
Introduction

One major objective of our laboratories during the
last few years was to investigate the presence of the
interstitial Cajal-like cells (ICLC) outside the muscu-
lature of the gastrointestinal tract [1, 2] and to define
the ultrastructural characteristics of this type of cell
[3–9]. We found that the main attribute of ICLC is the

presence of several, thin (mainly ~50 nm, uneven
caliber), extremely long (tens of micrometers), and
moniliform cytoplasmic processes. These processes
seem to form a cellular network connecting target
cells. Anyway, our results seem to be accepted by a
lot of authors from four continents [e.g.: 10–25].

Noteworthy, we also demonstrated in a series of
papers [26–28] the unequivocal existence of ICLC in
human and rat, atrial and ventricular myocardium.
Our findings are not unexpected since it is quite well
known that myocardial interstitial cells overpass
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numerically the working myocytes. In addition, the
myocardial ICLC have tens micrometers long
processes which appear moniliform and share typi-
cal close contacts with nerve fibres [28]. Our findings
about myocardial ICLC seem to be confirmed in very
recent papers [29–34].

However, there is limited information regarding the
cardiomyocyte interaction with interstitial non-muscle
cells, although heterocellular close contacts between
fibroblasts and adult cardiomyocytes have been
reported in co-culture and experimental models
[35, 36]. However, always remains some uncertain-
ty about cellular phenotype and the results
obtained in culture.

Up to now, the relationship between interstitial
cells and intercalated discs of cardiomyocytes has
not been investigated. Intercalated discs (ID), the
hallmark of the heart muscle, are complex
microstructures composed by gap junctions, desmo-
somes, fascia adherens and a recently documented
structure named the ‘transitional junction’ [37]. This
study investigates the relationship of ICLC with the
ID of cardiomyocytes.

Material and methods

Tissue samples from Wistar rat myocardium were obtained
and processed for ultrastructural investigation as previous-
ly described [28].

Ten Wistar rats, having a body weight of 200–250 g, with
free access to food and water, maintained in a tempera-
ture-controlled facility with a 12-hrs light/dark cycle were
used for this study. All animal experiments have been car-
ried out in accordance with the ethical Guidelines for
Animal Experimentation and the study was approved by
the Bioethics Committee of ‘Carol Davila’ University of
Medicine Bucharest.

Ventricular and atrial myocardium was harvested under
anaesthesia after perfusion-fixation (1.5% buffered glu-
taraldehyde) followed by immersion in 4% buffered glu-
taraldehyde. Tissue samples were cut into 1 mm three
small fragments and fixed for 4 hrs in 4% glutaraldehyde in
0.1M cacodylate buffer, pH 7.4 at 4`B0C. The fragments
were  post-fixed for 1 hr in buffered 1% OsO4, dehydrated
in an ethanol series and then processed for Epon 812
embedding at 60`B0C for 48 hrs.

One-micron-thick sections stained with 1% toluidine
blue were examined for a precise orientation of the subse-
quent thin sections. The ultrathin sections were cut using

an LKB ultramicrotome with a diamond knife and double
stained with 1% uranyl acetate and Reynolds lead citrate.

Electron microscopy examination was performed with
both a Philips CM 12 and a Philips 301 transmission elec-
tron microscope at 60 kV. The images were recorded with
Morada 11 megapixel CCD camera and analysed with
iTEM SYS software. Data are expressed as mean `B1 SD.
Digitally colour images were obtained using Adobe
Photoshop software.

Results and discussion

The transmission electron microscopy (TEM) investi-
gation showed a strong affinity of ICLC for the neigh-
bouring area of ID. The tips of ICLC cytoplasmic
processes have been observed in proximity of about
55% of ID (Figs. 1–8). Most of the ICLC processes
end up in the extracellular myocyte pockets associat-
ed with the ‘mouth’ of ID (Figs. 1 and 3).

We have noticed free vesicles with electron-lucent
content or even multi-vesicular body structures in the
extracellular space between the ICLC endings and the
periphery of ID (Fig. 4).The mean diameter of these free
vesicles was 78 ̀ B1 10 nm (min = 50 nm, max = 91 nm).

We have not seen any direct contact between
ICLC tips and the external limit of the ID, but the dis-
tance in between was ranging between 80 and 
500 nm (272 `B1 32 nm) which suggests some kind
of paracrine signalling. Endorsing this hypothesis we
have also observed shed vesicles (118 `B1 16 nm
average diameter, min = 98 nm, max = 177 nm)
between ICLC fingers and cardiomyocytes, next to
the ID (Figs. 5–7). Some of these vesicles bud from
the ICLC cytoplasmic processes (Fig. 5) and budding
could be the mechanism of their formations. We have
also observed round, dense granules (~50 nm diam-
eter) placed either in contact with the ICLC plasma
membrane, in the basal lamina thickness or in the
cortical cytoplasm of the myocardocytes in the prox-
imity of ID (Figs. 3 and 7).

Moreover, the ultrastructural analysis showed
electron-dense structures connecting the ICLC cyto-
plasmic processes by cardiomyocytes on the ID
areas (Figs. 7 and 8). These anchoring structures
(‘pillars’) have 35–40 nm high and 100–150 nm wide
and show a repetitive pattern.

