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Materials and Methods

Reagents and cell lines
HP-β-CyD was purchased from Tokyo Chemical Industry (Tokyo, Japan). M-β-CyD was
obtained from Junsei Chemical (Tokyo, Japan). The average molecular weight of HP-β-CyD
and M-β-CyD are 1391 and 1302, respectively. For in vitro use, compounds were dissolved in
saline (Otsuka Pharmaceuticals, Tokyo, Japan) to a concentration of 500 mM. For in vivo use,
HP-β-CyD and M-β-CyD were dissolved in saline to a concentration of 150 mM and 50 mM,
respectively. These were stored at 4°C until use.

Fig 1. Function and structure of cyclodextrins, and effects of HP-β-CyD on leukemic cell growth. (A) Cyclodextrins (CyDs) can form water-soluble
complexes with lipophilic guests through encapsulation into the cavity of CyDs. (B andC) Chemical structure of methyl-β-cyclodextrin (M-β-CyD) (B), and
2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) (C). (D–F) Growth curves for each cell line were determined by trypan blue dye exclusion. Ba/F3 BCR-ABLWT

cells (D), BV173 cells (E), and hepatocytes (F) were exposed to 0 mM (&), 5 mM (▲), 7.5 mM (●), 10 mM (□), 15 mM (4), 20 mM (�) HP-β-CyD. Data are the
mean ± SD of at least three independent experiments. (G) Colony-forming capacity of murine bone marrow mononuclear cells treated with HP-β-CyD. Data
represent the mean number of colonies ± SD (n = 3). *P < 0.05.

doi:10.1371/journal.pone.0141946.g001
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The human leukemic cell lines, BV173, K562, NALM6, HL60, Jurkat, and MOLT4, were
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). KBM-5
and KBM-5/STI cell lines were kindly provided by Dr M. Beran (The University of Texas M.D.
Anderson Cancer Center, Houston, TX, USA) [33]. An imatinib-sensitive cell line, MYL, and
an imatinib-resistant Lyn-overexpressing cell line, MYL-R, were kindly provided by Dr H.
Tanaka (Hiroshima City Asa Hospital, Hiroshima, Japan) [34]. Two hypoxia-adapted (HA)-
CML cell lines, K562/HA and KCL22/HA were generated and cultured under 1.0% O2 as
described previously [35]. Ba/F3 BCR-ABLWT were generated as described previously [36].
Cells were maintained as suspension cultures in RPMI1640 (Sigma-Aldrich, St. Louis, USA)
supplemented with 10% heat-inactivated fetal calf serum (FCS; Nichirei Bioscience Inc.,
Tokyo, Japan) at 37°C in a fully humidified chambers containing 5% CO2 in air. Studies with
human samples were approved by the Ethical Board of Saga University Hospital. Bone marrow
(BM) or peripheral blood (PB) samples were obtained with written informed consent accord-
ing to the Declaration of Helsinki from newly diagnosed CML and AML patients.

Mice
5- to 6-week-old Balb/cAJcl-nu/nu (nude) mice and 8-week-old NOD/ShiJic-scid Jcl (NOD/
SCID) mice were purchased from CLEA Japan, Inc. (Osaka, Japan), and used for in vivo trans-
plantation experiments. All animal experiments were performed in accordance with the insti-
tutional guidelines of Saga University and with the approval of the Saga University
Institutional Review Board.

Effects of HP-β-CyD on in vitro cell growth
Cell viability was assessed using a trypan blue dye exclusion method and cell proliferation was
evaluated using a modified methyl-thiazol-diphenyl- tetrazolium (MTT) assay with SF reagent
(Nacalai Tesque, Kyoto, Japan) as described previously [37,38]. Cells, including human pri-
mary hepatocytes (Applied Cell Biology Research Institute, Kirkland, WA, USA) were seeded
in flat-bottomed 96-well plates (Greiner Labortechnik, Hamburg, Germany) at a density of
1×104 cells in 100 μL medium per well, and incubated with HP-β-CyD at various concentra-
tions for 72 hours. The mean of three replicates was calculated for each concentration. Half-
maximal inhibitory concentration values (IC50) were determined by nonlinear regression using
CalcuSyn software (Biosoft, Cambridge, UK).

Western blot analysis
Whole cell lysates of leukemic cells treated with or without HP-β-CyD were prepared from
cells using lysis buffer, as reported previously, with minor modification [39]. Protein was sepa-
rated using a 10% NuPAGE electrophoresis system (Novex1, Life Technologies Co., Carlsbad,
CA, USA), transferred to a nitrocellulose membrane (Schleicher & Schuell, BioScience GmbH,
Dassel, Germany), blocked with 5% bovine serum albumin at room temperature for 1 hour,
and incubated with primary antibodies at 4°C overnight. Antibodies against Akt, phosphory-
lated-Akt (Thr308 or Ser473), phospholyrated-Erk1/2 (Thr202/Thr204), phospholyrated-
Stat5, Lyn (Cell Signaling Technology, Danvers, MA, USA), Stat5, Erk1/2, Actin (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), and phospholyrated-Lyn (Abcam, Cambridge, UK)
were used as primary antibodies. Horseradish peroxidase-coupled immunoglobulin IgG (GE
Healthcare, Buckinghamshire, UK) was used as the secondary antibody. An enhanced chemilu-
minescence kit (GE Healthcare) was used for detection. The results are representative of at
least two independent experiments. Intensity of the immunoblot signals after background sub-
traction was quantified using ImageJ software.
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Cell-cycle analysis
Cell-cycle analyses of human leukemic cell lines were performed as described previously [39].
In brief, 1×106 cells were treated with the indicated concentration of HP-β-CyD. Twelve or
twenty-four hours after HP-β-CyD treatment, cells were collected and fixed with 70% ethanol.
Cells were then incubated with 0.1% Triton X-100 and 0.5% RNase A at room temparature for
30 minutes and stained with 50 μg/mL propidium iodide (PI; BD Biosciences, San Jose, CA,
USA). Cellular DNA content was analyzed by flow cytometry, and cell-cycle profiles were
determined using a FACS Caliber flow cytometer with CellQuest software (BD Biosciences).
Data are the mean ± SD of three independent experiments.

