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ABSTRACT Effective management of neurogenic orthostatic hypotension and supine hypertension
(SH-OH) due autonomic failure requires a frequent and timely adjustment of medication throughout the
day to maintain the blood pressure (BP) within the normal range, i.e., an accurate depiction of BP is a key
prerequisite of effective management. One of the emerging technologies that provide one’s circadian and
long-term physiological status with increased usability is unobtrusive zero-effort monitoring. In this paper,
a zero-effort device, a floor tile, was used to develop an unobtrusive BP monitoring technique. Namely,
RJ-interval, the time between the J-peak of a ballistocardiogram and the R-peak of an electrocardiogram, was
used to develop a classifier that can detect changes in systolic BP (SBP) induced by the Valsalva maneuver
on healthy adults (i.e., a simulated SH-OH). A t-test was used to show statistical differences between the
mean RJ-intervals of decreased SBP, baseline, and increased SBP. Following the t-test, a classifier that
detected a change in SBP was developed based on a naïve Bayes classifier (NBC). The t-test showed a clear
statistical difference between the mean RJ-intervals of the increased SBP, baseline, and decreased SBP. The
NBC-based classifier was able to detect increased SBP with 89.3% true positive rate (TPR), 100% true
negative rate (TNR), and 94% accuracy and detect decreased SBP with 92.3% TPR, 100% TNR, and 95%
accuracy. The analysis showed strong potential in using the developed classifier to assist monitoring of people
with SH-OH; the algorithm may be used clinically to detect a long-term trend of symptoms of SH-OH.

INDEX TERMS Orthostatic hypotension, supine hypertension, RJ-interval, ballistocardiogram, electrocar-
diogram, systolic blood pressure.

I. INTRODUCTION
Orthostatic hypotension (OH) is defined as a drop
of 20mmHg or more in systolic blood pressure (SBP) and
ten mmHg or more in diastolic blood pressure (DBP) within
three minutes of standing up from a supine position [1].
OH is the second largest cause of a prevalent condition
known as syncope—a sudden, brief loss of consciousness
due to reduced cerebral blood perfusion [1], [2]. While
spontaneous and complete recovery ensues syncope, the

condition portends other serious events such as a fall.
Episodes of syncope are linked to approximately 6.7 mil-
lion emergency department visits, over 460,000 three-day
admissions, and an annual cost of $2.4 billion in the United
States [3], [4]. The occurrence of OH is proportional to
age with higher frequency in institutionalized older adults,
reaching up to 70%, compared to approximately 6% in
community-dwelling older adults [5]. OH is also a predictor
of coronary events, heart failure, cardiovascular mortality,
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and leads to a poorer prognosis of diabetes mellitus and heart
failure [6].

A rapid transition from a supine to an upright position (e.g.,
standing up from a bed) causes pooling of 300 to 800mL of
blood in the lower extremities. This accumulation reduces
the venous return to the heart, reducing cardiac output and
blood pressure (BP) as results. While an intact autonomic
nervous system (ANS) stabilizes the reduced BP by increased
vascular resistance, heart rate, and cardiac contractility [7],
lack of or debilitated compensatory reactions caused by auto-
nomic failure fail to achieve the return. About 88% of OH
caused by autonomic failure, one of the main types of OH
also known as neurogenic OH, takes place within one minute,
11% within two minutes, and 1% within three minutes after
standing up [1], [8], [9]. Note that the term autonomic failure
is more closely related toOH compared to the term autonomic
dysfunction [1].

BP is increased when transitioning from upright to a supine
position as the venous return is increased [10]. In a similar
manner as neurogenic OH, an abnormal ANS lacks a proper
reflex response to return the BP, sustaining the increased
BP that will progressively damage end-organs (e.g., kidney,
heart) [11]. These mirrored symptoms to neurogenic OH
caused by a condition known as supine hypertension (SH)
(i.e., having SBP greater than 150 mmHg or DBP greater
than 90 mmHg in a supine position [6]) complicate the man-
agement of OH. For example, medications used to treat OH
and SH are counteractive to each other; the intake of the
medications should be timed carefully to avoid exacerbation
of the conditions. As high as 56% of individuals with neuro-
genic OH have SH as comorbidity based on a study involving
117 subjects [6], [12]. As such, helping clinicians to make
a more informed decision and support proper management
via an accurate depiction of the disease symptoms is crucial.
Neurogenic OHwith SH as comorbidity is referred to SH-OH
hereafter.

Several tests are available for diagnosing SH-OH in a
clinic. These tests include the bedside postural test, sympa-
thetic skin test, head-up tilt test (HUTT), sinus arrhythmia
test, Valsalva maneuver (VM), and post-prandial hypotension
test [8], [13], [14]. While these tests help clinicians to diag-
nose autonomic failure and SH-OH properly, they are limited
to the clinic and do not provide information in the outpatient
setting (e.g., home of the affected individual). As discussed
above, having an accurate depiction of the physiological state
of the patient can enable clinicians and patients to choose
optimal management scheme. An emerging method that aims
to achieve such feat is unobtrusive monitoring via zero-effort
technologies (ZETs) [15], [16]. A ZET is a technology that
requires little or no effort from the user to operate; while the
task or activity of interest may require effort, using the ZET
that supports accomplishing the task does not [15]. Despite its
potential to provide autonomous or semi-autonomous physi-
ological monitoring to support the management of SH-OH in
outpatient settings, there has been little precedence of using
ZETs to tackle the issue.

FIGURE 1. Definition of the RJ-interval (Subject 9 Session 1).

