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Abstract

The tumor suppressive activities of the Kip-family of cdk inhibitors often go beyond their role in 

regulating the cell cycle. Here, we demonstrate that p27 enhances Rad51 accumulation during 

repair of double-strand DNA breaks. Progression of PDGF-induced oligodendrogliomas was 

accelerated in mice lacking the cyclin-cdk binding activities of p27kip1. Cell lines were developed 

from RCAS-PDGF infection of nestin-tv-a brain progenitor cells in culture. p27 deficiency did not 

affect cell proliferation in early passage cell lines; however, the absence of p27 affected 

chromosomal stability. In p27 deficient cells, the activation of Atm and Chk2, and the 

accumulation of γH2AX was unaffected compared to wild type cells, and the number of phospho-

histone H3 staining mitotic cells was decreased, consistent with a robust G2/M checkpoint 

activation. However, the percentage of Rad51 foci positive cells was decreased, and the kinase 

activity that targets the C-terminus of BRCA2, regulating BRCA2/Rad51 interactions, was 

increased in lysates derived from p27 deficient cells. Increased numbers of chromatid breaks in 

p27 deficient cells that adapted to the checkpoint were also observed. These findings suggest that 

Rad51-dependent repair of double stranded breaks was hindered in p27 deficient cells, leading to 

chromosomal instability, a hallmark of cancers with poor prognosis.
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Introduction

Gliomas are the most common adult brain neoplasm, and are divided into astrocytomas, 

oligodendrogliomas (ODGs), mixed gliomas, and glioblastoma multiforme. Normal glial 
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cell development and formation of glial tumors are both regulated by PDGF signaling. 

PDGF is often co-expressed with the PDGF receptor in human gliomas, including ODGs (Di 

Rocco et al., 1998; Shih et al., 2004), and retroviral expression of PDGF induces ODG 

formation in mouse models (Dai et al., 2001). Treatment with PDGF receptor kinase 

inhibitors blocks the growth of these gliomas in mice (Shih et al., 2004; Uhrbom et al., 

1998).

PDGF signaling plays a crucial role in gliomagenesis, but the influence of PDGF activation 

on downstream events in glial tumor cells is poorly understood. We hypothesized that 

alterations in cell cycle regulators might contribute to the development of ODG. Cell cycle 

progression is driven by the activity of cyclin dependent kinases (cdk). If cdk activity drops 

below a threshold, the cell withdraws from the cell cycle. Two families of cdk inhibitors 

(cki) negatively regulate the activities of the cdks. The Ink4a family (p15, p16, p18, p19) 

inhibits cyclin D-cdk4/6 complexes while the Cip/Kip subfamily (p21, p27, p57) inhibits 

cyclin-cdk2 complexes (Sherr and Roberts, 1995; Sherr and Roberts, 1999).

One cki, p27Kip1, may be especially important in ODG. Oligodendrocyte progenitor cells 

(OPCs) are one of the precursor cell-types in which ODG develops. Differentiation of OPCs 

in response to PDGF withdrawal depends on the timely accumulation of p27 (Casaccia-

Bonnefil et al., 1997; Durand et al., 1998). PTK787, a compound that blocks PDGF 

signaling, induces differentiation of PDGF-transformed glial progenitors into 

oligodendrocytes and accumulation of p27 (Dai et al., 2001). Decreased p27 protein 

expression is associated with decreased survival in human ODG (Cavalla et al., 1999; 

Kamiya and Nakazato, 2002; Korshunov et al., 2002). Thus, p27 deficiency might contribute 

to ODG by maintaining the tumor progenitor cell in a proliferative state.

In human ODG, p27 protein levels do not correlate with proliferation (Cavalla et al., 1999), 

suggesting that changes in p27 expression may be unrelated to its ability to control cell cycle 

exit. Tumor progression induced by a variety of challenges (carcinogens, oncogenes, or 

tumor suppressor loss), is accelerated in p27 deficient mice (Blain et al., 2003; Cipriano et 

al., 2001; Di Cristofano et al., 2001; Fero et al., 1998; Koff, 2006; Martins and Berns, 2002; 

Musgrove et al., 2004; Park et al., 1999; Shaffer et al., 2005). Accelerated progression is 

sometimes associated with increased proliferation indices, and other times it is not. Thus, we 

began these studies to better define the effect of p27 deficiency in ODG.