Apoptosis assays
Apoptosis assay was performed by staining cells with 7-amino-actinomycin D (7-AAD) and
annexin V (BD Biosciences), according to the manufacturer’s instructions. Cells were cultured
in 6-well plate at a density of 4×105 cells, and incubated with various concentrations of HP-β-
CyD for 12 or 24 hours. Then, cells were stained with 7-amino-actinomycin D (7-AAD) and
Annexin V-APC (BD Biosciences), and analyzed using a FACSAriaII system with Diva soft-
ware (BD Biosciences). Data are the mean ± SD of three independent experiments.

Hematopoietic colony-forming assays
HP-β-CyD toxicity in normal hematopoietic progenitors was investigated using a standard
methylcellulose culture assay as described previously [40]. A total of 2×104 mononuclear cells
from the BM of 10-week-old C57BL/6N mice were exposed to 0, 5, 15, or 25 mMHP-β-CyD in
1 mL MethoCult M3434 (Stem Cell Technologies, Vancouver, Canada). After 8 days of culture,
the number of colonies was counted using an inverted microscope. Data represent the mean
number of colonies ± SD (n = 3).

Clinical samples were obtained with informed consent. Mononuclear cells from leukemia
patients were cultured in semi-solid medium containing recombinant cytokines (MethoCult
H4435; Stem Cell Technologies). Results are expressed as the percentage of colonies relative to
the untreated control ± SD of three replicates.

Cholesterol assays
Leukemic cells (3×106) were incubated with 5 or 10 mMHP-β-CyD in HBSS (pH 7.4) at 37°C
for 1, 2, or 3 hours. Cell culture supernatants were recovered by centrifugation (3,000 rpm, 5
min). The concentration of total cholesterol in the supernatants was determined using a Cho-
lesterol E-test Wako (Wako Pure Chemical Industries, Osaka, Japan). Data are the mean ± SD
of three experiments. Cellular lipids were extracted with methanol:chloroform (1:2), and total
cholesterol and free cholesterol were determined enzymatically. The amount of esterified cho-
lesterol was calculated by subtracting free cholesterol from total cholesterol. Cellular protein
concentration was determined by BCA assay. Data are the mean ± SD of three experiments.
For filipin staining, cells were incubated with β-CyDs (10 mM) for 1 hour. Thereafter, cellular
cholesterol was detected using a Cholesterol Cell-Based Detection Assay Kit (Cayman Chemi-
cal, Ann Arbor, MI, USA).

Murine leukemia model
Two different experimental settings were used. The protocol was approved by the Committee
on the Ethics of Animal Experiments of the Saga University (Permit number: 25-028-0). First,
nude mice were intravenously transplanted with 1×106 EGFP+ Ba/F3 BCR-ABLWT cells. These
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mice were intraperitoneally injected with 200 μL vehicle (saline, Otsuka Pharmaceuticals) or
HP-β-CyD (50 or 150 mM) for 20 consecutive days 3 days after transplantation, and survival
was monitored daily. Leukemic cell engraftment was confirmed by detection of GFP-positive
cells in the recipient’s BM using flow cytometry.

The second experimental setting involved a human leukemia xenograft model. BV173 cells
(1×106) were intravenously injected into sublethally irradiated (2 Gy) NOD/SCID mice. After
72 hours, xenotransplanted mice were intraperitoneally injected with 200 μL vehicle or HP-β-
CyD (50 or 150 mM) for 5 consecutive days every week for 13 weeks, and survival was moni-
tored daily. The percentage of human leukemic cells in BM was determined by flow cytometry
after double staining with FITC-conjugated anti-human CD19 (BD Biosciences) and PE/
Cy7-conjugated anti-mouse CD45 (BioLegend, San Diego, CA, USA) antibodies. All surgery
was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize
suffering. Mice were euthanized with ether when they became moribund or unable to obtain
food or water, as recommended by the institutional guidelines of Saga University. Survival data
were analyzed by a log-rank nonparametric test and shown as Kaplan-Meier survival curves
(n = 10 for each group).

Lung histology
HP-β-CyD was administered to NOD/SCID mice for 13 weeks as described in the above sec-
tion entitled “Murine leukemia model”. Age-matched mice were used as a control. Lungs were
perfused with 10% buffered formalin and excised. Tissues were fixed in 10% buffered formalin
and embedded in paraffin. These blocks were then sectioned and stained with hematoxylin and
eosin (H&E). Samples were reviewed by Dr C. Conti (Texas A&MHealth Science Center). Rep-
resentative images from at least two samples are shown.

Statistical analysis
Results are expressed as the mean ± standard deviation (SD). Data were analyzed using an
unpaired two-tailed Student’s t-test. Values of P<0.05 were considered significant. To analyze
in vivo efficacy, survival curves were created using the Kaplan-Meier method and compared
with a log-rank test.

Results

HP-β-CyD inhibits the growth of various leukemic cell lines
First, we evaluated the effect of HP-β-CyD on leukemic cell viability. HP-β-CyD significantly
inhibited the growth of mouse Pro-B cell Ba/F3 cells expressing wild-type BCR-ABL (hereafter
Ba/F3 BCR-ABLWT) (Fig 1D), and BV173 cells derived from a human Philadelphia chromo-
some-positive (Ph+) acute leukemia patient, in a dose- and time-dependent manner (Fig 1E).
Notably, HP-β-CyD did not significantly interfere with growth of normal human primary
hepatocytes at concentrations of up to 15 mM (Fig 1F).