Previous works on monitoring SH-OH has been in the
light of detecting syncope. Couceiro et al. (2016) unobtru-
sively detected syncope using pulse arrival time (i.e., the time
between the R-peak of an electrocardiogram or ECG and a
defined point in a photoplethysmogram or PPG; PAT) [17].
In this work, another unobtrusive modality known as a ballis-
tocardiogram (BCG) along with an ECG was used to develop
a classifier that detected changes in SBP triggered by the VM.
In recent years, a BCG has emerged as a versatile tool to
address chronic conditions such as a cardiovascular disease
(e.g., heart failure) and obstructive sleep apnea [18], [19].
A parameter derived from a BCG and an ECG known as
the RJ-interval (i.e., the time between the R-peak of an
ECG and the J-peak, the strongest peak, of a BCG; Fig. 1)
was shown to correlate with the pre-ejection period [20].
Shin et al. (2009) showed that the RJ-interval was correlated
to SBP when the change was triggered by the VM [21].
While studies have been done to correlate BCG parameters
to physiological parameters without an ECG such as a study
by Ashouri et al. where the IJ-interval was shown to have a
high correlation with pre-ejection period, there has been no
study that linked BCG parameters directly to SBP [22]. Only
the RJ-interval showed a solid evidence of correlation to SBP
and the strongest potential of success in further investigation.
Thus, this study examined amethod to detect a change in SBP
using the relationship between the RJ-interval and SBP. To the
authors’ knowledge, this is the first work that has investigated
an unobtrusive monitoring solution for SH-OH using the
RJ-interval. An example scenario of using the classifier is
when a person wakes up in the morning and goes to the
bathroom, a zero-effort device such as an instrumented floor
tilemeasures and assesses the patient’s neurogenicOH.When
the patient goes to sleep, a bed measures the RJ-interval of
the patient unobtrusively, assessing the degree of his or her
SH. The processed information (e.g., any signs of adverse
event or deviation) is forwarded to the stakeholders such as
clinicians, caregivers, and the individuals with SH-OH for a
long-term trend assessment. Finally, in addition to the SH-
OH management, the classifier may potentially be used to
monitor other ANS related conditions such as baroreceptor
failure or situational syncope which elicit overlapping symp-
toms as SH-OH (e.g., reduction or unregulated change in
BP) [23], [24].

The remainder of this paper is organized as follows. Sec-
tions II and III present the methods and the results of the
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analyses, respectively. The results, limitations, and future
works are discussed in Section IV, with conclusions and
future directions in Section V.

II. METHODS
This study used the inversely proportional relationship
between SBP and the RJ-interval generated by the VM to
examine the feasibility of detecting changes in SBP [21]. The
VM is one of the most frequently performed non-invasive
tests to assess reflex circulatory control and is defined as
inhaling air and applying pressure to the lungs without exhal-
ing to cause a rise in BP [10], [13], [14]. The VM was
chosen in this work because it shares the characteristics of
SH-OH where the reduced venous return during the strain
(i.e., applying pressure) is similar to that observed in neuro-
genic OH. After the release of the strain, a sudden increase
in venous return resembles what happens when lying down
from a standing position (i.e., SH) [10], [25]. These charac-
teristics and its usage in SH-OH clinical research made the
VM an ideal basis for the algorithm development [8], [26].
The investigation consisted of four steps: data acquisition,
pre-processing (e.g., feature measurement), analysis of the
distribution of three classes (i.e., Baseline, Decreased SBP,
and Increased SBP) via a t-test and the development of the
classifier that detected changes in SBP based on a Naïve
Bayes classifier (NBC). Each step of the analysis is presented
in the following sections.

A. DATA ACQUISITION
Sixty (60) healthy adults (28male, 32 female) between 18 and
65 years of age (mean of 26.9 ± 6.1 years) without any
symptoms of SH-OH or autonomic failure were recruited for
the study. The study protocol was approved by the University
Health Network Research Ethics Board (UHN REB 12-038),
and the trials were conducted in the HomeLab in Toronto
Rehab Institute-UHN. Each participant (hereafter referred to
as a subject) provided informed consent at the start of each
trial, and his or her demographic information was obtained.
A BCG was recorded from subjects while they stood on a
custom-built smart floor tile [27]. An ECG could bemeasured
from the tile as well, and an in-depth analysis of this topic
was included in the previous publication [27]. A summary
was included in the Appendix. Data recording started with
the subject standing still on the tile for one minute to ensure
that all parameters returned to the baseline. At the one minute
mark, the subject was asked to perform theVM for 15 seconds
to induce a change in BP. Once the subject completed the
VM, he or she stood still on the smart floor tile for the
next five minutes. This procedure was repeated three times,
totalling up to 18 minutes of recording time per subject.
Note that throughout the text, each repetition (i.e., 6 minutes
of recording) is referred to as a session. While the subjects
went through two additional scenarios with different settings
during the trial, these additional settings are not relevant to
the current work, thus are not discussed.

During each session, beat-to-beat BP was measured by
Portapres (Finapres Medical Systems, the Netherlands) and
conventional BP using an arm cuff was measured every
one minute by BpTRU (BpTRU Medical Devices, British
Columbia, Canada). Measurements from Portapres and
BpTRU were used as gold-standard measurements for BP.
A 3-lead ECG was measured from the chest by Shimmer 2r
ECG module (Shimmer, Ireland) where the signal was trans-
mitted wirelessly. In addition to the wireless ECG, a wired
ECG was captured with a sole purpose of synchronization
of the wireless ECG to the rest of the signals. The details
of synchronization were included in the Appendix. Signals
from the tile, the wired ECG, and Portapres waveform was
recorded using National Instruments Data Acquisition Board
(DAQ with an NI cDAQ-9174 chassis and NI 9215 analog
input module). Fig. 2a illustrates the setup. While Portapres
was able to track changes in BP, its measurement of absolute
BP in mmHg was less reliable. Therefore Portapres beat-
to-beat data was corrected to the BP measured by BpTRU,
as illustrated in Fig. 2b and c. The sampling rate for all signals
was 128Hz.

