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Deciphering the pathophysiologic events in prion diseases is challenging, and the role

of posttranslational modifications (PTMs) such as glypidation and glycosylation

remains elusive due to the lack of homogeneous protein preparations. So far, exper-

imental studies have been limited in directly analyzing the earliest events of the con-

formational change of cellular prion protein (PrPC) into scrapie prion protein (PrPSc)

that further propagates PrPC misfolding and aggregation at the cellular membrane,

the initial site of prion infection, and PrP misfolding, by a lack of suitably modified

PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol

(GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this

end, semisynthesis offers a unique possibility to understand PrP behavior invitro and

invivo as it provides access to defined site‐selectively modified PrP variants. This

approach relies on the production and chemoselective linkage of peptide segments,

amenable to chemical modifications, with recombinantly produced protein segments.

In this article, advances in understanding PrP conversion using semisynthesis as a tool

to obtain homogeneous posttranslationally modified PrP will be discussed.
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1 | PRION DISEASES

Prion diseases or transmissible spongiform encephalopathies (TSEs) are

incurable, neurodegenerative disorders affecting humans and animals.1

They include scrapie of sheep and goats, bovine spongiform encepha-

lopathy (BSE) of cattle, chronic wasting disease (CWD) of cervids, and

several human diseases such as kuru, Creutzfeld‐Jakob disease (CJD),

Gerstmann‐Sträussler‐Scheinker syndrome (GSS), and fatal familial

insomnia (FFI). The disease progression is accompanied by the loss of

cognitive skills and neuronal dysfunction and can be of inherited spo-

radic or iatrogenic origin.2,3 The central pathophysiologic event is

ascribed to the conformational change of the cellular prion protein (PrP-
C) into scrapie prion protein (PrPSc) that then not only propagates fur-

ther PrPC misfolding in neighboring cells but can also infect other

organisms.4 Identification of the infective pathogen of prion diseases

and its proof of transmissibility started in the 1950s. By ending canni-

balism within the Fore tribe in Papua New Guinea, the transmission of

kuru could be stopped. Experiments with transferring brain samples of

these kuru victims into primates induced spongiform encephalopathies.5

Due to its infective property, the pathogen was first assumed to be of

nucleic acid‐based, viral nature. However, the application of ultraviolet

and ionizing irradiation failed to inactivate the agent, leading to the

“protein‐only hypothesis” by Griffith in 1967.6,7 Eventually in 1982

the term “prion” defining a small proteinaceous infectious particle was

introduced by Prusiner during the course of discovering the prion pro-

tein (PrP).8,9 PrP 27‐30 corresponding to the protease‐resistant core

of PrPSc with an apparent molecular mass of 27 to 30 kDa was isolated

by enriching fractions from Syrian hamster (SHa) brain for scrapie infec-

tivity.10-13 Successful Edman degradation paved the way for subsequent

molecular cloning studies of the PrP gene.14-16 The linkage of PrPSc to

prion diseases was recognized as an important feature of the protein,

together with its role in transmission and pathogenesis of these ill-

nesses.17 Thus, the main focus of elucidating prion pathogenicity is

assigned to PrP. Understanding the key features in prion diseases can

serve as paradigm for other neurodegenerative diseases, including

amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD),

Alzheimer disease (AD), and Parkinson disease (PD), that are character-

ized by misfolded proteins “prionoids” sharing the aggregation proper-

ties but being not strictly infectious.18-20 As it happens, the latter

statement might not be entirely correct. Recent prion research reported

the discovery of α‐synuclein prions21 in multiple system atrophy (MSA)

and iatrogenic AD with evidence of transmissibility of amyloid‐β (Aβ),22

hence highlighting the need to understand prion transmission and toxic-

ity even more.
2 | PROPERTIES AND STRUCTURES OF THE
PrP

2.1 | Cellular prion protein

High expression levels of PrPC are found in the central nervous system

(CNS), but it exists in other cell types and tissues, such as lymphoid
organs, as well.23-26 Accessing the gene‐encoding SHaPrPC, Prnp,14,27

entailed its further identification in numerous other species and illus-

trated a highly conserved sequence.28,29 The entire open reading

frame (ORF) is contained within a single exon and primarily translates

into a protein composed of 254 amino acids (aas).30,31 The first 22 aas

reflect an N‐terminal signal sequence for PrP entering the secretory

pathway. Upon its cleavage, glycosylation at asparagine residues and

formation of a disulfide bond occur in the endoplasmic reticulum

(ER). Lastly, cleavage of the C‐terminal signal sequence facilitates the

attachment of the glycosylphosphatidylinositol (GPI) anchor, providing

mature, posttranslationally modified PrP at the outer leaflet of the cell

membrane, typical for glycosylphosphatidylinositol anchored proteins

(GPI APs).32 Interestingly, PrP can be found in three topologic forms

at the ER. Apart from the fully translocated PrP, two transmembranal

types occur with the N‐ or C‐terminus facing the ER lumen, denoted as
NtmPrP or CtmPrP, respectively.33,34 Normally, NtmPrP and CtmPrP only

comprise a small portion of PrPC, whereas an excess of CtmPrP induces

neurotoxicity. Neuronal cell death is caused in the absence of PrPSc

formation, obviously by an aberrant metabolism of PrPC. PrPC

mislocalization represents another mechanistic possibility for prion

toxicity next to the alteration of PrPC‐mediated signaling and PrP‐

derived oligomeric species.23 First structural studies on PrPC isolated

from brains of SHas demonstrated a predominantly α‐helical con-

tent.35 As these measurements agreed well with subsequent spectro-

scopic data of recombinant PrP, accessible in larger amounts, it was

considered an appropriate surrogate in biochemical experiments,36-39

as well as in solving nuclear magnetic resonance (NMR) and crystal

structures of PrP.40-47 The PrP structure comprises an unstructured

N‐terminal (aa 23‐120) and a globular C‐terminal part (aa 121‐231)

(Figure 1).