IC50 values of HP-β-CyD were determined in 13 leukemia cell lines (Ph+ leukemia; BV173,
K562, KBM-5, KBM-5/STI [33], KCL22, MYL and MYL-R [34], AML; HL-60, pre-B cell leuke-
mia; NALM-6, T-cell leukemia; Jurkat and MOLT-4, adult T-cell leukemia; MT1, and MT2).
The IC50 values for HP-β-CyD after 72 hours exposure were in the range of 3.86–10.09 mM
(Table 1). Interestingly, the HP-β-CyD-induced cell growth inhibition of imatinib-resistant cell
lines, such as KBM-5/STI and MYL-R, was equivalent to that of the respective parental cells.
The IC50 value of HP-β-CyD in hepatocytes (18 mM) was approximately three-fold higher
than those of the leukemic cell lines examined.
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To determine the therapeutic window of HP-β-CyD, the susceptibility of normal hemato-
poietic progenitors to HP-β-CyD was examined using a colony formation assay. Under control
conditions, 2×104 C57BL/6N BM cells formed 41 ± 3.5 colonies after 8 days of culture. When
cells were treated with 5, 15, or 25 mMHP-β-CyD, the percentage of colonies was 93 ± 8.6%,
84 ± 23.5%, and 52.4 ± 9.7% of control, respectively (Fig 1G). These results indicate that con-
centrations greater than 15 mMHP-β-CyD are required to suppress BM colony formation.

HP-β-CyD inhibits cell growth by inducing apoptosis and G2/M cell-cycle
arrest
Cell apoptosis was determined by Annexin V and 7-AAD staining. HP-β-CyD increased apo-
ptosis in both BV173 and K562 cells in a dose- and time-dependent manner (Fig 2).

Furthermore, both BV173 (Fig 3A and 3B) and K562 cells (Fig 3C and 3D) responded to
HP-β-CyD with a dose-dependent increase in the percentage of cells in G2/M phase. As the
percentage of cells in G2/M increased, the percentage of G1 phase decreased, whereas the pro-
portion of S-phase cells was not significantly altered by HP-β-CyD treatment. Treatment with
HP-β-CyD also induced G2/M cell-cycle arrest in another Ph+ cell line, KBM5, and Ph-negative
cell lines such as NALM-6, Jurkat, and MOLT4 (S1 Fig). Next, the effects of HP-β-CyD treat-
ment on the expression of G2/M cell-cycle regulators, such as cdc25C, cdc2, cyclin A, cyclin B1,
and p21, were examined by western blot analysis. HP-β-CyD had no effect on p-cdc25c and
cyclin B1 protein expression; however, levels of cdc2 slightly decreased in BV173 cells (Fig 3E
and 3F). Cyclin A and p21 decreased in BV173 cells, while in K562 cells, p21 expression was
induced after 6 hours of HP-β-CyD treatment and slowly declined thereafter (Fig 3E and 3F).
p21 is a cell cycle regulatory protein that can cause cell cycle arrest [41]. However, the role
of p21 is complex because it also posseses pro- and anti-apoptotic abilities, and the function of
p21 in apoptosis is cell type and cellular context specific [42–46]. Therefore, different behavior
of p21 in HP-β-CyD-treated BV173 and K562 cells may be explained in part by the multiple
roles of p21. These data indicate that HP-β-CyD-induced cell growth inhibition could be,
in part, ascribed to induction of apoptosis and cell-cycle arrest at the G2/M checkpoint.

Table 1. IC50 values of HP-β-CyD in various leukemic cell lines.

cell line IC50 (mM) SD

Ph+ leukemia BV173 4.68 0.98

K562 7.02 0.32

KBM5 6.99 2.02

KBM5/STI 8.47 0.6

MYL 10.09 0.35

MYL-R 7.34 1.8

KCL22 8.06 0.71

Acute myeloid leukemia HL60 8.26 1.03

Pre-B cell leukemia NALM6 5.75 0.51

Mouse proB harboring BCR-ABL Ba/F3 BCR-ABLWT 6.01 1.04

ATL MT1 8.23 1.17

MT2 6.18 0.52

T-cell leukemia Jurkat 4.73 0.61

MOLT4 8.62 0.23

normal control hepatocyte 18.65 4.84

Values represent the mean ± SD of at least three independent experiments.

doi:10.1371/journal.pone.0141946.t001
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Fig 2. HP-β-CyD induces apoptosis in BV173 cells and K562 cells. (A–D) BV173 cells and K562 cells were treated with 0, 5 mM, 10 mM, 15 mMHP-β-
CyD, respectively. After 24 hours of culture, cells were collected and stained with Annexin V and 7-AAD. (A) FACS plots, representative of three independent
experiments using BV173 cells. (B) Percentage of Annexin V-positive BV173 cells after culture with HP-β-CyD for 24 hours. Data are the mean ± SD of three
independent experiments. **P < 0.01. (C) FACS plots, representative of three independent experiments using K562 cells. (D) Percentage of Annexin V-
positive K562 cells after culture with HP-β-CyD for 24 hours. Data are the mean ± SD of three independent experiments. *P < 0.05. **P < 0.01.