B. PRE-PROCESSING
1) FEATURE MEASUREMENT
In the post-trial analyses, a band-pass finite-impulse-response
filter with pass-band frequencies of 1-40Hz (Hamming win-
dow) was used to filter the collected signals to remove the
signal drift and 60Hz noise. Artifacts were examined visu-
ally, and subjects with severe artifacts (e.g., approximately
twice the variance of a stable signal) were removed from
the analysis. Following the filtering, the R-peaks of the ECG
fromShimmer ECGmodule were found by the simplified Pan
and Tompkins method [28]. The J-peak of the BCG from the
smart floor tile were detected using the R-peaks as fiducial
points. MaximumBCG value between the R-peak of the ECG
and 0.3s after the R-peak were labelled as the J-peak. The
range of 0.3s was used based on the literature [29], [30].
The RJ-interval was calculated by finding the time difference
between an ECG R-peak and corresponding BCG J-peak.
The BP values generated by Portapres were matched to the
ECG so that each RJ-interval was synchronized with the
corresponding SBP. Incorrectly detected BCG J-peaks due to
minor artifacts were fixed, and outlier RJ-intervals generated
by noisy signal were removed from the analysis after a visual
examination.

It is important to note that while the BCG during the
VMwas noisier than the rest of the signal, the signal was cap-
tured and the peaks were detected. The successful detection
of the J-waves allowed the authors to analyze the decrease in
SBP.

2) SMOOTHING
Following the feature measurement, the SBP and RJ-interval
waveforms were smoothed to reduce beat-to-beat fluctua-
tions. While beat-to-beat fluctuations (i.e., high-frequency
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FIGURE 2. Positions of the devices used to record data during the study (a). Portapres and BpTRU cuff blood pressure data before the offset correction
(b) and after the offset correction plotted in SBP versus the RJ-interval – truncated data for visual clarity (c). Subject 15 session three.

component) may provide information such as sympathetic
and cardiovagal tone in the frequency domain [31], the focus
of the current work remained in the time-domain where beat-
to-beat fluctuation could create noise in the subsequent analy-
ses. To smooth the waveforms, moving average of size seven
heartbeats (i.e., 5 to 6 seconds) was used. The size of seven
was chosen based on the previous works where it was shown
that SBP and the RJ-interval had the highest correlation with
the window size of seven [21]. While window sizes of 15 and
30 were also tested to examine the effect of averaging, the
averaged signals with the window size of seven obtained
superior results and was therefore used in the subsequent
analyses. The results of smoothing with different window
sizes are included in the Appendix.

3) OFFSET REMOVAL AND DEFINITION OF STABLE REGION
In order to focus on the change in parameters, offsets of
SBP and the RJ-interval were removed from the data after
smoothing. A stable region was defined as the period from
30 seconds after both SBP and the RJ-interval returned to the
baseline following the VM to the end of the session to assist
the calculation of the offsets. While the duration of BP return
after the release of the VM is not clearly indicated, a normal
ANS returns the changed BP to the baseline in a few heart-
beats [32]. The 30-second buffer (i.e., sufficiently larger than
a few heartbeats) was to ensure the signals reached the base-
line. The point where SBP and the RJ-interval returned to the
baseline were empirically determined for each session. The
means of the RJ-interval and SBP within the stable regions
(i.e., offsets) were calculated (Fig. 3) and were subtracted
from the respective signals. Signals without the offsets are
depicted in Fig. 5. Note that the signals before the VM were
not used as the period was used to restore the baseline.

4) DE-TREND
After the offsets were removed, it was observed that the
RJ-interval was generally biased towards the negative
domain. As shown in Fig. 4, given the change towards

FIGURE 3. Baselines of SBP and the RJ-interval. Subject 59 session three.

positive and negative directions, the RJ-interval showed
stronger expression towards negative direction. This trans-
lates to the RJ-interval having higher affinity towards
increased SBP than decreased SBP as the RJ-interval is
inversely proportional to SBP. As this pattern was observed
throughout the sample population, de-trending (i.e., high-
pass filter) was applied to the RJ-interval to compensate for
the bias without changing SBP. Two steps were taken to
adjust the bias: calculation of the trend of the RJ-interval and
weighted subtraction of the trend from the RJ-interval. First
of all, the trend of the RJ-interval was calculated by taking
an average of a window centered on each point, which is
equivalent to applying a finite-impulse-response (FIR) low-
pass filter. Given the window size of m seconds and the time
where a data point is located, t , the RJ-intervals from t−m/2
to t + m/2 were averaged. Centering the window prevented
phase shift of the original signal. This was repeated for all
the RJ-intervals, generating a trend waveform as shown in
Fig. 4. Note that any part of the window that is out of the
waveformwas truncated and only the available data was used.
The trend was then weighted uniformly and subtracted from

2700613 VOLUME 6, 2018



I. S. Chang et al.: Unobtrusive Detection of Simulated SH-OH Using Ballistocardiogram and Electrocardiogram of Healthy Adults

the RJ-interval to adjust the bias (i.e., high-pass filter). The
de-trended RJ-interval waveform is also shown in Fig. 4. One
of the filter parameters, the window size denoted as m, was
varied from 2s to 60s with an increment of 2s, and the weight,
another parameter denoted asw, was varied from 0.1 to 1 with
an increment of 0.1; this produced 30 by 10 different versions
of the sample data set. The subsequent analyses (e.g., t-test,
and SBP change detection via a NBC) were applied to each
set of data with specific de-trending parameters. The best
parameters were calculated based on the result of the SBP
change detection. For comparison, data without de-trending
was also used in the analysis.

FIGURE 4. Comparison of the RJ-interval before and after de-trending
(m = 44, w = 0.5, Subject 34 session one).

5) CLASS DEFINITION
Three classes were defined after the offsets were removed.
For each session, data points or heartbeats within −5 to
5 mmHg change were labelled as ‘‘Baseline’’ class; data
points between−20 to−40mmHgwere defined ‘‘Decreased
SBP’’ class; and data points between+20 to+40mmHgwere
labelled as ‘‘Increased SBP’’ class. The RJ-intervals corre-
sponding to the selected SBP were labelled as the same class
as the SBP. The upper boundary of the Decreased SBP class
was defined according to the definition of OH [1]. The lower
limit of−40 mmHg was set as an initial experimental bound-
ary where the range of 20 mmHg was motivated based on the
former hypertension classifications (e.g., stage 1, 2) [33]. The
range of the Increased SBP class was reflected from the defi-
nition of theDecreased SBP class. Given the definition of nor-
mal SBP is around 120 mmHg, +20 to +40 mmHg translate
to approximately 140 to 160 mmHg, which encompasses the
definition of SH of having SBP greater than 150 mmHg [6].
Note that the data beyond±40 mmHg were not used to make
sure the region was clearly bounded. Fig. 5 illustrates the
definition of the Increased SBP and the Decreased SBP class.
Not all subjects produced enough change in SBP to have
data points within the range of the Increased SBP and/or the
Decreased SBP class, and subjects or sessions of a subject
were excluded from the analyses if they did not have a

sufficient data. The details of the exclusion criteria are dis-
cussed in the next section.