In more detail, the N‐terminal segment consists of a nonapeptide

(PQGGGGWGQ) followed by four octapeptide (PHGGGWGQ) repeats

(OR) with a high affinity for copper,48-51 and other divalent cations,52

adjacent to a charged cluster (CC) or polybasic region (Figure 2). Note-

worthy, the configuration of the copper binding region in hPrP (aa 23‐

231) has been determined combining different experimental methods

by using synthetic octapeptide and tetraoctapeptide as well as full‐

length hPrP.53-56 Depending on the concentration of the metal and

pH, the OR region is capable to bind up to four copper ions in distinct

coordination geometries.50,57 Current estimates for dissociation con-

stant (Kd) values vary betweeen the micromolar and femtomolar

range.50 The central hydrophobic domain (HD), comprising of aas 113

to 135, serves as a transmembrane domain33 and includes a palindromic

region (AGAAAAGA, aa 113‐120) thought to be important in the PrPC‐

PrPSc conversion.58,59 Within the C‐terminal region, three α‐helices (aa

144‐154, 175‐193, and 200‐219), with two of them connected by a

disulfide bond,60 and a small antiparallel β‐sheet (aa 128‐131 and

161‐164) are present. As posttranslational modifications (PTMs), a C‐

terminal GPI anchor linked to serine 231 and twoN‐linked glycosylation

sites at asparagines 181 and 197 exist. PrPC can occur in

nonglycosylated, monoglycosylated, and diglycosylated forms.61,62

Variations in glycan structures attached to PrP may be differentially

distributed depending on the areas of the CNS.63 Molecular dynamics



FIGURE 1 Tertiary structure of cellular prion protein (PrPC) with
posttranslational modifications (PTMs). The structure is based on
nuclear magnetic resonance (NMR) measurements of human PrPC (aa
23‐230) by Zahn et al (PDB 1QLZ)47
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simulations indicate that the N‐linked oligosaccharides located at

two helices within the structured region of PrP contribute to its stabili-

zation in generating a negative electrostatic field covering the helical

surface,64 thus impacting strain diversity and prion infection.65-68 The

C‐terminal GPI anchor tethers PrP to the outer leaflet of the plasma

membrane.69

It has been postulated that mutations in the Prnp gene facilitate

the pathogenic process by destabilizing the tertiary structure of PrPC.

More than 30 mutations in Prnp could be linked to inherited prion dis-

eases.70 In affecting the primary sequence of PrP, concomitant

changes in its 3D structure may arise, and not cause, but influence a

person's risk of developing a disease. Indeed, thermodynamic mea-

surements of mutated PrP variants indicated destabilizing effects only

for some of them.71 For example by comparing the wild‐type variant

to the E200K mutant almost identical structures resulted, but major

perturbations of the surface electrostatic potential were found. This

suggests that these defects cause abnormalities in PrP interactions

and should be considered as key determinants in the misfolding

process.72

Moreover, it has been speculated that methionine oxidation in

PrPC plays a destabilizing role and supports spontaneous conversion

into PrPSc. Wolschner et al73 found a strong proaggregation behavior
FIGURE 2 Schematic outline of the primary
cellular prion protein (PrPC) structure. Residue
numbers correspond to hPrPC
for hPrPC with oxidized methionine residues and a variant with methi-

onine replaced by hydrophilic methoxinine as a stable substitute for

oxidation‐sensitive methionine. These findings suggest a pivotal role

of oxidative stress in PrP conversion.
2.2 | Scrapie prion protein

PrPSc is the toxic, misfolded isoform of PrP. It is, as PrPC, encoded by

the Prnp gene and exhibits identical PTMs, but distinct structural, bio-

chemical, and physiological features.13 Despite a large interest in elu-

cidating the structure of PrPSc, there are only limited data about its

molecular details available.74 To date, obtaining a high‐resolution struc-

ture of PrPSc has been impaired by its insolubility, propensity to aggregate,

and heterogeneity. Structural variations, such as differences in the glyco-

sylation patterns, suggested to correlate with biochemical changes, includ-

ing the extent of the proteinase K (PK) resistance, the electrophoretic

mobility of the proteolytic fragments, and the conformational stability,

depend on the distinct strains and complicate the determination of PrPSc

structure.75 Besides, in agreement with discussions from the Prion 2018

round tables,76 the diversity of PrP assemblies implicates that there may

be no single PrPSc structure. Data generated by biochemical and physical

methods, such as spectroscopy analysis, electron microscopy, and limited

proteolysis, have led to several 3D structural models. Govaerts and col-

leagues suggested that left‐handed β‐helices assembled into trimers, also

known as the 4‐rung β‐solenoid model.77 Based on electron spin reso-

nance (ESR) measurements, Cobb et al proposed a parallel in‐register

intermolecular β‐sheet (PIRIBS) architecture where PrPSc consists of β‐

strands and short turns and/or loops with no residual α‐helices.78 Still,

so far, all models display discrepancies with experimental data.79

Notably, cryo electron microscopy (cryo‐EM) is a technique provid-

ing high‐resolution structures.80,81 By rapidly cooling samples, proteins

can be observed in their native state. In 2016, Wille and colleagues82

employed cryo‐EM to analyze GPI anchorless PrP 27‐30 amyloid fibrils.