doi:10.1371/journal.pone.0141946.g002

Fig 3. HP-β-CyD causes cell-cycle arrest in leukemic cells. (A–D) BV173 and K562 cells were treated
with the indicated concentration of HP-β-CyD for 12 hours, then flow cytometric analysis of PI-stained nuclei
was performed. (A) Representative flow cytometric histograms of PI-stained BV173 cells. (B) The percentage
of cells in G0/G1, S, or G2/M phase was assessed in viable BV173 cells. White: G1-phase, gray: S-phase,
black: G2/M-phase. (C) Representative flow cytometric histograms of PI-stained K562 cells. (D) The
percentage of cells in G0/G1, S, or G2/M phase was assessed in viable K562 cells. White: G1-phase, gray: S-
phase, black: G2/M-phase. (E and F) Effects of HP-β-CyD on the expression of G2/M cell-cycle-associated
proteins. BV173 (E) and K562 cells (F) were treated with 10 mMHP-β-CyD for the indicated times. Cells were
lysed and analyzed byWestern blotting. Western blot images are representative results from at least two
independent experiments. Detection of β-actin was used as a loading control. Intensity of the immunoblot
signals after background subtraction was quantified using ImageJ software.

doi:10.1371/journal.pone.0141946.g003
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HP-β-CyD disturbs leukemic cell cholesterol homeostasis
We recently reported that M-β-CyD induces apoptosis in some solid cancer cell lines, possibly
due to cholesterol depletion from cell membranes [27]. Therefore, to clarify whether HP-β-
CyD-induced apoptosis is also associated with cholesterol depletion, we evaluated the effect
of CyDs on cholesterol efflux from leukemic cells. HP-β-CyD or M-β-CyD treatment both
increased cholesterol release in a time- and dose-dependent manner. Greater concentrations of
cholesterol were released from Ba/F3 BCR-ABLWT cells treated with M-β-CyD than from cells
treated with HP-β-CyD (Fig 4A). Similar results were also observed in BV173 cells and human
hepatocytes (Fig 4B and S2A Fig). Next, we determined intracellular concentrations of choles-
terol in leukemic cells treated with β-CyDs. Treatment with β-CyDs decreased cholesterol con-
tent in a dose-dependent manner (Fig 4C and 4D). Contrary to the results of the cholesterol
efflux experiment, the cholesterol content of cells incubated with M-β-CyD was lower than
that of the HP-β-CyD-treated cells (Fig 4C and 4D). Surprisingly, hepatocyte cholesterol con-
tent was not affected by treatment with the same concentration of HP-β-CyD (Fig 4E).

The reduced intracellular cholesterol content of CyDs-treated cells was also confirmed
by filipin staining, which is a polyene antibiotic that specifically binds to cholesterol [47].
Although control (untreated) cells were positive for filipin, both M-β-CyD and HP-β-CyD-
treated leukemic cells exhibited lower levels of filipin labeling than control cells (Fig 4F and
4G). In particular, M-β-CyD-treated cells demonstrated negligible labeling of filipin (Fig 4F
and 4G). By contrast, hepatocytes treated with HP-β-CyD showed similar levels of filipin label-
ing to control cells (S2B Fig). These data support the results of the cholesterol efflux and intra-
cellular cholesterol assays. The ability of M-β-CyD to markedly reduce cholesterol levels may
reflect the degree of its cellular toxicity.

Effect of HP-β-CyD on signal transduction pathways involved in
leukemia cell proliferation and survival
Signal transduction pathways such as RAS/RAF/MAPK, PI3K-AKT, STAT5, and Lyn, are acti-
vated in leukemia cells [48–50]. Thus, we next conducted experiments to elucidate the molecu-
lar mechanism by which HP-β-CyD inhibits the growth of leukemic cells. BV173 and K562
cells were exposed to 10 mMHP-β-CyD for varying times up to 24 hours, then changes in the
expression and phosphorylation status of Akt, Erk, Stat5, and Lyn were examined. In BV173
cells, HP-β-CyD treatment markedly inhibited Stat5 phosphorylation. Akt and Lyn were also
dephosphorylated on the treatment with HP-β-CyD, whereas the levels of phosphorylated (p)-
ERK1/2 slightly increased in a time-dependent manner (Fig 5A). In K562 cells, HP-β-CyD
treatment reduced levels of p-Lyn, which is known to reside in lipid rafts [51] after 0.5 and 2
hours of treatment, but p-Lyn recovered after 8 and 24 hours of treatment. The levels of p-
ERK1/2 increased, with no significant effect on p-Stat5 or p-Akt observed (Fig 5B). Though
BV173 and K562 cell lines were established from patients with Ph+ chronic myeloid leukemia
in blast crisis [52,53], these two cell lines have some different characteristics [53,54]. Concor-
dant with reports concerning M-β-CyD [10,25,26], these results suggest that HP-β-CyD effects
on signal transduction may be cell context dependent.

HP-β-CyD inhibits the proliferation of a tyrosine kinase inhibitor (TKI)-
resistant cell line
Although first- and second-generation TKIs, such as imatinib, nilotinib, and dasatinib, demon-
strate improved outcomes in patients with CML and Ph+ acute lymphoblastic leukemia, a sub-
set of patients with BCR-ABL mutations, particularly the T315I mutation, exhibit resistance to
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these TKIs [3]. Currently, the third-generation TKI, ponatinib, is the only TKI that demon-
strates notable activity against the T315I mutation [55].