FIGURE 5. Baselines were removed and each session was checked if it
had usable data that were within the decreased or increased BP region
(Subject 59 session three).

C. SIGNAL ANALYSIS
1) T-TEST BETWEEN CLASSES
The RJ-intervals of the three classes were used to examine
each class is statistically different from other classes. Namely,
the mean of RJ-intervals of the Decreased SBP class was
tested if it was statistically different from the mean of the
RJ-intervals of Baseline class. The same analysis was applied
to the Increased SBP and the Baseline classes. The analysis
involving the Increased SBP and the Baseline class is referred
to as the increased-SBP-baseline analysis, and the analy-
sis involving the Decreased SBP and the Baseline class is
referred to as the decreased-SBP-baseline analysis hereafter.
The increased-SBP-baseline analysis was done separately
from the decreased-SBP-baseline analysis.

A one-sided t-test with unknown, unequal variance
assumption with α = 0.05 was used. Null and alternative
hypothesis are stated as below.

H0 : µ1 − µ2 = d0 (1)

H1 : µ1 − µ2 > d0 (2)

The distance between the two means is d0, and the means
of the two classes being compared are µ1 and µ2.

For the t-test and classifier development, following terms
should be defined. A qualified session is defined as having
at least one data point in the two classes being compared
(e.g., at least one point in the Increased SBP class and the
Baseline class for the increased-SBP-baseline analysis). For
each subject, data of each class in all qualified sessions were
combined. For example, if two sessions were qualified in the
decreased-SBP-baseline analysis for a subject, the sessions
were combined to produce pooled Decreased SBP class and
Baseline class for the t-test. After the combination of ses-
sions, subjects with less than three data points in a class were
removed from the analysis (i.e., at least three data points
were needed in order to calculate a sample variance in the
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analyses). Data of all qualified subjects were combined to
form an aggregated data. The t-test was performed on each
qualified subject and the aggregated data. As the RJ-interval
is inversely proportional to SBP, the mean RJ-interval of the
Baseline class was tested if it is statistically smaller than that
of the Decreased SBP class, and the mean RJ-interval of the
Increased SBP class was tested if it is statistically smaller than
that of the Baseline class. For each t-test, the distance, d0, was
calculated that achieved a p-value of 0.05 and was defined as
maximum d0.

2) DETECTION OF CHANGE IN SBP VIA NBC
The distributions of different classes were used as a basis
for developing a classifier that can detect changes in SBP.
Namely, the classifier aims to detect if an individual is expe-
riencing a decrease or an increase in SBP. This detection
classifier is hereafter referred to as the regional classifier and
classification done by the regional classifier is referred to as
a regional classification. The analysis was again composed
of two separate parts: the detection of increased SBP and
the detection of decreased SBP. The same data used in the
t-test was used again here except that the sessions of each
subject were not combined; each session was treated as a
single test case. The regional classifier consisted of two main
components: NBC that classified each RJ-interval based on
the aggregated data distribution and a majority vote process
that determined if a change in SBP is taking place in a specific
region.

A NBC is a linear classifier that makes a classification
based on the distribution of data. The RJ-interval was used
as a feature, and the NBC fitted a Gaussian distribution over
the training data (i.e., the three classes) [34]. A NBC was
chosen because the highly disproportionate ratio of the data
(i.e., imbalance data) in different classes did not affect the
results. The class conditional distribution, p(x|y = c), was
defined as p(x|y = c) = N (x|µc, σ 2

c) where the mean of
the RJ-interval of the class c is µc, and its variance is σ 2

c .
In order to train the data to the model, maximum likelihood
estimation (MLE) was computed where MLE for a Gaussian
distribution corresponds to the sample mean and unadjusted
sample variance for each class. The trained NBC classified a
test point based on p(y = c|x, µc, σ 2

c) [34].
The model used to train the NBC was a leave-one-subject-

out method where the data of the subject of interest was left
out, and the rest of the data were used to train the NBC. The
trained NBC was then used to classify each RJ-interval of the
test subject as either Increased SBP, Baseline, or Decreased
SBP, forming an array of classified outputs. This array of
classified outputs are hereafter referred to as the output wave-
form.

The output waveform generated by the NBCwas subjected
to a majority vote to generate the final decision of whether
the subject is experiencing a decrease or an increase in SBP.
If equal to or greater than 50% of data points within the non-
Baseline class were correctly classified by the NBC, then
the regional classifier indicated a change in SBP (Fig. 6).

FIGURE 6. The NBC based regional classification of increased SBP. The
trained NBC was used to classify each RJ-interval and produce an output
waveform. If equal to or greater than 50% of the data points within the
Increased SBP class were classified correctly, then the regional classifier
stated that increased SBP change is detected. Subject 34 session two.