Here, we used the RCAS/tv-a system to generate PDGF-induced ODG in mice (Uhrbom and 

Holland, 2001). The avian retrovirus RCAS cannot infect mammalian cells. However, mice 

that are transgenic for the tv-a receptor under the nestin promoter (Ntv-a) allow tissue 

specific infection of OPC and other earlier neuronal/glial cell types (Doetsch et al., 1997; 

Doetsch et al., 2002; Holland, 2001). We crossed Ntv-a transgenic mice onto a p27 deficient 

(p27D51/D51) background. The D51 p27 allele is missing the first 51 amino acids of p27; this 

mutant protein does not bind cyclin-cdk complexes (Kiyokawa et al., 1996). p27D51/D51 

homozygous mice and cells derived from these mice have phenotypes similar to other p27 

null animals (Fero et al., 1996; Nakayama et al., 1996).
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Our results show that p27 deficiency enhances tumor progression and leads to a dramatic 

decrease in survival in PDGF-induced oligodendrogliomas. We also established PDGF-

transformed glial cultures. Early passage p27 deficient PDGF-infected glial cells grew at the 

same rate as wild type controls, but contained a number of chromosomal abnormalities, 

indicating that they suffered from genomic instability. In response to γ-irradiation, more 

chromatid breaks and a decrease in the formation of Rad51 repair foci were observed in p27 

deficient cells. Activation of Atm, and Chk2, and accumulation of γH2AX were equivalent. 

Together this suggested that p27 deficiency attenuated DNA repair in G2 cells. We propose 

that the absence of p27 may create a permissive environment in which chromosomal 

abnormalities that lead to enhanced proliferation can be selected for in the tumor 

environment.

Results

PDGF-induced ODG progresses more rapidly in p27 deficient mice

p27 acts as a tumor suppressor in several mouse models of cancer (Blain et al., 2003; 

Cipriano et al., 2001; Di Cristofano et al., 2001; Fero et al., 1998; Martins and Berns, 2002; 

Park et al., 1999; Shaffer et al., 2005). Loss of p27 expression correlates with decreased 

survival in human ODG (Cavalla et al., 1999; Kamiya and Nakazato, 2002; Korshunov et 

al., 2002), suggesting that p27 might play a contributing role in ODG. To determine if loss 

of p27 had an effect on PDGF-driven gliomagenesis, we crossed nestin-tva (Ntv-a) mice 

onto a p27 mutant (p27D51/Δ51) background. The protein produced by this allele lacks the 

amino terminal 51 amino acids and does not bind cyclin-cdk complexes. Tumor formation 

was induced with the RCAS/tv-a system. HA tagged PDGF was sub-cloned into the RCAS 

vector (RCAS-PDGF-HA) (Shih et al., 2004) to promote constitutive expression of PDGF. 

Chicken DF1 cells were transfected with RCAS-PDGF-HA, and virus-producing cells were 

directly injected into the frontal cortex of newborn pups to allow for viral infection of 

proliferating cells in the subventricular zone. We used transgenic mice that express the tv-a 

receptor under the nestin promoter, which restricts infection to neural/glial progenitors, glial 

restricted progenitors, OPC and astrocyte precursors.

p27+/+, p27+/D51, and p27D51/D51 mice were injected with 104 DF1 cells that produced the 

RCAS-PDGF-HA virus and evaluated for 12 weeks. Mice were sacrificed earlier if they 

became morbid. Virtually all tv-a negative mice, regardless of their p27 genotype, were still 

alive at the end of 12 weeks, and as expected, none had any evidence of tumor when 

sacrificed. Thus the following descriptions focus solely on those mice that express tv-a. The 

onset of morbidity was equivalent in the p27D51/D51 and p27D51/+ animals, with 50% having 

to be sacrificed by the fourth week compared to nine weeks for p27+/+ mice (Figure 1A). 

H&E staining demonstrated that >95% of the mice sacrificed had a tumor. Tumors were 

diffuse and consisted of small cells; there was evidence of perivascular and perineuronal 

satellitosis, white matter tracking, and subpial infiltration (Liu et al., 2007). At the end of 12 

weeks, only 6% of p27D51/D51 mice and 20% of p27+/D51 mice remained alive compared to 

38% of the p27+/+ mice. Virtually all the mice that survived to 12 weeks had tumors. The 

differences in survival were statistically significant by log-rank analysis. Thus, genetic 
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deficiency of p27, either at one or both alleles, was sufficient to increase morbidity and 

mortality associated with enforced expression of PDGF.

To determine if p27 deficiency affected the nature of the disease, three tumors from p27+/+ 

and p27D51/D51 animals were randomly selected for further analysis by 

immunohistochemistry. Both the p27+/+ and p27D51/D51 tumors were positive for the 

oligodendrocyte marker olig2 (Liu et al., 2007) and the stem cell marker sox2 (Avilion et al., 

2003; Ferri et al., 2004) (Figure 1B), and negative for the neuronal marker NeuN (Jin et al., 

2003). With the exception of trapped astrocytes, the tumors were also negative for GFAP. 