We have previously showed that ICLC establish
stromal synapses with immunoreactive cells [38].
These electron-dense structures connecting ICLC
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Fig. 1 TEM of longitudinal sectioned
rat myocardium showing the relation-
ship of ICLC with myocytes and their
intercalated disks (ID).
The ICLC processes are digitally
colour in blue.
(A) Two slender and long cytoplasmic
extensions of the ICLC (16.16 µm for
ICLC1 and 4.5 µm for ICLC2) placed
between cardiomyocytes at about 150
nm mean distance. The ICLC
processes pass by or stop near the
intercalated discs periphery (arrows).
Note the overlapping of the ICLC
processes in the area next to the ID1
and ID2 (arrowheads).
(B) The overlapping of two ICLC
processes (ICLC1 and ICLC2), digital-
ly- coloured in two blue tones (between
arrowheads) next to the ID is a com-
mon feature. The distance between
ICLC process and plasma membrane
of the cardiomyocytes is 57±10 nm.
The red asterisk shows the ID ‘mouth’.
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Fig. 2 Oblique section through rat myocardocytes
showing the close vicinity between an ICLC extension
(11.56 µm long; blue digitally coloured), and two inter-
calated discs (ID1 and ID2) periphery (arrows). The
ICLC process is almost in contact (arrowheads) with
the plasma membrane of three different myocytes
(M1, M2 and M3). The distance between ICLC and
myocytes is less than 45 nm in these points while the
mean distance is usually over 100 nm. Ec -endothe-
lial cells. The inset shows a direct point contact
(arrowhead) between the tip of ICLC process and
plasma membrane of a small cytoplasmic protrusion
of  myocyte M1. The myocyte basal lamina (bl) is dis-
rupted at the site of protrusion.
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Fig. 3 An ICLC process ending in a myocytic pocket of myocardocyte M1 at the level of the intercalated disc (ID). Small 
electron-dense particles (50 nm or less) can be seen in the basal lamina thickness of the myocardocytes (arrows) or
beneath plasma membrane in the cytoplasm of the myocardocyte M1 (arrowheads). Scale bar = 0.2 µm.

Fig. 4 An ICLC extension in the vicinity of an interca-
lated disc (ID) with a multi-vesicular body (mvb) in
between. A free vesicle can be seen near by (arrow).
Inset–The multi-vesicular body seems to release 
electron-lucent vesicles (diameter 50–90 nm) (*).
Electron-dense structures connect the multi-vesicular
body envelope to the plasma membrane of cardiomy-
ocyte (arrowheads). A tiny connection with ICLC (dou-
ble arrow) can be seen. Scale bar = 0.5 µm.
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Fig. 5 A minute fragment of an ICLC parallels
the intercalated disc (ID) between myocytes
(M1 and M2). The ICLC appears to shed vesi-
cles of 100 nm diameter (arrows). One vesicle
buds from ICLC (double arrow). Electron-
lucent smaller vesicles (50–90 nm) (arrow-
heads) can be seen in the cytoplasm of the
myocyte M2. Note the gap segment of ID.
Scale bar = 0.2 µm.

Fig. 6 An ICLC cytoplasmic extension shedding
vesicles in close proximity of the intercalated
discs (ID) of myocytes (M1, M2, M3). The shed
vesicles of about 100 nm diameter (arrows) are
almost attached to the plasma membrane of the
ICLC process. Scale bar = 0.2 µm.
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with cardiomyocytes have a size comparable with
adhesion molecules [39] and they could be involved
in a juxtacrine intercellular signalling process or
could facilitate a paracrine signalling process.

All these features suggest a paracrine and/or jux-
tacrine intercellular mutual modulation of ICLC and
cardiomyocytes in the microenvironment of ID.

Exosomes and shed vesicles [40–45] have been
described in a variety of physiological and pathological
conditions, but they continue to be under a thorough-
ly investigation. Microvesicles, exosomes and shed
vesicles are produced and secreted by tumour and
normal cells with an important role in intercellular
communication and immune response [45].

Fig. 7 A segmented ICLC extension shedding a vesicle (arrow) toward the intercalated disc (ID). The white-bordered
inset shows two electron-dense particles with about a 50 nm diameter: one of them in a pocket of the ICLC process
(arrow) and next to the plasma membrane of the myocyte (M2), the second in the cytoplasm of the myocyte (arrow-
head). Another shed vesicle (arrow) can be seen in the black-bordered inset. Note the electron-dense nanostructures
(double arrows) that connect the ICLC and the myocyte (M2). The distance in between the two plasma membranes at
the level of attachments structures is about 35–40 nm, similar to adhesion complexes. Scale bar for insets = 0.1 µm.
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Intercellular communication entails not only huge
structures with a distinctive architecture (as ID), but
more elusive mobile nanostructures with limited
time-life which mediate the information among dif-
ferent cellular types (nanovesicles, exosomes, shed
vesicles). The immediacy of intercalated discs and
ICLC long processes which are connected to each
other and with nerve fibres and other interstitial
cells could affect in a paracrine or juxtacrine man-
ner myocar-dial contraction.
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