This session is considered as a true positive, and the result
of each session was collected to rate the performance of
the regional classifier. For example, suppose there are ten
data points within the Increased SBP class of a particular
session of a subject. If five or more are correctly classified
among the classifications of the ten points corresponding to
the Increased SBP class, then this is recorded as a positive.
This result is also a true positive since the classification
matches the label of having an increased SBP change. The
same method was applied in detecting a decrease in SBP.
The classifier was tested against any false positive by using
the data in the stable region. In terms of the stable region,
however, a different criteria were applied. If one or more
NBC outputs were Increased SBP or Decreased SBP within
the stable region, then the entire region was classified as
having a change (i.e., a false positive). If all outputs within
the stable region were classified as the Baseline class, then
the region was classified as a true negative. Note that the
parts of the output waveform that do not belong to either one
of the three classes were are not considered as these regions
are mostly in transition. In other words, only the regions with
clear labels were used in determining positives and negatives.
A true positive rate (TPR) and true negative rate (TNR) were
calculated for the increased-SBP-baseline and the decreased-
SBP-baseline analysis by dividing positives with the total
number of sessions used. For example, if 75 true positives
were detected out of 81 sessions that had a change in SBP,
then the TPR is 75 divided by 81, which is 93%. The sum
of true positives and true negatives divided by the sum of
respective total sessions was labelled as the accuracy.

Referring back to the de-trending, the results of the
regional classifier were used as decision criteria in selecting
the best parameters for de-trending. The results were com-
bined into a single number that combined the results of both
the increased-SBP-baseline analysis and the decreased-SBP-
baseline analysis. Namely, the average of the accuracies of
the two analyses (i.e., overall accuracy) was used.
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III. RESULTS
Out of 60 subjects, two subjects had an abnormal BP drop
after the VM and had to stop the trial early, one subject had an
abnormal ECG, namely premature ventricular contractions,
and one subject had involuntary movements that made the
data unusable. Additionally, BCG signals from four subjects
were not recorded properly because of technical problems
(i.e. poor connection, unavailability of gold-standard mea-
surement). Three subjects had issues with Portapres such as
severe baseline shift, and one subject had unknown noise
source that rendered the data unusable. Therefore, data of
total 48 participants were used in the analysis.

A. DE-TRENDING RESULTS
The result of de-trending is best presented with the results of
the subsequent analyses. Therefore, the result is discussed in
full with the regional classifier. While the t-test was done for
all combinations of de-trending parameters,m andw, only the
result of the t-test based on the best de-trending parameters
are presented for brevity.

B. T-TEST RESULTS
The de-trending parameters that produced the best results
(i.e., overall accuracy) were an m of 44 seconds with w of
0.5. De-trended data using these parameters yielded 34 sub-
jects for the increased-SBP-baseline analysis and 20 subjects
for the decreased-SBP-baseline analysis. 18 subjects were
involved in both analyses. The results of the individual subject
t-tests are presented and discussed in the Appendix.

1) BASELINE AND INCREASED SBP
Aggregated data analysis showed that the mean RJ-interval
of the Increased SBP class, X2, was statistically smaller than
that of the Baseline class, X1, by 19ms based on 34 subjects
(Table 1). A total number of data points, N , for the Increased
SBP class was 813 points after the aggregation whereas the
number of the Baseline class data used for the increased-
SBP-baseline analysis was 13,775. Table 1 shows the mean,
the number of data points, and the standard deviation, S,
of the RJ-interval of each class. Fig. 7 shows the aggregated
data with three different class indicated with different colors
(m = 44, w = 0.5).

2) BASELINE AND DECREASED SBP
Aggregated data analysis showed that the mean RJ-interval
of the Baseline class, X2, was statistically smaller than that of
the Decreased SBP class, X1, by 25ms based on 20 subjects
(Table 1). A total number of data points for the Decreased
SBP class was 284 points after the aggregation whereas the
number of the Baseline class data used for the decreased-
SBP-baseline analysis was 7,086.

C. DETECTION OF CHANGE IN SBP VIA NBC - RESULTS
For the increased-SBP-baseline analysis, total 84 sessions
of 34 subjects were used. One session had an incorrect

TABLE 1. Aggregated t-test results.

FIGURE 7. Aggregated data for all subjects indicating the Baseline class
in black, the Increased SBP class in red, and the Decreased SBP class in
blue (m = 44, w = 0.5).

label for the stable region (i.e., changes in SBP occurred)
and was removed from the analysis. In total, there were
84 sessions that had changes in SBP towards increased SBP
and 83 sessions that had a stable region with no change.
For the decreased-SBP-baseline analysis, total 41 sessions
of 20 subjects had reduced SBP and 40 sessions had valid
stable regions with no change in SBP.

The TPR, TNR, and accuracy of the increased-SBP-
baseline and the decreased-SBP-baseline analyses for differ-
ent values of m and w are shown in Fig. 8. The best TPR for
the increased-SBP-baseline analysis was 89.3% (m = 32s
and 24s, w = 0.3) and that of the data without de-trending
was 83.3%. The best TPR for the decreased-SBP-baseline
analysis was 92.3%, and that of the data without de-trending
was 58.5%. 92.3% was achieved in multiple combinations of
the de-trending parameters: m from 44 to 56s with w = 0.9
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FIGURE 8. (a), (b), and (c) are the TPR, TNR, and accuracy of the increased-SBP-baseline analysis, respectively. (d), (e), and (f) are the TPR, TNR, and
accuracy of the decreased-SBP-baseline analysis, respectively. Red dots indicate the maximum value(s). TPR: true positive rate; TNR: true negative rate;
Acc: accuracy.

and m from 38 to 60 s with w = 1.0. The results are shown
in Fig. 8a and d.

The best TNR for the increased-SBP-baseline analysis
with de-trending was 100%where the performance decreased
as them andw both increased. In terms of the decreased-SBP-
baseline analysis, the best TNR was also 100% and showed
the same pattern with the increased-SBP-baseline analysis.
The TNRs for the data without de-trending were 100% for
both analyses. Fig. 8b and e show the results.

The best accuracy for the increased-SBP-baseline analysis
was 94.0% (m from 32 to 44s, w = 0.2) and that for
the decreased-SBP-baseline analysis was 95.0% (m and w
are the same as the TPR; Fig. 8c and f). The accuracies
for the data without de-trending were 91.6% and 79.0% for
the increased-SBP-baseline and the decreased-SBP-baseline
analyses, respectively.