In light of the data showing the inhibitory effect of HP-β-CyD on the proliferation of CML
cell lines, we were prompted to evaluate the potential of HP-β-CyD to overcome TKI resis-
tance. The results of a modified MTT assay using TKIs and HP-β-CyD are shown in Table 2.
Ba/F3 cells expressing the T315I mutant (Ba/F3 BCR-ABLT315I) were resistant to imatinib and
dasatinib [56]. By contrast, Ba/F3 BCR-ABLT315I cell growth was inhibited by ponatinib (IC50:
6.3 nM). These results are consistent with previous reports [55,56]. Most interestingly, the
IC50 of HP-β-CyD against Ba/F3 BCR-ABLT315I cells was comparable to that of the Ba/F3
BCR-ABLWT cells. Similar results were obtained in cell proliferation assays that used trypan
blue staining (Fig 1D and S2 Fig). These results suggest that HP-β-CyD can inhibit the prolifer-
ation of TKI-resistant cell lines and may be of use against TKI resistance.

Fig 4. Disruption of cellular cholesterol homeostasis by β-CyDs. (A andB) Effect of β-CyDs on
cholesterol efflux from Ba/F3 BCR-ABLWT and BV173 cells. Ba/F3 BCR-ABLWT cells (A) and BV173 cells (B)
were incubated with β-CyDs (5 mM, 10 mM) for 1, 2, or 3 hours. Then the cholesterol concentration of the
culture supernatants was determined. (●), control; (4), 5 mM HP-β-CyD; (▲), 10 mM HP-β-CyD; (□), 5 mM
M-β-CyD; (&), 10 mMM-β-CyD. Data are the mean ± SD of three experiments. (C–E) Measurement of the
intracellular cholesterol content of β-CyD-treated cells. Ba/F3 BCR-ABLWT (C), BV173 (D), and hepatocytes
(E) were incubated with vehicle, HP-β-CyD (5 mM, 10 mM), or M-β-CyD (5 mM, 10 mM), respectively. After 1
hour, cellular lipids were extracted, and cholesterol contents were determined. HP, HP-β-CyD; M, M-β-CyD;
TC, total cholesterol; FC, free cholesterol; EC, esterified cholesterol. (F andG) Images of filipin staining for
Ba/F3 BCR-ABLWT (F) or BV173 cells (G) treated with 10 mM β-CyDs for 1 hour are shown. Scale bar:
10 μm.

doi:10.1371/journal.pone.0141946.g004
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Administration of HP-β-CyD prolongs survival in leukemia mouse
models
The in vitro data presented above demonstrate that HP-β-CyD has a significant inhibitory
effects on leukemic cell growth. Next, to investigate the in vivo efficacy of HP-β-CyD, we gener-
ated mouse models of BCR-ABL-induced leukemia, and administered HP-β-CyD. Two differ-
ent experimental settings were used. First, nude mice transplanted with Ba/F3 BCR-ABLWT

were treated with 200 μL of vehicle, 50 mMHP-β-CyD [695.5 mg/kg intraperitoneal (i.p.); b.i.
d] or 150 mMHP-β-CyD (2086.5 mg/kg i.p.; b.i.d) for 20 days beginning 3 days after trans-
plantation. Ba/F3 BCR-ABLWT cell engraftment was confirmed by flow cytometric detection of
EGFP+ cells in the BM of control mice (S4A Fig). All vehicle-treated mice died within 28 days.
HP-β-CyD-treated mice survived longer than vehicle-injected mice, and the overall survival of
recipients that received 50 mM or 150 mMHP-β-CyD was significantly higher than that of
vehicle-injected mice (Fig 6A). Surprisingly, the survival time of HP-β-CyD-injected mice was
longer than that of imatinib-treated mice in the same experimental setting, as performed in a
previous study in our laboratory [57].

Fig 5. Protein expression and phosphorylation of BCR-ABL-associated kinases in leukemic cell lines
treated with HP-β-CyD. BV173 and K562 cells were treated with 10 mMHP-β-CyD for the indicated times,
after which STAT5, AKT, LYN, and ERK1/2 protein levels, and the phosphorylation status of each protein
were determined by western blot analysis. Detection of β-actin was used as a loading control. Data are
representative of three independent experiments. Intensity of the immunoblot signals after background
subtraction was quantified using ImageJ software, and the relative intensities of p-STAT5, p-AKT, p-LYN, and
p-ERK1/2 compared to those of STAT5, AKT, LYN, and ERK1/2 were respectively calculated.

doi:10.1371/journal.pone.0141946.g005

Table 2. Comparison of the IC50 values of TKIs and HP-β-CyD in Ba/F3 BCR-ABLWT and Ba/F3 BCR-ABLT315I cells.

IC50

cell line Imatinib, μM Dasatinib, nM Ponatinib, nM HP-β-CyD, mM

BaF3/BCR-ABLWT 0.09 ± 0.09 0.58 ± 0.15 0.89 ± 0.06 6.01 ± 1.04

BaF3/BCR-ABLT315I 8.90 ± 1.21 2755.09 ± 120.15 6.30 ± 0.26 6.87 ± 0.76

ratio (T315I/WT) 102.85 4727.69 7.06 1.14

Values shown are the mean ± SD of at least three independent experiments.

doi:10.1371/journal.pone.0141946.t002
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The second setting utilized a human leukemia xenograft model. BV173 cells were intrave-
nously transplanted into sublethally irradiated NOD/SCID mice. Intraperitoneal injections of
50 mMHP-β-CyD, 150 mMHP-β-CyD, or vehicle were performed for 5 consecutive days
every week for 13 weeks, beginning 3 days after transplantation. BV173 cell engraftment into
BM was confirmed by flow cytometry (S4B Fig). HP-β-CyD-treated mice survived longer than
control mice, and the log-rank test for overall survival showed statistically significant differ-
ences between vehicle- and 150 mMHP-β-CyD-treated recipients (Fig 6B).