PrP 27‐30 was purified from brains of transgenic mice infected with

prions. Further inoculation of wt mice with the purified GPI anchorless

PrP 27‐30 confirmed the development of typical neurological signs of

prion disease. The structure of GPI anchorless PrP 27‐30 amyloid fibrils

was found to agree with a 4‐rung β‐solenoid architecture; 3D recon-

struction revealed two distinct protofilaments and an averagemolecular

height of approximately 17.7 Å. However, Collinge, Wadsworth, and

coworkers83 studied the structural features distinguishing infectious
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ex vivomammalian prions from noninfectious fibrillar assemblies gener-

ated in vitro. Applying cryo‐EM and atomic force microscopy (AFM)

measurements noninfectious recombinant PrP fibrils were identified

as 10‐nm‐wide single fibers with a double helical repeating substruc-

ture, agreeing with the structure described by Wille and colleagues.82

Prion‐infected transgenicmice replicate prions, but theymainly develop

PrP amyloid plaques, which are not seen in prion‐inoculated wt

mice.84,85 Caughey and coworkers86-88 have described twomorpholog-

ically distinct PrP fibril assemblies in prion‐infected transgenic mice.

Therefore, considering the lower infecitivity titer of PrP 27‐30 in the

studies of Wille and colleagues,82 it appears that the more abundant,

single nonglycosylated PrP fibrils, corresponding essentially to recombi-

nant PrP, has been described rather than the infectious glycosylated PrP

rods. Collinge, Wadsworth, and coworkers83 characterized infectious

PrP rods, 20 nm in width, that contained two fibers, each with a double

helical repeating substructure separated by a central gap of 8 to 10 nm.

The gap between the paired fibers consists of irregularly structured

material compositionally distinct to the protein surface. Thus, it was

proposed as a location of the N‐linked glycans of PrP. The structure of

the infectious PrP rods differentiates them fromall other protein assem-

blies so far studied in neurodegenerative diseases. This includes charac-

terizations by cryo‐EM of tau filaments from AD89 and monoclonal

immunoglobulin light chain (LC) fibrils from amyloid light‐chain (AL)

amyloidosis.90 To date, cryo‐EM studies of tau and AL represent the

only structural data of fibrils directly extracted from human tissue under

pathologic conditions. For tau‐paired helical and straight filaments

could be identifiedwith coresmade of two identical protofilaments that

adopt a combined cross‐β/β‐helix structure. AL fibrils were found to be

helical with a single protofilament showing a cross‐β architecture. It is

widely accepted that during the PrPC‐PrPSc conversion, the β‐strand

content increases vastly91,92 and the PK resistance of the “folded core”

(aa approximately 90‐231), aswell.9,14Whereas PrPC is dominated byα‐

helices, monomeric, soluble, and highly susceptible to proteolytic diges-

tion, PrPSc contains predominantly β‐sheets (>43%),92 aggregates into

amyloid fibrils,93 is insoluble in detergents and partially resistant to pro-

teolysis.35,94 These biochemical differences between the PrP isoforms

appear to be associated with the changes of the secondary structure

in PrPSc.
3 | PHYSIOLOGY OF THE PrP

3.1 | Function of PrPC

Although the relevance of PrPC in TSEs is widely accepted, its physio-

logical function remains enigmatic. Studies with PrP knockout mice

have failed on this regard. Transgenic mice lacking PrP were found

to develop normally.95,96 A multitude of functions has been ascribed

to PrP in different tissues, cells, and experimental settings, although

not always without controversy or questionable reproducibility.

Among others, PrPC has been connected to developmental pro-

cesses,97 cell adhesion,98,99 neurite outgrowth, synapse forma-

tion,100-104 neuroprotection,105-107 and regulation of the circadian
rhythm.108 Moreover, there is evidence for PrP contributing to myelin

maintenance,109-112 cellular homeostasis of divalent cations,113-115

and signaling events.116-118 A more detailed discussion can be found

in reviews by the group of Aguzzi.109,119 Recently, other functions

have been attributed to PrPC, that is acting as a receptor for the aggre-

gated proteins Aβ oligomers120-122 and α‐synuclein.123 By mediating

the uptake of Aβ and α‐synuclein, PrPSc is unable to replicate in their

presence.