The accuracies were combined to give the overall accuracy
for both increased- and decreased-SBP-baseline analyses.
The best overall accuracy was 90.9% (m = 44s, w = 0.5),
and that without de-trending was 85.2%. Fig. 9 shows the
results of the overall accuracy.

IV. DISCUSSION
Two separate analyses of the increased-SBP-baseline and the
decreased-SBP-baseline had 34 and 20 subjects for the anal-
ysis, respectively. It was expected that not all subjects would

FIGURE 9. Combined overall accuracy of the de-trending. The maximum
value occurs at m = 44s and w = 0.5.

produce enough change in SBP by the VM to be included in
the analysis. Based on the qualitative observation of the sub-
jects performing the VM, even though the subjects stayed true
to the instruction, which was to exert the maximum pressure
for 15 seconds, the BP did not change much in some subjects.
In order to reduce the sources of error further, a quantitative
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VM(e.g., exerting pressure against a known counter pressure)
may be used in the future. In addition, the lowered SBP
is expected to recover some of the overshoot during the
strain when the body’s neurologic reflex and vasculature are
intact, which resulted in fewer trials crossing the −20mmHg
threshold of the Decreased SBP class [25]. These patterns are
reflected accordingly in our study and explains the reduced
number of subjects and the lower number of subjects involved
in the decreased-SBP-baseline analysis.

In terms of the number of data points used, the Base-
line class had far more data than that of the Increased SBP
class or the Decreased SBP class, having about 15-25 times
greater number of data in both aggregated analyses. This dif-
ference, however, did not affect the aggregated analyses as the
number of data in the Baseline SBP class were large (>7,000)
and the relevant results of the t-test had high confidence. This
confidence is passed to the regional classifier as the NBCwas
trained based on the data similar to the aggregated data (i.e.,
aggregated data without the data of the test subject).

De-trending significantly increased the TPR for the
decreased-SBP-baseline analysis from 58.5% to 92.3%.
Empirically, the improvement of the result showed that the
bias is not subject-specific. Rather, the pattern is present
throughout the sample population. De-trending did not result
in a significant improvement for the high TPR of the
increased-SBP-baseline analysis (i.e., from 83.3% to 89.3%)
as the bias was towards the negative RJ-interval. Note that
de-trending indeed had a minimum phase shift of the original
signal as shown in Fig. 4.

While the TNRs were approximately the same for both
analyses as shown in Fig. 8b and e, the optimal parameters
(i.e.,m and w) for the TPR and accuracy of the increased- and
decreased-SBP-baseline analyses were on the opposite side
of the spectrum. De-trending by definition reduces the ampli-
tude of the negative RJ-interval corresponding to increased
SBP and augments the positive RJ-interval corresponding to
the decreased SBP. As such, very different optimal param-
eters for each of the analyses were expected. The overall
accuracy found the compromise of these patterns, where
Fig. 9 shows an approximate midpoint of the results of the
increased- and decreased-SBP-baseline analyses. For refer-
ence, the optimal parameters based on the overall accuracy
(i.e., m = 44 and w = 0.5) produced the TPR, TNR,
and accuracy of 86.9%, 96.4%, and 91.6% respectively for
the increased-SBP-baseline analysis, and 82.9%, 97.5%, and
90.1% respectively for the decreased-SBP-baseline analysis.
The parameters selected via overall accuracy provided a rea-
sonable compromise between the performances of the two
analyses.

Two observable factors of incorrect regional classifica-
tion, the TPR in particular, was a misalignment and weak
RJ-interval amplitude where the latter was more pronounced.
In the case of misalignment, having the output slightly shifted
in time resulted less than 50% of the correct outputs, which
made the session to be classified as a false negative. The
overall effect of this issue on the results were however minor.

Note that the shift existed prior to de-trending and was
minimally affected by the step. While a potential solution
to the issue is to add a time delay to either SBP or the
RJ-interval to align the two signals, the authors found that
the time shifted to align SBP and the RJ-interval was random
and did not show any general pattern. The low amplitude of
the RJ-interval resulted in not enough non-Baseline outputs
generated by the NBC that resulted in false negative regional
classification. Note that one subject had all three sessions
incorrectly classified due to the issue of the low amplitude.
These reasons were potentially attributed to the individual
variance in physiology. In this work, aggregated distribution
was used to show that the classifier can be used in a general
population. Going forward, the classifier may be optimized
to best-fit one’s physiological characteristics by adjusting
parameters such as de-trending parameters and threshold set
by the NBC.

While DBP, mean arterial pressure, and pulse pressure are
typically measured along with SBP, each parameter has its
unique usage in describing one’s physiological state; mea-
suring only one of these four parameters does not undermine
the significance of the measurement. The advantage of using
SBP compared to other parameters is that the change is more
pronounced as seen in the definition of OH and the previous
explanations. Higher sensitivity can also be interpreted as
being influenced easily by another stimulus (e.g., exercise).
One potential solution to this issue is to incorporate context
to the decision process. For example, an activity that the
person performed prior to and at the time of the measure-
ment can be recorded and used to make a more accurate
decision.

As the study moves to the next phase involving individuals
with SH-OH and possibly other autonomic failure induced
conditions, several issues should be addressed. First of all,
ECG was measured using a wearable device in this study.
However, unobtrusive measurement of ECG should also be
included to achieve unobtrusive monitoring. In addition to
the measurement of an ECG from the tile discussed in the
Appendix, the recent emergence of sensor technology can
enable the unobtrusive acquisition of an ECG. For example,
capacitatively-coupled electrodes have been shown to mea-
sure an ECG through the fabric and can be implemented in
a bed to measure an ECG while lying down [35]. Another
future work is to convert the regional classifier to a real-time
SBP change detection algorithm. It was observed that the
average period of Increased SBP class was 6.5s whereas that
of the Decreased SBPwas 8.2s.When converting the regional
classifier to an algorithm that can be deployed in real-time,
these time periods can be utilized to create an observational
window that executes a similar process as what has been
implemented here. The temporal resolution of the algorithm
is further discussed in the Appendix.