Thus, the presence of two p27 alleles contributed to better prognosis and longer survival 

when ODG was driven by expression of the growth factor PDGF.

p27 is a haploinsufficient tumor suppressor that is not dose-dependent in PDGF-induced 
ODG

In most other tumor models, haploinsufficiency at the p27 locus manifests as dosage-

dependence—heterozygous mice succumb to disease at a rate intermediate to that observed 

in wild type or nullizygous mice (Fero et al., 1998; Park et al., 1999). However, in PDGF-

induced ODG, symptom free survival was equivalent for p27+/D51 mice and p27D51/D51 

animals (P<0.5, Figure 1A), suggesting that in this tumor type p27 might not be dose-

dependent. We determined whether p27 protein was still produced by the wild-type allele. 

Nuclear expression of p27 was observed in both p27+/+ and p27+/D51 tumors, but not in the 

p27D51/D51 tumors (Figure 1C). Thus the tumor suppressive effect of p27 is not dosage 

dependent in this tumor type.

p27 deficiency does not affect PDGF expression from RCAS vectors, alter PDGF signaling 
pathways, or increase proliferation in incipient tumor cells

It was formally possible that p27 loss exerted its effects in this system by altering PDGF 

signaling. Unlike many solid tumors, ODG are diffuse and contain highly motile cells. The 

masses are heterogeneous and contain both oligodendrocyte tumor cells and uninfected 

oligodendrocytes, making direct measurement of proliferation or apoptotic indices on tumor 

cells problematic. We therefore employed an approach that allows us to overcome these 

limitations. We previously demonstrated that cell lines can be developed that recapitulate the 

molecular and cellular features of incipient tumor cells (Dai et al., 2001; Liu et al., 2007; 

Soos et al., 1996). Post-natal day 1 Ntv-a positive p27+/+ or p27D51/D51 brains were cultured 

for 4 days and infected with an RCAS virus that expresses PDGF-HA under control of the 

viral LTR and GFP under the control of the SV40 promoter (Becher et al., 2008). Following 

infection and passaging for 6 weeks, we generated wild type (WT1) and p27 deficient (KO1) 

cultures in which greater than 99% of the cells expressed GFP (Figure 2A, upper panels). 

RCAS integration was confirmed by fluorescence in situ hybridization (Figure 2A, lower 

panels).

Western blotting revealed that both WT1 and KO1 PDGF-infected glial cell lines evaluated 

at early passage (≤p20) expressed equal amounts of HA-tagged PDGF and activated 

phospho-PDGFRβ (Figure 2B, compare lanes 1 and 3). Levels of phospho-Erk1/2 

(pERK1/2), phospho-p70S6kinase (pp70S6K) and cyclin D1 were similar between the 
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genotypes, but there was a modest increase in the expression of p21 and cyclin A in the KO1 

cells (Figure 2B, compare lanes 1 and 3). When cells were treated with the receptor tyrosine 

kinase inhibitor PTK787, levels of pERK1/2, pp70S6K, and cyclin D1 were decreased to 

similar extents in both WT1 and KO1 cells. Levels of Rad51, a protein involved in DNA 

repair, were equivalent. Although the amount of PDGFR phosphorylation, cyclin A and p21 

also decreased in the KO1 cells relative to controls, the decreases were not as strong as those 

observed in the WT1 cells (Figure 2B, compare lanes 2 and 4). Nevertheless, treatment 

reduced DNA replication as measured by BrdU incorporation in both WT1 and KO1 cells 

(Figure 3B). There was a trend towards PTK787 resistance in the p27 deficient culture, 

although this was not statistically significant, and apoptosis was equivalent in WT1 and 

KO1 cells in the presence or absence of PTK787 (data not shown). Thus, p27 deficiency did 

not appear to grossly alter PDGF signaling, or the requirement of PDGF for proliferation.

In early passage cell populations, the growth and proliferation rates of the p27+/+ and 

p27D51/D51 PDGF- infected glial cultures were equivalent (Figure 3A and B). As passage 

number increased, the p27 deficient cells exhibited an accelerated growth rate (Figure 3C) 

and increased proliferation, based on BrdU incorporation (P<0.02) (Figure 3D) compared to 

the wild type cells. Apoptotic indices, measured either by FACS analysis of Annexin V 

staining or immunoblot analysis of cleaved caspase 3, were unaffected (data not shown). 

These data suggest that loss of p27 did not affect the early growth response to the oncogenic 

signal, but that over time p27 deficiency was associated with the evolution of a more 

proliferative cell type.