Already 10 years ago, it was suspected that reports on the func-

tion of PrP represent just specific aspects of a more complex phys-

iological role of PrPC.23 Causes for the functional diversity of PrPC

might not only be its alternating transient binding partners in differ-

ent cellular locations but also its proteolytic processing.124,125 For

once, PrP fragmentation may inhibit association with some binding

partners while possibly allowing new interactions with others. Then

again, the cleaved products may act as soluble ligands facilitating

protein interactions over large distances. These findings contribute

to the biological complexity of the physiological function of PrP. In

fact, four different but highly conserved cleavage events have been

significantly characterized (Figure 2).126-128 During transport to the

cell surface, α‐cleavage results in a soluble flexible N1‐ and a globu-

lar membrane‐bound C1 part. Myelin maintenance has been initially

linked to this C1 part derived from α‐cleavage. Mice expressing

PrP mutants not able to undergo α‐cleavage suffered from chronic

demyelinating polyneuropathy (CDP).110,111,129 Interestingly, recent

work found a specific ligand role of the flexible N1 part towards

the G‐protein coupled receptor Adgrg6, promoting myelin homeosta-

sis.112 During shedding, PrPC is released from the plasma membrane

by a disintegrin and metalloproteinase (ADAM) enzyme, namely,

ADAM10, in a glycosylated form without the GPI anchor and desig-

nated as “shed PrP.”130 Although definite functions of “shed PrP” are

not known to date, the shedding process regulates the membrane

levels of PrPC and thus its functions at the cell surface. Similar to

α‐synuclein,123 recent work by Jarosz‐Griffiths et al131 found that

the toxicity and cellular binding of Aβ oligomers can be reduced by

shedding of PrPC, thereby pointing towards a contribution as a

receptor in AD. Moreover, PrPC is expressed in immune cells as well,

particularly on mast cells.132 Upon activation of these cells, the PrPC

shedding process is enhanced, proposing PrP involvement in the

inflammatory mast cell response. Under pathological conditions and

in response to oxidative stress, incidences of β‐cleavage occurring

around aa position 90 are increased.133,134 Lastly, γ‐cleavages

restricted to unglycosylated PrP generate a large soluble N3 and a

short C3 part by taking place in a region between aas 170 and

200. While prevalence and relevance of this cleavage requires fur-

ther investigation, increased amounts of C3 in CJD brain samples

suggest a pathophysiological role.135

Despite multiple evidence of PrP in physiological processes, the

functional diversity based on its manifold binding partners and proteo-

lytic fragments complicate an exact definition of its physiological func-

tion. Yet successful elucidation of pathways and roles of PrP could

help to understand its linkage to toxicity in prion diseases and to other

neurodegenerative diseases.136
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3.2 | Trafficking of PrPC

As the PrP function is closely intertwined with the cellular compart-

ments where the protein is located, having a closer look at trafficking

may assist in elucidating its involvement in pathological and physiolog-

ical processes. PrPC is tethered via its GPI anchor to the outer leaflet

of the plasma membrane.69 In 1993, data by Shyng et al137 revealed

constitutive cycling of PrPC between the cell surface and endocytic

compartments on varying times scales dependent on the cell line, as

demonstrated in later work.138 From the cellular membrane, PrPC can

enter the cell via multiple pathways, mediated mainly by the unstruc-

tured N‐terminal domain.139,140 Evidence for a cooperation between

clathrin138,141,142 and rafts143-145 in the internalization of PrPC was

found.146 Clathrin is a large, oligomeric protein assembling into lattice

structures on the inner surface of the plasma membrane. Thereby, it

causes the membrane to invaginate and pinch off to form clathrin‐

coated vesicles (CCVs), which can then fuse with other intracellular

organelles.147 Although a clathrin‐dependent internalization might

appear unusual since PrP lacks a cytoplasmic domain necessary for the

direct interaction with clathrin and the adaptor protein, GPI APs can

indeed enter the clathrin‐dependent pathway upon interaction with

transmembrane proteins possessing a clathrin‐coated pit internalization

signal.144 Moreover, the endocytosis of PrPC was found to be associ-

ated with the low‐density lipoprotein receptor‐related protein 1

(LRP1)142,148 that belongs to a receptor family of cell‐surface

transmembrane proteins capable of binding a variety of ligands and

internalizing via clathrin‐coated pits.149,150 As a nonclassical clathrin‐

independent pathway, the raft‐dependent internalization route

distinguishes caveolae‐dependent and caveolae‐independent endocy-

tosis.151 Caveolae are membrane invaginations, originating from the

oligomerization of caveolins, their integral coat proteins, and are consid-

ered to be specialized raft domains.152,153 Due to the presence of PrPC

in caveolae‐like domains154,155 and its colocalization with caveolin‐1

(cav‐1),143,156 the involvement of caveolae in PrPC endocytosis had

been suggested earlier. To this end, Sarnataro et al157 could provide evi-

dence that the raft‐mediated pathway is not affected by caveolin

expression. Still, PrPC internalization was found to be impacted by cho-

lesterol depletion and activation of the cell division control protein 42

homolog (Cdc‐42), amember of the Rho family of GTPases being specif-

ically involved in clathrin‐independent endocytosis of GPI APs.158 Addi-

tionally Sarnataro et al157 reported that in coimmunoprecipitation

studies of clathrin and PrPC, the latter remained associated with

detergent‐insoluble microdomains. This fact supports a cooperation

between rafts and clathrin in the internalization process. PrPC suscepti-

bility to various endocytic pathways could also be the basis for its neu-

roprotective and neurodegenerative functions.
FIGURE 3 Models for the conversion of cellular prion protein (PrPC)
into scrapie prion protein (PrPSc). The model for template‐directed
refolding (top) and seeded nucleation (bottom) are depicted. The
figure was modified from Aguzzi and Calella23
4 | MECHANISM OF PrPC‐PrPSc