In this work, engineering techniques have been focused
that aimed to increase the detection accuracy. The underly-
ing physiology of the RJ-interval and SBP behaviors such
as biased RJ-interval amplitude and shifted phase should
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be examined from a physiological perspective to reveal the
mechanism behind the observed patterns.

Finally, data points beyond +40 and −40 mmHg were not
used in this work as the aim of the analysis was to detect
the changes within the defined range of ±20 to ±40 mmHg.
As an initial investigation, the correct detection of a single
clearly defined region of SBP change proved that the grada-
tion of the range is possible. In other words, the data points
beyond +40 and −40 mmHg can be used to detect more
severe changes in SBP. Not only that, the range of 20 mmHg
can be manipulated to find the optimal range that provides the
maximum resolution of SBP detectionwithout compromising
the accuracy.

The intended use of this algorithm is a long-term trend
analysis and the detection of increased risks of OH-SH (e.g.,
increased frequency of pre-syncopal events) that may even-
tually result in syncope and a fall. Inability to stand still and
perform the VM is a practical issue among the individuals
with SH-OH. If the VM cannot be performed, replacement
tests such as HUTT or cold pressor test should be imple-
mented. Verification of the regional classifier against these
replacement test is one of the immediate future works. The
change of SBP in individuals with SH-OH, however, is intrin-
sic and may not require an artificial stimulation such as the
VM. This hypothesis should be however verified in the future
studies. The loss of BCG signal due to movement artifact is
an open problem within the field, and it is a limitation with
no currently effective solution. As the technology evolves,
however, solutions that may enable faster and more reliable
extraction of information from a BCG in the presence of
minor movement artifacts may emerge.

V. CONCLUSION
The work presented here examined the relationship between
the RJ-interval and SBP collected from healthy adults and
developed a classifier that can potentially detect changes in
SBP in individuals with SH-OH. The t-test involving the
RJ-interval and SBP showed a clear statistical difference
between the means of decreased SBP, baseline, and increased
SBP. The NBC-based regional classifier was able to detect
the increased SBP with 89.3% TPR, 100% TNR, and 94%
accuracy, and the decreased SBP with 92.3% TPR, 100%
TNR, and 95% accuracy. The analysis showed promise in
using the developed classifier as a method to provide long-
term monitoring of individuals with SH-OH in the future.

APPENDIX
A. SIGNAL SYNCHRONIZATION
The wired ECG was acquired via a custom circuit built by
the authors and was recorded in parallel to the BCG using NI
DAQ. By calculating the heart rate from both wireless and
wired ECGs, the latency of the wireless ECG to the rest of
the signals could be calculated. By subtracting the latency,
the wireless ECG could precisely be synchronized to the rest
of the signals (Fig. 10).

FIGURE 10. Synchronization of the wireless ECG to the rest of the signals
via the wired ECG (Subject 58 session 1).

FIGURE 11. SBP (top) and the RJ-interval (bottom) were averaged using a
moving window of different sizes. The solid blue line shows the result of
the moving window size that was used for the analysis (i.e., seven).
Subject 20 session three.

In terms of synchronizing Portapres, the signals consisted
of two different channels, which were an ambulatory blood
pressure (ABP) waveform and numerical BP values trans-
mitted via serial communication. The ABP waveform was
recorded in tandem with other signals as mentioned, and the
numerical values were recorded via serial communication.
The BP values received through the serial communication
were matched to the ABP waveform using calibration points
as reference points. The peaks of ABP waveform was then
matched to already synchronized wireless ECG R-peaks,
aligning each BP value to the R-peak.

B. SMOOTHING RESULTS
Fig. 11 shows the effect of the smoothing with differ-
ent moving window sizes. While using the window size
of seven shifted the phase slightly, there was a minimal
effect on the signal (i.e., the changes made by the VM
were mostly unchanged). All moving average window sizes
smoothed the waveforms, however, using a higher moving
average window size created a noticeable delay as shown
in Fig. 11.

2700613 VOLUME 6, 2018



I. S. Chang et al.: Unobtrusive Detection of Simulated SH-OH Using Ballistocardiogram and Electrocardiogram of Healthy Adults

C. ACQUISITION OF ECG USING THE TILE
The capability of the tile to measure an ECG unobtru-
sively was investigated in-depth in the previous work [17].
A summary of the work is presented here.

Stainless steel electrodes on the top of the tile were used to
measure an ECG from the feet of the subject. Two scenarios
have been tested where the subject was seated and asked to
place his or her bare feet on the tile in the first scenario,
and the subject was asked to stand still on the tile in the
second scenario (i.e., the protocol presented in this work).
The result showed that an ECG could be measured in a sitting
position with 89% agreement between the position of the
R-peaks from the tile and that of the gold standard ECG. An
ECG from the tile while standing could not be measured as
there was an electromyogram noise from the feet. Once this
obstacle is removed, the tile can measure a BCG and an ECG
unobtrusively and fully deliver its zero-effort capability of
unobtrusive measurement the RJ-interval.

D. INDIVIDUAL T-TEST
For the increased-SBP-baseline analysis, the individual
maximum d0‘s had the mean and the standard deviation
of 18 ± 6ms. Table 2 shows the complete result.

TABLE 2. T-test individual results (increased-SBP-baseline)

For the decreased-SBP-baseline analysis, the individual
maximum d0‘s had the mean and the standard deviation of
22 ± 12ms. Table 3 shows the complete result.

TABLE 3. T-test individual results (decreased-SBP-baseline)

The individual t-test showed that there was a clear sta-
tistical difference between the mean RJ-intervals of the two
classes being compared. While the individual maximum d0
varied, all of the subjects had non-zero distance. Varying d0’s
were attributed to different physiological conditions of the
subjects and the degree of change in SBP during and after
the VM. Some subjects’ SBP changed beyond the range of
the Decreased and Increased SBP class whereas other sub-
jects’ SBP marginally crossed the threshold, having the mean
RJ-interval relatively closer to the baseline than the subjects
who had greater changes in the parameters.