Karyotypic abnormalities are more frequent in p27 deficient PDGF-infected glial cell lines

One non-cell cycle related mechanism by which p27 deficiency might contribute to tumor 

development is to increase genomic instability (Chibazakura et al., 2004; Payne et al., 2008; 

Shaffer et al., 2005; Spruck et al., 1999; Strohmaier et al., 2001)g. We therefore addressed 

whether there was an increase in genomic instability during the early neoplastic changes 

occurring in PDGF-expressing glial cells. An additional set of independently derived wild 

type (WT2) and p27 deficient (KO2) cultures was established. More p27 deficient cells had 

an abnormal karyotype in early passage cultures (KO1 and KO2), compared to early passage 

wild type cultures (WT1 and WT2) (Table 1). The few abnormal karyotypes observed in the 

WT1 and WT2 cultures consisted of aneuploid and tetraploid cells. By contrast, many of the 

abnormalities observed in p27 deficient cultures also included translocations, segmental 

duplications and inversions (data not shown and Table 1). A few representative karyotypes 

of normal cells and abnormal cells are shown in Supplementary Figure 1. We attempted to 

culture primary brain tumors from tumor bearing mice for karyotype analysis. Only 1 of 5 

primary tumors from p27+/+ mice proliferated in tissue culture whereas 2/2 p27D51/D51 

tumors proliferated well in culture. Thus, we were only able to analyze one set of age 

matched p27+/+ and p27D51/D51 tumor cultures. The p27D51/D51 cells had an increased 

number of abnormal cells compared to p27+/+ cells that was statistically significant (Table 

1). The increased number of abnormalities suggests that the degree of chromosomal 

instability is elevated in p27 deficient cells, or that the mechanisms that eliminate such cells 

from the culture are incapacitated in p27 deficient cells.
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p27 deficiency does not diminish the G2/M checkpoint invoked by the DNA damage 
response

Increased genomic instability in tumor cells might occur as a consequence of defects in 

DNA repair or checkpoint fidelity. To evaluate these possibilities, we irradiated early 

passage cells to induce DNA double strand breaks and evaluated three proteins involved the 

DNA damage response: Atm, Chk2, and γH2AX. Thirty minutes after γ-irradiation, levels of 

phospho-ATM, the activated form of ATM kinase, increased in both WT1 and KO1 cells 

(Figure 4A) and returned to near basal levels by three hours. Chk2 phosphorylation was 

maximally increased by 30 minutes following irradiation, and increased levels were 

maintained over the duration of the experiment. γH2AX, a marker of DNA double strand 

breaks (Foster and Downs, 2005), also increased in both wild type and p27 deficient cells by 

30 minutes following IR. We did not observe a significant difference in γH2AX 

accumulation between wild type and p27 deficient cells before or after irradiation (Figure 

4A and data not shown). Similar results were observed in WT2 and KO2 cells (data not 

shown). Together, these results suggest that activation of the DNA damage response, at least 

in response to ionizing radiation, was largely equivalent in the wild type and p27 deficient 

cells.

We next looked downstream to G2/M checkpoint activation in response to γ-irradiation 

(Figure 4B). Phospho-histone H3 is a convenient flow cytometric marker for mitotic cells. 

Cells with unrepaired DNA double-strand breaks arrest prior to mitosis and are negative for 

phospho-histone H3. When WT1 cells were exposed to either 1 or 2 Gy, the number of 

mitotic cells decreased approximately 47% or 70%, respectively, compared to unirradiated 

controls. In KO1 cells, the number of mitotic cells decreased 66% and 88%. Pretreatment 

with caffeine, an inhibitor of ATM kinase activity (Sarkaria et al., 1999), abrogated G2/M 

checkpoint activation in both WT1 and KO1 cells (Figure 4B). Similar results were obtained 

with WT2 and KO2 cells (data not shown). Thus p27 deficient cells appear capable of 

pausing at the G2/M checkpoint to repair DNA damage. To determine if G2/M checkpoint 

activation was intact in vivo, we irradiated tumor bearing mice (10 Gy), and performed 

phospho-histone H3 immunohistochemistry three hours after irradiation. We also analyzed 

tumors from unirradiated control mice. The percent of phospho-histone H3 positive cells 

was similar between p27+/+ and p27D51/D51 unirradiated tumors (Figure 4C and D). No 

phospho-histone H3 positive cells were identified in either p27+/+ or p27D51/D51 tumors 

three hours after irradiation. We also looked at the induction of apoptosis. Similar amounts 

of cleaved caspase 3 and TUNEL staining were seen at 3 and 12 hours, respectively, in wild 

type and mutant animals (data not shown). These results confirm that G2/M checkpoint 

activation was intact in vivo.

p27 deficiency affects the persistence of Rad51 foci formed and phosphorylation of the C-
terminus of BRCA2 in response to DNA damage

DNA double strand breaks are repaired by either Rad51 mediated homologous 

recombination or non-homologous end joining (NHEJ). p27 deficient cells display 

reciprocal translocations, implying that NHEJ is intact (Weinstock et al., 2006). Since 

homologous recombination has been proposed to be the main DNA repair pathway utilized 
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by cancer cells (Powell and Bindra, 2009) and is favored in cells in G2, we focused our 

attention on homologous recombination.