CONVERSION

To date, despite considerable knowledge about the characteristics of

the infective prion pathogen, its mechanism of replication and the
molecular pathways leading to neurodegeneration are largely

unknown. There is evidence from invitro and transgenic mouse studies

that the conversion to PrPSc implicates PrPC‐PrPSc interactions.84,159-

163 The rate of PrPSc formation and disease progression appears to

be directly proportional to the level of PrPC expression, indicated by

PrP knockout mice not propagating scrapie infectivity and transgenic

mice heterozygous for a disrupted PrP gene requiring prolonged incu-

bation times upon prion inoculation.164-166 In agreement with the

“protein‐only hypothesis,” these findings have raised two models

explaining prion replication (Figure 3). The template‐directed refolding

model by Prusiner167 proposes that a high‐energy barrier prevents the

spontaneous PrPC‐PrPSc conversion. Upon interaction, monomeric

PrPSc induces PrPC to convert into PrPSc. However, until now, there

is no experimental evidence for the existence of a stable PrPSc mono-

mer.168 PrPSc seeds in this prion propagation process are not consid-

ered essential. Alternatively, in the more accredited seeded

nucleation model by Jarrett and Lansbury,169 a reversible thermody-

namic equilibrium between PrPC and PrPSc is postulated. In the pres-

ence of stable oligomeric PrPSc aggregates, the conversion from PrPC

to PrPSc is favored, thus making PrPSc aggregates (seeds) inevitable

for prion spread. Fragmentation of PrPSc aggregates increases the

number of nuclei capable of recruiting further PrPSc. In fact, these sol-

uble oligomers produced during the PrP amyloid aggregation have

emerged as the primary neurotoxic species, supporting the seeded

nucleation model.170-172

Ultimately, evidence for a direct PrPC‐PrPSc interaction in the con-

version to PrPSc came from invitro systems. Pioneering studies from

Caughey and colleagues173 succeeded within a cell‐free conversion

(CFC) assay in the generation of protease‐resistant (res), radioactive

PrPres from mixed PrPC substrate and an excess of unlabeled PrPSc.

This in vitro PrPres propagation recapitulates the species and strain

specificity of prion transmission invivo.173,174 Mechanistically, it has

identified structural factors underlying the species barrier and optimal

conditions for the PrPres formation.66,175,176 The ability to generate

PrPres not only from purified but also recombinant protein177 provides



6 of 20 HACKL AND BECKER
a unique opportunity to study prion propagation. CFC assays can be

used as screening experiments as they have the potential to identify

compounds directly inhibiting the PrPC‐PrPSc interaction or its subse-

quent conversion.178,179 Still, the proportionally large amount of PrPSc

seeds required to drive the CFC assay (PrPSc:PrPC = 50:1) has

prevented it from generating de novo infectivity.180

A more efficient method for mimicking the autocatalytic replica-

tion of PrPSc was provided by Soto and colleagues38 in affording a

larger than 10‐fold increase in PrPres with the usage of a 1:100 ratio

of PrPSc to PrPC. By subjecting scrapie‐infected and normal brain

homogenate to the so‐called protein misfolding cyclic amplification

(PMCA) procedure, PrPres is amplified in cycles of sonication and incu-

bation. Successive rounds of PMCAs and fragmentation of PrPSc rise

the available amounts of replication‐competent species.181-183 Thus,

with automation, this assay offers a promising diagnostic tool in pre‐

symptomatic blood screening,184,185 and eventually, it has facilitated

the detection of de novo infectivity in hamsters.38 However, the

levels of infectivity still remain lower than with a similar quantity of

brain‐derived PrPSc, and the usage of complex brain homogenate itself

represents an obstacle in thoroughly elucidating the conversion and

association of infectivity with PrPres.186 Besides, the distinct efficiency

differences between the CFC and PMCA assays applying purified and

crude brain‐derived PrPSc proposed that cellular accessory factors are

involved in the generation of PrPres. In fact, polyanionic molecules

were identified as factors present in the brain homogenate that con-

tribute to the conversion efficiency.187 Ongoing development of

PMCA assays aiming to detect and early diagnose TSEs has led to

the quaking‐induced conversion (QuIC) method.188 Sonication is

replaced by reproducible and easier controllable shaking during

the prion amplification process, which enables the application of stan-

dardized protocols. This accomplishment is reflected by the multiple

variations currently available, such as standard (S‐QuIC), real‐time

(RT‐QuIC), and enhanced QuIC (eQuIC).189-192

Apart from the autocatalytic propagation of PrPSc, another crucial

hallmark of the PrPC‐PrPSc conversion is the de novo generation of

infectivity. However, when inoculated into animals, PrP fibrillar

assemblies can range from being biologically inert to fully infectious,

pathogenic, and transmissible in subsequent passages.37,76,193-195

Legname and coworkers196 inoculated transgenic mice expressing

truncated PrPC (aa 89‐231) with amyloid fibrils formed from recombi-

nant PrP (aa 89‐230). The outcomes were low infectious titers and

the affection of only that single line of transgenic mice Tg9949, prob-

ably due to the high expression and truncation of the transgene

sequence enhancing the susceptibility to prion infection within the

mice.75 Hence, according to Supattapone,197 these highly concen-

trated samples of PrP amyloid fibrils are not suitable in mimicking

the infectious properties of PrPSc. In contrast, Wang et al39

succeeded in the formation of infectious de novo recombinant PrP

amyloid fibrils associated with neurological signs in wild‐type mice

after approximately 130 days. Here, PrPres was formed in PMCA

assays in the presence of negatively charged lipids, namely, 1‐

palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol) (sodium

salt) (POPG). In their earlier work,198 they had shown that POPG
promotes the conversion to PrPres under physiological conditions. In