It has been reported that HP-β-CyD shows only limited toxicity, although toxicity profiles
of CyDs may differ according to the route of administration [58]. HP-β-CyD-treated mice

Fig 6. Effect of HP-β-CyD on survival in leukemia mousemodels. (A) Survival of mice that received
EGFP+ Ba/F3 BCR-ABLWT cells. EGFP+ Ba/F3 BCR-ABLWT cells (1×106) were transplanted into 6-week-old
nude mice. Three days after transplantation, 200 μL vehicle, 50 mM (695.5 mg/kg) HP-β-CyD, or 150 mM
(2086.5 mg/kg) HP-β-CyD were intraperitoneally injected twice a day for 20 days, and survival was monitored
daily. Gray lines, dotted lines, and black lines indicate the survival curves of vehicle-, 50 mMHP-β-CyD- and
150 mMHP-β-CyD-treated mice, respectively. Survival data were analyzed using a log-rank nonparametric
test and are shown as Kaplan-Meier survival curves (n = 10). **P < 0.01. (B) Survival of human leukemia
xenografted mice transplanted with BV173 cells. BV173 cells (1×106) were intravenously injected into 2 Gy
irradiated NOD/SCID mice. Three days after transplantation, 200 μL vehicle, 50 mMHP-β-CyD (695.5 mg/kg
HP-β-CyD), or 150 mMHP-β-CyD (2086.5 mg/kg HP-β-CyD) were administered intraperitoneally for 5
consecutive days every week for 13 weeks, and survival was monitored daily. Gray lines, dotted lines and
black lines indicate the survival curves of vehicle-, 50 mMHP-β-CyD-, and 150 mMHP-β-CyD-treated mice,
respectively. Survival data were analyzed using a log-rank nonparametric test and are shown as Kaplan-
Meier survival curves (n = 10). *P < 0.05. (C–F) Histological examination of lungs from age-matched controls,
and HP-β-CyD-treated NOD/SCID mice. (C andD) hematoxylin and eosin (H&E) stained control lung. (C)
Original magnification, ×100; (D), ×400. (E and F) H&E stained 150 mMHP-β-CyD-treated lung. (E) Original
magnification, ×100; (F), ×400. Representative images from at least two samples are shown.

doi:10.1371/journal.pone.0141946.g006
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exhibited no gross lesions upon macroscopic examination. No hemolysis or anemia was
observed (S1 and S2 Tables). More recently, HP-β-CyD-induced lung toxicity has been paid
attention in the treatment of patients with NPC disease [59,60]. However, no obvious changes
in lung histology were observed in HP-β-CyD-treated mice (Fig 6C–6F). Notably, all 150 mM
M-β-CyD-injected mice died of diffuse alveolar hemorrhage within 24 hours of intraperitoneal
administration (data not shown). These results clearly demonstrate that in vivo administration
of HP-β-CyD inhibits leukemic cell growth, resulting in improved survival times. Furthermore,
HP-β-CyD was well tolerated in mice with low toxicity.

HP-β-CyD inhibits proliferation of hypoxia-adapted leukemic cells and
human primary leukemic cell colony formation
We previously established two leukemic cell lines that survive and proliferate under 1.0% O2

hypoxic conditions [35]. These hypoxia-adapted (HA)-leukemic cells, namely, K562/HA and
KCL22/HA, exhibit properties similar to leukemic stem cells, including relative cell dormancy,
increase of side population fraction, resistance to Abl TKIs, and good engraftment ability. To
investigate the effect of HP-β-CyD on leukemic stem-like cells, K562/HA and KCL22/HA cells
were treated with HP-β-CyD. The IC50 values of HP-β-CyD in K562/HA and KCL22/HA cells
were comparable to that of their parental cells (Table 3), suggesting that HP-β-CyD targets not
only proliferating leukemia cells but also dormant leukemic stem cells. Apoptosis and G2/M
cell-cycle arrest were also induced in K562/HA and KCL22/HA cells by HP-β-CyD treatment
(S5 Fig).

We also evaluated the efficacy of HP-β-CyD in colony formation assays using mononuclear
cells from two AML patients and from one accelerated phase CML patient. HP-β-CyD inhib-
ited the formation of colonies in a concentration-dependent manner regardless of disease dif-
ferences (Fig 7).

Discussion
In the present study, we provide evidence that HP-β-CyD-mediated cholesterol efflux inhibits
leukemic cell proliferation. M-β-CyD and HP-β-CyD have been widely used as cholesterol-
depletion agents. We previously showed that M-β-CyD had potent cytotoxic activity, and the
involvement of cholesterol depletion in cell-death by M-β-CyD [27]. We and others demon-
strated that M-β-CyD have higher cholesterol extraction ability than HP-β-CyD, probably
because of the increase in hydrophobic space of the CyD cavity [61–63]. Thus, M-β-CyD is
highly toxic. Yan et al. reported that M-β-CyD induces programmed cell death in CML cells
and has anti-leukemic effects when used in combination with imatinib against imatinib-resis-
tant CML cells in vitro [26]. Our data revealed that single use of HP-β-CyD effectively inhibits
not only the growth of various leukemia cells, such as AML, ALL and CML, but also imatinib-

Table 3. IC50 values of HP-β-CyD in hypoxia-adapted leukemic cell lines.

cell line IC50 (mM) SD

Ph+ leukemia K562 7.02 0.32

K562/HA 3.86 0.85

KCL22 8.06 0.71

KCL22/HA 5.61 0.3

Normal control hepatocyte 18.65 4.84

Values represent the mean ± SD of at least three independent experiments.

doi:10.1371/journal.pone.0141946.t003
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resistant CML cell growth, including cells harboring the T315I mutation (which are resistant to
first- and second-generation TKIs), and stem cell-like CML cells, indicating that HP-β-CyD
has an anti-leukemic potential irrespective of leukemia type or the different characteristics. In
vivo, systemic administration of HP-β-CyD in murine leukemia models further demonstrated
that HP-β-CyD suppresses leukemia progression, resulting in improved survival. These results
suggest that HP-β-CyD is a potential novel anticancer agent.