We irradiated early passage wild type and p27 deficient cells and scored Rad51 foci over the 

next 24 hours. Formation of Rad51 nuclear foci is a quantitative measure of DNA repair by 

homologous recombination (Haaf et al., 1995; Raderschall et al., 1999). Since normal S-

phase cells may contain up to five such foci, we required that a cell have greater than five 

foci to score positive. The percentage of wild type and p27 deficient cells containing Rad51 

nuclear foci was similar one hour after irradition (Figure 5B), but there was a significant 

difference at three hours. Fewer KO1 cells (34%) formed Rad51 foci compared to WT1 

cells, (62%) (*P<0.001) (Figure 5A and B). Similar results were obtained in WT2 and KO2 

cells (data not shown). By 24 hours, WT1 cells had basal levels of Rad51 foci positive cells. 

However, more KO1 cells contained Rad51 foci, 11% compared to 3% of WT1 cells 

(**P<0.05) (Figure 5B), suggesting that p27 deficient cells were unable to repair double 

strand breaks as efficiently as wild type cells.

The measurement of Rad51 foci positive cells could reflect differences in Rad51 protein 

levels or in the distribution of cells in various phases of the cell cycle. However, Rad51 

protein levels and propidium iodide stained flow cytometric profiles of WT1 and KO1 cells 

were comparable at all time points (Figure 5C and D). Levels of Mre11 and Ku70, proteins 

involved in sensing DNA damage and NHEJ, respectively, were equivalent before and after 

irradiation in both wild type and p27 deficient cells (Figure 5C). These results indicate that 

the accumulation or maintenance of Rad51 nuclear foci in response to irradiation was 

perturbed in p27 deficient cells, suggesting that p27 contributes to homologous 

recombination-dependent DNA repair mechanisms.

The efficiency of homologous recombination can be modulated by cdk activity (Aylon et al., 

2004; Esashi et al., 2005; Huertas et al., 2008). Cdk-mediated phosphorylation of Ser3291 

within the C-terminus of BRCA2 blocks BRCA2/Rad51 interactions and prevents Rad51-

mediated DNA repair (Esashi et al., 2005). Since loss of p27 may lead to enhanced cdk 

activity, we monitored cdk activity in p27 deficient cells using TR2, a C-terminal BRCA2 

peptide containing Ser3291, as a substrate. WT1 and KO1 cells were irradiated (5 Gy) and 

lysed at 0, 1, 2, 3, or 4 hours post-irradiation. Lysates were incubated with GST or GST-TR2 

bound to Sepharose beads and labeled with [γ-32P]ATP (Figure 5E). Phosphorylation of 

TR2 decreased by 50% one hour after irradiation in WT1 cells (black bars) and increased 

back to basal levels by 3 hours (Figure 5F). By contrast, phosphorylation of TR2 remained 

unchanged in KO1 cells (open bars) at all time points, suggesting that p27 deficient cells 

contained elevated GST-TR2 phosphorylation activity after exposure to γ-irradiation.

To determine if cdk activity was altered in p27 deficient cells, kinase assays were performed 

using Histone H1 as a substrate. Cyclin B1-associated kinase activity was reduced after 

irradiation in WT1 cells (Supplementary Figure 2A, black bars). However, there was a more 

modest decrease in KO1 cells (Supplementary Figure 2A, open bars), suggesting that cyclin 

B1-associated kinase activity could be partially mediating the BRCA2-TR2 phosphorylation 

activity in p27 deficient cells. Cdk2 kinase activity decreased in WT1 cells (Supplementary 

Figure 2B, black bars) after irradiation with an even longer response observed in KO1 cells 
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(Supplementary Figure 2B, open bars). These results demonstrate that p27 deficient cells are 

responsive to DNA damage inducing checkpoints and suggest that elevated kinase activity 

associated with p27 deficiency following ionizing radiation may perturb the function of 

BRCA2.