further studies, Wang et al199 could attribute a crucial role in the

PrP‐lipid interaction to the highly conserved middle region of PrP that

induced conformational change.
4.1 | PrPC‐PrPSc conversion in cells

The findings regarding PrPres formation in the presence of POPG39

support the possibility of the plasma membrane being the cellular

localization of PrPSc formation as a posttranslational event. At this

position, contact between endogenous PrPC and exogenous PrPSc

can easily occur.200-204 This is supported by the finding that by releas-

ing PrPC from the cell surface or interrupting its transport to the

plasma membrane prevents the formation of PrPSc.205-207 More pre-

cisely, both PrP isoforms were found to be associated with rafts.208-

211 These are defined as highly dynamic microdomains wherein spe-

cific lipids stabilize larger lipid platforms and compartmentalize cellular

processes at the membrane.212 Impairing the integrity of the

cholesterol‐enriched rafts associated with PrP by lowering the intra-

cellular levels of cholesterol reduced the formation of PrPSc in infected

cells.213 Moreover, PrPC‐ and PrPSc‐associated rafts were found to

have distinct characteristics, as they can be separated from each other

by solubilization and flotation on density gradients.208 According to

Campana et al,200 this proposes that either the types of raft or the

membrane association of each isoform has different characteristics.

However, Baron et al209 illustrated that the PrPSc‐PrPC conversion

only takes place in the presence of fused PrPSc‐ and PrPC‐containing

membranes, suggesting that the two PrP isoforms need to be inserted

into contiguous membranes. Alternatively, rafts were proposed to sta-

bilize PrP in its conformation via a direct interaction with cholesterol.

Thus, changes in the local lipid environment can mediate PrP confor-

mation.214 Studies on model lipid bilayers regarding the impact of

the PrP‐lipid interaction on structure and affinity of PrP support the

idea that predominantly α‐helical PrPC is stabilized upon binding to

raft membranes, whereas binding to negatively charged lipid (nonraft)

membranes leads to an increased β‐sheet content.215 Interestingly,

the PrP‐raft association is mediated by the GPI anchor213,216 and the

N‐terminal region of PrP.217 Unlike for a typical GPI‐anchored protein,

for PrP, this raft association occurs already earlier in the secretory

pathway and appears to be involved in the maturation and folding pro-

cess of PrPC.218,219 Alternatively to the plasma membrane, the forma-

tion of PrPSc was suggested to involve additional cellular places.

Immediately after PrP internalization, the PrPC‐PrPSc conversion may

occur in the endolysosomal compartment,205 in the Golgi apparatus

and/or the ER following retrograde transport.220,221 In infected cells,

stimulation of retrograde transport towards the ER leads to an

increase in PrPSc formation from PrPC precursor,222 suggesting that

the ER may represent an amplification compartment for PrPSc.223 Par-

ticipation of the endocytic pathway is indicated by PrPSc accumulation

in the late endosomes.205,211,224,225 Still, as demonstrated by Goold

et al,201 the plasma membrane is the initial site of prion conversion
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and consequently of most interest in studying the earliest events in

prion infection and PrP misfolding.
4.2 | Impact of GPI anchor on PrPC‐PrPSc conversion