Rapidly proliferating cells may conceivably require cholesterol for new membrane synthesis.
Hence, increased endogenous cholesterol biosynthesis could be a common property of cancer.
Statins, inhibitors of HMG-CoA reductase, exert growth inhibitory responses in leukemia cells
in vitro [7,64,65]. These promising in vitro data led researchers to investigate possible clinical
applications of statins as a single chemotherapeutic agent. Although conflicting results have
been reported regarding their efficacy against cancers, including leukemia [66,67], the discrep-
ancy between preclinical and clinical data may be explained in part by the difference in statin
concentrations used. To achieve plasma statin concentrations comparable to those that demon-
strated in vitro anticancer effects, considerably higher doses that may cause adverse effects,
such as myopathy, rhabdomyolysis, and hepatotoxicity, must be administered. Recently, a leu-
kemia-stroma co-culture system was used to screen for inhibition of stem cell properties, and
identified 155 small-molecule compounds, including an HMGCR inhibitor, lovastatin, which
preferentially inhibited leukemia stem cells (LSC) in vitro while sparing normal hematopoietic
stem and progenitor cells. However, in vivo anti-LSC effect of lovastatin remains to be deter-
mined [68].

HP-β-CyD induced apoptosis and G2/M cell-cycle arrest in vitro, and prolonged survival
(without severe toxicity) in murine leukemia models. The mechanisms by which HP-β-CyD
induced apoptosis of cancer cells remain unclear. Rosenbaum et al. showed that M-β-CyD/dex-
tran conjugates enter Niemann-Pick Type C1 (NPC1)-defective cells and localize to choles-
terol-enriched late endosomes/lysosomes [69]. Plazzo et al. also demonstrated that fluorescein-
tagged M-β-CyD is internalized into HeLa cells via clathrin-dependent endocytosis [70].
However, Onodera et al. demonstrated that although tetramethylrhodamine isothiocyanate
(TRITC)-M-β-CyD is associated with apoptosis of various cancer cells, TRITC-M-β-CyD is
not internalized, suggesting that M-β-CyD may be membrane impermeable [27]. These contra-
dictive results could be caused by different concentrations of M-β-CyD or different cell types;
thus, further studies are required to better understand how HP-β-CyD induces cancer cell
apoptosis.

Fig 7. HP-β-CyD inhibits the in vitro colony-forming ability of human primary leukemic cells.
Mononuclear cells (MNCs) obtained from two patients with AML and from one patient with accelerated phase
CML (CML-AP) were plated in methylcellulose containing HP-β-CyD and cultured for 8–13 days. Colonies
(>50 cells) were counted. Results are expressed as the percentage of colonies relative to the untreated
control ± SD of three replicates. (A andB) Colony formation assays of MNCs from AML patients (FAB: M0) in
the presence of HP-β-CyD. (C) Colony formation assays of MNCs from the CML-AP patient in the presence
of HP-β-CyD. *P < 0.05. **P < 0.01.

doi:10.1371/journal.pone.0141946.g007
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Accumulating evidence indicates that many different signaling proteins are affected by
CyDs. For example, M-β-CyD treatment decreases Akt phosphorylation in a time-dependent
manner in human epidermoid carcinoma cells [10], whereas M-β-CyD has no effect on the
phosphorylation of Akt, PLCγ1, and ERK1/2 in human megakaryoblastic leukemia cells [71].
Yan et al. reported that treatment of K562 cells with M-β-CyD resulted in a significant decrease
in ERK1/2 phosphorylation, and thus concluded that an ERK/SPK1 signaling pathway may be
an important mediator of M-β-CyD effects [26]. However, in our system, we observed that
HP-β-CyD treatment increased p-ERK1/2 in a time-dependent manner with decreased p-Lyn
levels. These phenomena could be explained by the observation that Lyn negatively regulates
ERK activation [72]. In erythroleukemic cell line, K562 cells, the levels of p-Lyn recovered after
8 and 24 hours of HP-β-CyD treatment. Because Lyn plays an essential role for erythropoiesis
and erythroleukemia development, HP-β-CyD-treated K562 cells might restored the levels of
p-Lyn to survive [73,74]. More detailed biochemical analyses are required to characterize the
exact molecular mechanisms modulated by HP-β-CyD in leukemia cells.

In this study, the concentration of HP-β-CyD required to induce cell death in vivo is greater
than 2g/kg in BV173-xenografted leukemic mice. Matsuo et al. showed the effectiveness of intra-
venous HP-β-CyD treatment in two patients with Niemann-Pick type C disease (NPC) [31].
One patient was treated with approximately 2,500 mg/kg of HP-β-CyD (40,000mg, intravenously
administered for 8h), a concentration comparable to our in vivo experiment (Fig 6 150 mMHP-
β-CyD). Tanaka et al measured serum HP-β-CyD concentrations in this patient [75]. SerumHP-
β-CyD concentrations were 1,295, 1,756 (1.3 mM), and 90 μg/mL at 2, 8, 12h after the start of
infusion. Because HP-β-CyD was administered slowly (8h) in this patient, higher serumHP-β-
CyD concentration would be obtained when the dripping speed is increased. Thus, the dose of
HP-β-CyD used in the present study would be promising dose in a future clinical setting.