The frequency of chromatid breaks is increased in p27 deficient cells

Cells that fail to repair DNA double-strand breaks during the G2/M checkpoint either die, or 

“adapt” to the checkpoint by progressing into mitosis with chromatid breaks. To determine 

if p27 deficiency increased the number of chromatid breaks in mitotic cells, wild type and 

p27 deficient cells were irradiated with 1 Gy, and allowed to recover for 1.5 hours prior to 

the addition of colcemid. No chromosome breaks/gaps or chromatid breaks were observed in 

unirradiated WT1, WT2, KO1, or KO2 cells (data not shown). We therefore focused our 

analysis on the presence of chromatid breaks, an indicator of repair defects in G2 when 

homologous recombination occurs. There were two-fold more mitotic cells with greater than 

three chromatid breaks in KO1 cultures compared to WT1 cultures (P=0.02) (Figure 6A), 

and seven-fold more mitotic cells with greater than three breaks in KO2 cells compared to 

WT2 cells (P<0.01) (data not shown) There was a higher incidence of Rad51 foci in p27 

deficient cells at 24 HR post-irradiation (Figure 5B). To determine if this correlated with an 

increase in unrepaired breaks, we irradiated WT1 and KO1 cells with 5 Gy and analyzed 

100 metaphases 24 HR after irradiation. There was an increase in the number of mitotic cells 

containing unrepaired breaks, 12% in KO1 versus 4% in WT1 (P=0.03) (Figure 6B). When 

metaphase spreads were prepared from unirradiated primary tumor cultures, we observed 

more mitotic cells with unrepaired breaks in the p27D51/D51 primary tumor culture compared 

to the age matched p27+/+ primary tumor culture (P<0.02) (Table 2). These findings suggest 

that p27 deficient cells were less proficient at repairing DNA double strand breaks in G2 and 

eventually progressed to mitosis with broken chromatids. Thus, loss of p27 diminishes the 

cell's ability to repair DNA double strand breaks, leading to chromosomal instability, a 

hallmark of cancers with poor prognosis.

Discussion

The purpose of this study was to examine the contribution of p27-mediated tumor 

suppression in PDGF-driven ODGs. We show that p27 deficiency dramatically alters 

survival and tumor progression. We developed a tissue culture model of PDGF-driven glial 

tumorigenesis and found that p27 deficiency affects chromosomal stability and DNA repair 

at a time when there were no effects on proliferation. Our results thus uncover a cell cycle-

independent function for p27 that regulates genome stability in ODGs.

p27 deficiency leads to genomic instability, independent of its role in cellular proliferation

It is now well accepted that p27 loss is an indicator of poor prognosis for a variety of human 

neoplasms. The tumor suppressive role of p27 has been validated in a number of mouse 

models. In some human tumors and mouse models, p27 loss correlates with increased 

proliferation (Blain et al., 2003; Koff, 2006), whereas in others p27 loss does not (Carneiro 

et al., 2003; Porter et al., 1997; Shaffer et al., 2005). It is not understood what type of 
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contribution p27 deficiency makes to tumor progression in those circumstances where it 

appears to be independent of the cell cycle.

p27 is an inhibitor of cdk activity and uncontrolled cdk activity can contribute to genetic 

instability (Chibazakura et al., 2004; Spruck et al., 1999; Strohmaier et al., 2001). Precisely 

how cdk activity leads to genetic instability is still unresolved in tumors. It has been difficult 

to develop models that validate the relationship between loss of p27 and defects in genomic 

integrity. The results presented here clearly demonstrate that p27 deficiency accelerates the 

rate of tumor progression and morbidity associated with PDGF-driven ODG independently 

of a cell cycle effect. Regardless of p27 genotype, the incipient PDGF-expressing tumor 

cells, analyzed in vitro, behave similarly with respect to proliferation, cytokine dependence 

and signaling. It is only after continued passage that p27 deficient cultures evolve into a 

more proliferative collection of cells. Prior to this outgrowth, however, the p27 deficient 

cells display marked chromosomal aberrations, including translocations and inversions, 

indicating a clear contribution to genetic instability.

Since p27 deficiency did not affect cell proliferation indices, we analyzed cell cycle-

independent roles for p27 loss in tumor development. Thus we asked if the response of p27 

deficient and wild type tumor progenitors to DNA double-strand breaks was comparable. 

Atm and Chk2 phosphorylation kinetics were similar in wild type and p27 deficient cells. 

The accumulation of gH2AX was largely equivalent in these cells as well. gThe number of 

phospho-histone H3 positive mitotic cells decreased in both wild type and p27 deficient cells 

indicating intact G2/M checkpoint activation. This finding stands in contrast to a recent 

study that reported disruption of the G2/M checkpoint by loss of p27 in a colon cancer 

model (Payne et al., 2008). However, p27 deficiency increases the proliferation index in this 

model. Thus, disruption of the G2/M checkpoint reported by Payne and colleagues may 

actually be a cell cycle dependent function of p27.