Typically, PrP is attached to membranes by its GPI anchor (Figure 6A).69

A better understanding of the interplay between membranes, GPI‐

anchored PrP, and PrPC‐PrPSc conversion is provided by work from

Baron and Caughey.209,210 First, they studied the conditions necessary

for PrPres formation of PrP associated with detergent‐resistant mem-

branes (DRMs).209 Based on that, in CFC assays, Baron and Caughey210

investigated the impact of GPI‐anchoring of PrP associated with model

membranes on PrPres formation. PrP was isolated by immunoprecipita-

tion frommammalian cell lines expressing GPI‐anchored and anchorless

PrP, respectively.173,226,227 GPI‐anchored PrP bound to liposomes

could not be converted to PrPres upon exposure to exogenous PrPres

in microsomes until phosphatidylinositol‐specific phospholipase C (PI‐

PLC)was added or the combinedmembrane fractionswere treatedwith

a membrane‐fusing agent. These findings indicate for the initiation and

propagation of PrPSc that at themembrane surface, an insertion of PrPSc

into the host cell membrane is necessary for the conversion. Whereas if

the conversion occurred extracellularly, PrPC needed to be released

from the cell membrane. In contrast, anchorless PrP bound to liposomes

was converted to PrPres without any treatments necessary. Hence, con-

tradictory to PrP conversion occurring at the cellular membrane,205-207

only the membrane‐associated form containing PrP attached to a GPI

anchor could resist the conversion induced by exogenous PrPres. More-

over, Chesebro et al84 found that anchorless PrP results in infectious

amyloid disease but without typical clinical TSE. Scrapie infection of

transgenicmice lacking GPI‐anchored PrPC leads to a formation of amy-

loid plaques in contrast to nonamyloid deposits, typically observed in

wild‐type mice. Although neuropathological lesions were induced, clin-

ical manifestationswereminimal. Surprisingly, the combined expression

of anchorless and wild‐type PrP accelerated the onset of clinical dis-

ease. This suggests that GPI‐anchored PrP may be critically involved in

the pathogenesis of prion diseases.228 Overall, the findings mentioned

above indicate a major contribution of the GPI anchor in the toxicity

of the PrPC‐PrPSc conversion.
5 | TOWARDS THE ELUCIDATION OF PrP
CONVERSION

Recombinant PrP is an appropriate surrogate for PrPC, as determined

by spectroscopic measurements, including circular dichroism (CD), that

eventually facilitated solving the NMR and crystal structures of PrP.40-

47 However, it can be a suitable representative only under certain con-

ditions, including thioflavinT (ThT) fluorescence‐based following of the

aggregation process. Even though with this method, insights into the

characteristics and kinetics of in vitro fibril formation have been

gained,232 just recently, the molecular basis of PrP replication was

established in detail by applying a single‐molecule fluorescence meth-

odology to characterize individual aggregates. With total internal
reflection fluorescence (TIRF) microscopy, Klenerman and col-

leagues233,234 studied fibril fragmentation and elongation of individual

murine PrP aggregates from seeded aggregation invitro. PK‐resistant

PrP fibrils elongated until length‐dependent fragmentation resulted

in PK‐sensitive fragments. This method allowed direct observation of

heterogeneous, transient, metastable oligomers during aggregation,

found to be the most infectious PrP particles.235 Additionally, a

spreading model for aggregate propagation through the brain could

be predicted, and a framework was established to start determining

the main factors that control the rate of prion spreading in animals.

In 2011, Goold et al201 analyzed a PrP knockdown (KD) neuroblas-

toma cell line expressing epitope‐tagged PrPC upon infection with

exogenous PrPSc. After facing the limitation of immunological differen-

tiation between PrPSc and PrPC expressed on the recipient cell from

cell lines susceptible to prion infection, epitope‐tagged PrPC appeared

an elegant solution. However, several previous attempts had failed in

generating PrP molecules capable of prion conversion, probably due

to the sequence sensitivity in this process, particularly in certain key

regions of the PrP molecule.236-239 Eventually, out of eight different

constructs, Goold et al201 succeeded with a PrP‐224AlaMYC con-

struct, in which the tag is inserted within the C‐terminal domain. A

detailed analysis of the cells shortly after prion exposure demon-

strated that PrPSc is formed on the plasma membrane. Furthermore,

PI‐PLC treatment effectively removed PrPC from the plasma mem-

brane of PrP‐224AlaMYC cells and reduced the generation of PrPSc.

However, immunostaining is only feasible on fixed cells and impedes

dynamic studies revealing molecular details involved in the PrP con-

version and propagation processes. ThT‐based detection of preformed

PrP amyloid fibrils applied in a cellular environment cannot exclude

ThT binding to other structures unrelated to amyloid and guarantee

binding to all aggregates, as the binding mechanism is not fully under-

stood yet.

To this end, labeling of PrP with an organic fluorophore is required

for dynamic studies in cells. Recombinant PrP differs compared with

PrPC in a complete lack of PTMs causing distinct infectivity and mem-

brane interaction characteristics. These properties can be mainly

ascribed to the GPI anchor, tethering PrP to the cellular membrane,

as demonstrated in various studies.84,209,210,231,240-242 Advances in

semisynthetic strategies based on solid‐phase peptide synthesis

(SPPS),243 protein engineering, native chemical ligation (NCL),244 and

expressed protein ligation (EPL)245,246 have facilitated access to

homogeneous membrane‐anchored labeled PrP variants that allow to

directly observe the biophysical properties of PrP upon interaction

with the cellular membrane.
6 | SEMISYNTHESIS STRATEGIES FOR PrP

To date, the majority of studies on the function and structure of PrP

have been carried out with recombinant protein lacking all PTMs,

including the GPI anchor, or with heterogeneous protein preparations

isolated from mammalian cell lines.247-249 Still, there have been

attempts towards generating defined membrane‐anchored PrP.
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Glockshuber250 and Pinheiro251 with colleagues applied similar strate-

gies, in which thiol‐reactive lipids were attached to the C‐terminus of

recombinant PrP carrying a cysteine. However, further application of

these PrP constructs in cell‐based assays may be impeded by potential

side reactions with thiol‐containing compounds or internal cysteines

of PrP, as the lipids were attached via disulfide bonds. Different strat-

egies were utilized by Baskakov,252 Baldwin,253 and Moroder254 with

coworkers: Baskakov and colleagues252 applied maleimide chemistry

to introduce a myristoyl chain at the C‐terminus of genetically

engineered PrP(S230C). This modification did not alter the structure

of the protein. Interestingly, an increasing affinity of PrP for the cell

membrane and a decreased extent of fibrillization was found.