E. RELATIVE RJ-INTERVAL AND SBP ANALYSIS
A relative change has been investigated to assess its effect
on the regional classifier. Percentage changes in SBP and
the RJ-interval have been used instead of the absolute
changes.

A number of steps were taken to simulate similar bound-
aries as the main analysis (i.e., usage of the absolute
change). The average of all stable SBP regions of 48 subjects
was equal to 103.6 mmHg. Applying the same criteria of
±20 to ±40 mmHg gives boundaries of 63.6, 83.6, 123.6,
and 143.6 mmHg. These numbers translated to 61.2, 80.7,
119.4, and 138.7%. Based on these findings the boundaries
for the relative change analysis was set to ±20 to ±40%.
In other words, the Increased SBP class had boundaries of
+20 to +40%, and the Decreased SBP class had boundaries
of −20 to −40%. For each session, the RJ-interval and SBP
have been converted to a percentage change based on the
average of the stable region of the session. Same selection
criteria and the NBC-based regional classifier as the main
analysis were applied.

The best overall accuracy resulted from m of 40s and
w of 0.4. The main analysis had m of 44s and w of
0.5 as the best parameters, which are not very different
from the relative change analysis. Based on the parame-
ters, an aggregated t-test showed 8.9% separation of the
means for the increased-SBP-baseline analysis and 11.1%
separation for the decreased-SBP-baseline analysis. Given
the average RJ-interval of stable regions across the sam-
ple space of 224.3ms, 8.9% and 11.1% translated to
20.0ms and 24.9ms which were close to that of the main
analysis.

Relative change analysis had 36 qualified subjects and
85 sessions for the increased-SBP-baseline analysis – higher
than that of the main analysis – but had a lower number
of qualified subjects and sessions for the decreased-SBP-
baseline (i.e., 18 subjects with 38 sessions).

Analysis without de-trending had the TPR, TNR, and
accuracy of 83.5, 98.8, and 91.2% for the increased-SBP-
baseline analysis, respectively. The TPR, TNR, and accu-
racy for the decreased-SBP-baseline analysis were 63.2,
97.4, and 80.3%. While the increased-SBP-baseline analy-
sis had approximately the same results as the main analy-
sis, the decreased-SBP-baseline analysis had slightly better
results. With detrending, the TPR, TNR, and accuracy of the
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increased-SBP-baseline analysis were 89.4, 100, and 94.1%,
and that of the decreased-SBP-baseline analysis were 89.5,
100, and 93.4%, which are very close to what was observed
in the main analysis.

The conclusion based on the relative change analysis was
that given a similar setting, there were aspects that each
analysis showed strength. However, the overall performance
of the algorithms remained on par.

F. ADDITIONAL DISCUSSION
The qualified subjects were examined in terms of gender.
Forty-eight (48) subjects who were included in the analysis
had 30 female and 18 male subjects. Thirty-four (34) subjects
who were involved in the increased-SBP-baseline analysis
consisted of 15 male and 19 female subjects, and 20 subjects
who were involved in the decreased-SBP-baseline analysis
consisted of nine male and 11 female subjects. Although
there is no clear pattern in terms of the gender, a higher
number of female subjects were excluded mainly due to not
having enough change in SBP to have data points within the
Increased SBP and the Decreased SBP class. Both analyses
had balanced gender distributions.

FIGURE 12. Distribution of data points of an individual subject. The
individual distribution spanning across the range of the aggregated
distribution enables the overlap of distributions while having a minimum
error due to the overlap (m = 44s, w = 0.5, Subject 31 session 3).

The distributions of the three classes had overlaps as seen
in Fig. 7. The overlapping distributions could have been a
seemingly large source of error when the NBC was used to
generate the output waveform. However, the behavior of SBP
and the RJ-interval showed that the overlap is not of a great
concern mainly because the data points of a single subject are
not concentrated on one specific location but rather spread out
to have a similar range as the aggregated distribution as shown
in Fig. 12. In other words, because the RJ-interval changed
from one end of the aggregated distribution (e.g., right end
of the Decreased SBP class distribution) to another end (e.g.,
left end of the Increased SBP distribution), there was enough
shift in the RJ-interval for the NBC to output non-zero values
that were used to classify a region. There were some cases

where the NBC produced fluctuating outputs, however, these
fluctuations did not affect the regional classifier significantly.
Therefore, the error caused by the overlapping distribution
was minimal, which was reflected in the results.

In terms of the temporal resolution of the algorithm, there
were cases where the detection consisted of a single heartbeat,
which is the minimum resolution of the algorithm. As men-
tioned in the main text, the average duration of the Increased
SBP class was 6.5 s, and that of the Decreased SBP class
was 8.2 s. While the algorithm is sensitive to a level of a
heartbeat, the optimal length of the window that elicits the
lowest error should be investigated in the future. In addition,
the average stable region was about 2.5 minutes long. Given
the precaution to collect a sufficient data, the actual length
of the required baseline may be much shorter. An envisioned
implementation is that the baseline will be collected at the
installment of the system and used daily to assess the health
status.

Additional future works include incorporating the heart
rate related parameters that are used to study autonomic
failure such as Valsalva ratio and heart rate variability (HRV)
in the next iteration of the classifier. A number of processes
involved in this work such as feature measurement, labelling
of data, and defining the stable region relied on a visual
inspection, which will not be available in a realistic sce-
nario. Making these tasks automatic is another part of the
future works. While detecting a change in SBP has a great
potential in studying and detecting symptoms of SH-OH or
autonomic failure in general, the symptoms often occur in a
combination of different states. For example, an autonomic
failure during the VM is characterized as having a continuous
decrease in BP (i.e., lack of recovery to the baseline) during
the strain phase followed by a lack of overshoot in BP after the
release ..[26]. This phenomenon can be translated as having a
reduction in SBP (i.e., positive in the decreased-SBP-baseline
analysis) follow by no change in SBP (i.e., negative in the
increased-SBP-baseline analysis). The sequence of events
such as this can be programmed via techniques such as a
state-space model that can provide a classification (e.g., a
diagnosis) of a condition based on the sequence of states.
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