Our data indicate that p27 deficient cultures had fewer Rad51 foci positive cells, suggesting 

that DNA repair is compromised. It was shown previously that cdk mediated 

phosphorylation of Ser3291 within the C-terminus of BRCA2 blocked Rad51 binding and 

interfered with Rad51 mediated homologous recombination (Esashi et al., 2005). We 

observed increased phosphorylation of TR2, a BRCA2 C-terminal peptide containing 

Ser3291, in p27 deficient lysates after γ-irradiation that could be partially accounted for by 

enhanced cyclin B1 associated kinase activity. Our data suggest that this process is 

attenuated by p27 deficiency, perhaps due to elevated cdk mediated phosphorylation of the 

BRCA2 C-terminus. Moreover, cells that had adapted to the checkpoint and entered mitosis 

did so with a greater number of chromatid breaks. Thus, our data is consistent with the 

notion that p27 deficiency attenuates the repair proficiency of cells, allowing for checkpoint 

adapted cells to progress with more unrepaired breaks and drive genetic instability. By 

disabling DNA repair, p27 deficiency may accelerate tumor growth during early 

tumorigenesis when the DNA damage response is thought to act as an anticancer barrier 

(Bartkova et al., 2005; Gorgoulis et al., 2005).

Data from our wild type and p27 deficient cells support a model in which cdk activity is 

directly linked to alterations in DNA repair. While we specifically looked at the regulation 
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of BRCA2, there are many other DNA repair enzymes that are regulated by cdk activity 

(Anantha et al., 2007; Gibbs et al., 1996; Huertas et al., 2008). Alternatively, it is also 

possible that p27 deficiency allows for the survival of a small number of G2 cells with DNA 

double strand breaks that eventually enter mitosis with increased damage to increase the 

pool of tumor initiating progenitors. Regardless, it is clear that p27 affects the efficiency of 

DSB repair in G2 cells, and this can contribute to its tumor suppressive function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. p27 deficiency causes a decrease in survival in PDGF-induced oligodendrogliomas
(A) Ntv-a+ neonatal mice were injected into the frontal cortex with 104 DF1 packaging cells 

expressing the RCAS-PDGF-HA virus. Mice were sacrificed at 12 weeks or earlier if 

symptoms presented. (log-rank analysis, p27+/+ versus p27D51/D51, P<0.0001; p27+/+ versus 

p27+/D51, P<0.02; p27+/D51 versus p27D51/D51, P<0.5) (B) Mouse brain sections were fixed 

and stained with the indicated antibodies. Bar, 20 μm. (C) Immunohistochemistry was 

performed on mouse brain tumors using p27 antibodies. Bar, 20 μm.
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Figure 2. Wild type and p27 deficient glial cells lines were generated from primary brain 
cultures by infection with the RCAS/PDGF/GFP virus
(A) Wild type (WT1) and p27 deficient (KO1) brain cultures were infected with RCAS-

PDGF-GFP and cultured for 6-8 weeks. Fluorescence microscopy showed that greater than 

99% of RCAS-PDGF-GFP infected cells expressed GFP (upper panels). Bar, 250 μM. 

RCAS integration was detected by FISH (lower panels). Bar, 8 μM. (B) Early passage 

(≤p20) WT1 and KO1 cells were serum starved for 24 hours and treated with 1 μM PTK787, 

except for phospho-p70S6K which could only be detected in the presence of serum, and 

lysates were subjected to immunoblot analysis using the indicated antibodies. Rad51 was 

detected after 3 days of PTK787 treatment. The asterik on the right of the p27 panel 

indicates the band that represents the protein produced from the D51 allele.
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Figure 3. Wild type and p27 deficient PDGF/GFP-infected glial cell lines have similar growth 
and proliferation rates at early passage and are sensitive to PDGFR kinase inhibition
(A) Early passage WT1 and KO1 glial cell lines were plated at low density and treated with 

DMSO or 1 μM PTK787, a PDGFR kinase inhibitor. The cells were then counted every day 

for four days to measure cell growth. The mean and standard deviation were compiled from 

three independent experiments. (B) Early passage WT1 and KO1 cells were treated with 

DMSO for 24 hours or 1 μM PTK787 for three days, labeled with BrdU for one hour, and 

analyzed by flow cytometry. The mean and standard deviation were compiled from three 

independent experiments. (C) High passage (>p20) WT1 and KO1 glial cell lines were 

plated at low density and treated with DMSO or 1 μM PTK787, a PDGFR kinase inhibitor. 