HP-β-CyD toxicity was also extensively investigated in mice in our study. HP-β-CyD is well
tolerated in most species and shows limited toxicity, depending on dose and route of administra-
tion [58]. A study using acute intraperitoneal HP-β-CyD administration revealed that, in mice,
up to 10,000 mg/kg HP-β-CyD, is tolerable [76]. Although CyD-induced hemolysis of human
and rabbit red blood cells is well known [19,20], in the present study, neither single nor repeated
HP-β-CyD administration resulted in hemolysis or anemia in mice. Furthermore, HP-β-CyD-
induced lung toxicity, such as foamy macrophage infiltration, alveolitis, and pulmonary edema
has been reported in several animal species [58,60]. The lungs of mice treated with HP-β-CyD for
13 weeks did not exhibit any histologic changes compared with those of control mice. No severe
adverse effects were reported in two patients with NPC who received infusions of HP-β-CyD
over 2 years [31]. Future studies are required to clarify the potential side effects of HP-β-CyD.

In conclusion, we have demonstrated that HP-β-CyD disrupts cholesterol homeostasis and
inhibits the proliferation of leukemic cells by induction of apoptosis and cell-cycle arrest. Sys-
temic HP-β-CyD administration has limited toxicity where examined. HP-β-CyD is also effec-
tive against mutated TKI-resistant clones and hypoxia-adapted cells, suggesting that HP-β-
CyD has a broad anticancer effect irrespective of the cellular characteristics by modulating cho-
lesterol homeostasis. To our knowledge, this paper is the first report to describe the efficacy of
HP-β-CyD in leukemia in vitro and in vivo. Early-phase clinical trials are planned to verify the
efficacy and safety of HP-β-CyD for treatment of leukemia.

Supporting Information
S1 Fig. HP-β-CyD induces cell-cycle arrest in leukemic cells. (A–D) Leukemic cells were treated
with the indicated concentration of HP-β-CyD for 12 hours, then flow cytometric analysis of PI-
stained nuclei was performed. The percentage of cells in G0/G1, S, or G2/M phase was assessed in
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viable leukemic cells. White: G1-phase, gray: S-phase, black: G2/M-phase. (A) NALM-6, (B)
KBM5, (C) Jurkat, (D) MOLT-4 cells. Data are the mean ± SD of three independent experiments.
(PPTX)

S2 Fig. Effects of β-CyDs on efflux of cholesterol from hepatocytes. (A) Hepatocytes
(1 × 107 cells) were incubated in HBSS (pH 7.4) with or without HP-β-CyD or M-β-CyD (0, 5,
10 mM) for 1 hour. The concentration of cholesterol in HBSS were determined by Cholesterol
E-test Wako1. (B) Image of filipin staining for hepatocytes. Primary hepatocytes were incu-
bated with M-β-CyD (10 mM) or HP-β-CyD (10 mM) for 1 hour. Then, cells were treated with
Filipin solution, and were scanned with a fluorescence microscope.
(TIF)

S3 Fig. Effect of HP-β-CyD on the growth of Ba/F3 BCR-ABLT315I cells. Ba/F3
BCR-ABLT315I cells were exposed to 0 mM (&), 5 mM (▲), 7.5 mM (●), 10 mM (□), 15 mM
(4), and 20 mM (�) HP-β-CyD. Viable cells were counted by a trypan blue dye exclusion
method. Data are the mean ± SD of three independent experiments.
(TIF)

S4 Fig. Leukemic cell engraftment into bone marrow in the BCR-ABL-induced leukemic
mouse models. (A) Flow cytometric histogram of EGFP-positive BM cells from untreated
nude mice that received EGFP+ Ba/F3 BCR-ABLWT cells. (B) Representative FACS plot of
BV173 cell-transplanted NOD/SCID mice. BM cells of NOD/SCID mice were analyzed by
FACS 4 weeks after BV173 cell transplantation using an anti-human CD19 antibody and anti-
mouse CD45 antibody.
(TIF)

S5 Fig. HP-β-CyD inhibits hypoxia-adapted cell growth by inducing apoptosis and G2/M
cell-cycle arrest. (A-B) K562/HA cells and KCL22/HA cells were treated with 0, 5 mM, 10
mM, 15 mMHP-β-CyD, respectively. After 24 hours of culture, cells were collected and stained
with Annexin V and 7-AAD. (A) Percentage of Annexin V-positive K562/HA cells after cul-
ture with HP-β-CyD for 24 hours. Data are the mean ± SD of three independent experiments.
(B) Percentage of Annexin V-positive KCL22 cells after culture with HP-β-CyD for 24 hours.
Data are the mean ± SD of three independent experiments. ��P< 0.01. (C-D) HP-β-CyD
causes cell-cycle arrest in hypoxia-adapted leukemic cells. K562/HA and KCL22/HA cells were
treated with the indicated concentration of HP-β-CyD for 12 hours, then flow cytometric anal-
ysis of PI-stained nuclei was performed. (C) The percentage of cells in G0/G1, S, or G2/M phase
was assessed in viable K562/HA cells. White: G1-phase, gray: S-phase, black: G2/M-phase. (D)
The percentage of cells in G0/G1, S, or G2/M phase was assessed in viable KCL22/HA cells.
White: G1-phase, gray: S-phase, black: G2/M-phase. Data are the mean ± SD of three indepen-
dent experiments.
(PPTX)

S1 Table. Red blood cell count in HP-β-CyD-injected nude mice. Data from CBC counts of
peripheral blood collected by retro-orbital bleeding of vehicle-, and HP-β-CyD-injected nude
mice. Data are mean ± SD of three mice.
(DOCX)

S2 Table. Red blood cell count in HP-β-CyD-injected NOD/SCID mice. Data from CBC
counts of peripheral blood collected by retro-orbital bleeding of vehicle-injected, and NOD/
SCID mice that received 50 mMHP-β-CyD administration for 7 weeks. Data are average of
two mice.
(DOCX)
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