The cells were counted every day for four days to measure cell growth. The mean and 

standard deviation were compiled from three independent experiments. (D) High passage 

WT1 and KO1 cells were treated with DMSO for 24 hours or PTK787 for three days, 

labeled with BrdU for one hour, and analyzed by flow cytometry. The mean and standard 

deviation were compiled from three independent experiments (WT1 versus KO1 DMSO 

treated, *P<0.02).
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Figure 4. p27 deficient cells activate the DNA damage response and maintain the G2/M 
checkpoint
(A) WT1 and KO1 cells were irradiated (5 Gy) and lysed at indicated time points. Lysates 

were subjected to immunoblot analysis using the indicated antibodies. (B) WT1 and KO1 

were treated with (open bars) and without (black bars) 10 mM caffeine for 30 minutes, 

irradiated (1 or 2 Gy), and then allowed to recover for one hour. Mitotic cells were detected 

by flow cytometry using propidium iodide and phospho-H3 antibodies. The mean and 

standard deviation was compiled from three to six independent experiments. (C) p27+/+ 

(n=3) and p27D51/D51 (n=2) tumor bearing mice were irradiated with 10 Gy and allowed to 

recover for 3 hours. Brains from irradiated and unirradiated (p27+/+, n=3; p27D51/D51, n=3) 

tumor bearing mice were fixed and stained with phospho-histone H3 antibodies. Bar, 50 μM. 

(D) Phospho-histone H3 stained tumors were imaged (three areas per tumor) and positive 

staining was quantified using Metamorph software. The mean and standard deviation were 

compiled from three independent tumors.
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Figure 5. p27 deficient cells are defective in Rad51 nuclear foci formation and contain elevated 
GST-TR2 phosphorylation activity in response to γ-irradiation
(A and B) WT1 and KO1 cells were irradiated (5 Gy) and analyzed by immunofluorescence 

using Rad51 antibodies at 0, 1, 3, 6, and 24 hours. (A) Representative images three hours 

post-irradiation. Bar, 50 μm. (B) Percent of cells containing >5 Rad51 nuclear foci. The 

mean and standard deviation were compiled from three to six independent experiments. 

(WT1 versus KO1 3 hours post-irradiation, *P<0.001; WT1 versus KO1 24 hours post-

irradiation, **P<0.05). (C) Wild type and p27 deficient cells were irradiated (5 Gy) and 

subjected to immunoblot analysis at the indicated time points. (D) Representative cell cycle 

profiles. Cells were irradiated (5 Gy), fixed at the indicated time points, stained with 

propidium iodide, and analyzed by flow cytometry. (E and F) GST-TR2 kinase assay. (E) 
GST is not phosphorylated in this assay. This is a representative autoradiogram of three 

independent experiments assessing the GST and GST-TR2 kinase activity in 14 mg of 

unirradiated lysate from wild type cells. The top panel is the autoradiogram and the bottom 

panel is the coomassie stained gel showing the different substrates in each lane. (F) WT1 

(black bars) and KO1 cells (open bars) were irradiated (5 Gy) and lysed at the indicated time 

points. Lysates were subjected to kinase assays using GST-TR2 as a substrate. The mean 

and standard deviation are compiled from three independent experiments.
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Figure 6. p27 deficient cells contain increased chromatid breaks in response to γ-irradiation
(A) WT1 and KO1 cells were irradiated (1 Gy) and cultured for 1.5 hours. Cells were then 

treated with colcemid for 1 hour and karyotype analysis was performed. The number of 

chromatid breaks was quantified (Chi-square anlaysis, WT1 versus KO1, *P=0.02). (B) 
WT1 and KO1 cells were irradiated (5 Gy) and karyotype analysis was performed 24 hours 

post-irradiation. The number of chromatid breaks was quantified (Chi-square anlaysis, WT1 

versus KO1, *P=0.03).
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Table 1

Karyotype abnormalities

Cell Line %RCAS positive # of abnormal cellsa/total cells P-valued

WT1 >99 3/23

KO1 >99 24/32b <0.0001

WT2 >99 5/23

KO2 >99 18/25c <0.001

Tumor

p27 +/+ 89 5/50

p27D51/D51 82 31/50 <0.0001

a
includes aneuploid and tetraploid cells

b
fifty percent of the cells contained a translocation, t(9,18)

c
forty percent of the cells contained an inversion, inv(17)(qAqE)

d
P-value was calculated using Fisher's exact test
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Table 2

Mitotic chromatid breaks in primary tumors

Genotype # of cells with breaks/total cellsa P-valueb

p27+/+ 5/50

p27D51/D51 13/50 <0.02

a
most cells contained ≤2 breaks per cell

b
P-value was calculated using Fisher's exact test
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