Baldwin253 and coworkers chemically synthesized several PrP seg-

ments, including a 106 residue “mini‐prion” (PrP106) by connecting

PrP (aa 90‐141) to PrP (aa 178‐231) via a native peptide bond using

NCL,244 a selective reaction that links an unprotected peptide contain-

ing a C‐terminal α‐thioester to another peptide with an N‐terminal

cysteine. A membrane anchor made of a lipophilic myristoyl chain

was introduced at the C‐terminus of shorter PrP peptides via an

orthogonally side‐chain–protected lysine. Immunofluorescence analy-

sis indicated that only myristylated PrP peptides could be targeted

to the cell surface. The group of Moroder applied click and ligation

chemistry to obtain lipidated peptides corresponding to the C‐terminal

PrP segment (aa 214‐231).254 Confocal images of HeLa cells revealed

a direct transfer of fluorescently labeled lipopeptides to the cellular

membrane. Thus, lipopeptides can be used as mimics of the GPI

anchor's ability to attach PrP to the cell membrane. A similar strategy

with regard to using a lipidated peptide as a GPI‐mimicking membrane

anchor was pursued by Becker et al, when starting to develop semi-

synthetic strategies, based on EPL and protein trans‐splicing (PTS)

(Figure 4), to access to different posttranslationally modified PrP vari-

ants (Figure 5).228,241,255-261

In the EPL245,246 reaction, a protein thioester, obtained by cleav-

ing a fusion protein consisting of the protein of interest (POI) and an

intein, is linked to a chemically synthesized peptide243 containing an

N‐terminal cysteine in a reaction similar to NCL.244 An initial

transesterifaction leads to formation of a thioester linking the

recombinant and synthetic PrP segments, and a subsequent irrevers-

ible S → N acyl shift establishes the amide bond at the ligation site

(Figure 4A). The recombinant protein α‐thioesters can be accessed

using engineered inteins. Inteins are self‐processing protein seg-

ments, which mediate protein splicing.245,262 In the course of this

intramolecular process, the intein excises itself and joins the C‐ and

N‐terminal flanking protein segments (C‐ and N‐extein). In more

detail, a nucleophilic side chain, namely, a hydroxy or thiol group

for serine and threonine or cysteine residues, accomplishes an N

→ O or N → S acyl shift. Then, in a trans‐(thio)esterification, the

N‐extein gets attached to a conserved N‐terminal serine or cysteine

of the C‐extein. The instable branched intermediate is resolved via

an intramolecular rearrangement involving a conserved asparagine

residue of the intein producing an intein with a C‐terminal

succinimide, and an O → N or S → N acyl shift resulting in ligated

exteins with a native bond at the ligation site.262,263 Mutations of
the C‐terminal asparagine of the intein and the N‐terminal cysteine,

threonine, or serine residue of the C‐extein to alanine block the

splicing process and only allow the initial N → S acyl shift, which

enables the generation of a protein α‐thioester by addition of an

excess of a thiol, such as sodium 2‐mercaptoethanesulfonate

(MESNA), to trap the protein thioester.264 PTS is a process that

relies on the assembly of two divided segments of inteins, so‐called

split inteins, to form a functional intein. Upon assembly of the split

inteins, PTS occurs and links the N‐ and C‐exteins in a similar

sequence of events as described above (Figure 4B).265

The generation and biophysical characterization of PrP constructs

containing a GPI anchor mimic started more than 10 years ago in

the Becker laboratory with work described in Olschewski et al.228

Two strategies based on the EPL approach provided PrPPalm, an N‐

terminally truncated PrP variant (T_PrP [aas 90‐231]) that is missing

the unfolded N‐terminal domain (aa 23‐89) and modified at the C‐

terminus with chemically synthesized membrane anchor peptides

(Figure 5). At that time, the protease‐resistant PrP fragment compris-

ing residues aa 90‐231 had been considered as the structure crucially

involved in TSEs. The GPI anchor mimics (Figure 6C) feature two

palmitoyl modifications (Palm) that induce a high affinity towards

DOPC liposomes and locate PrP in its native conformation to the

detergent‐resistant domains (DRMs) of cell membranes.266 A tobacco

etch virus (TEV) protease recognition site (ENLYFQ) facilitates con-

trolled release of PrP from the membrane, a polyethyleneglycol

(PEG) polyamide oligomer (PPO) functions as solubilization tag to han-

dle the palmitoylated peptides in aqueous buffers,267 and a fluores-

cent dye can be incorporated for tracking of the semisynthetic PrP

invitro and invivo (Figure 6C).

One of the initial EPL‐based strategies relies on the expression of

PrP in fusion with theMxe GyrA intein and a combination of two affin-

ity tags, namely, a His tag and a chitin‐binding domain (CBD) in

Escherichia coli (E coli). Cleavage of this construct is achieved with an

excess of thiol to generate PrP with a C‐terminal thioester. This PrP‐

thioester is incubated with the GPI anchor‐mimicking peptides and

gives the C‐terminally modified PrP (denoted as PrPPalm, Figure 5A).

A second strategy is based on PTS by expressing PrP fused to the

N‐terminal segment of the DnaE split intein (DnaEN) and chemical syn-

thesis of its C‐terminal segment (DnaEC, 36 aa) linked to the GPI

anchor‐mimicking peptides by a prior NCL reaction.268 Both DnaE

segments spontaneously associate when folded and form a functional

intein, which excises itself to give the desired modified PrP with its C‐

terminal membrane anchor (Figure 5B). Aggregation assays based on

PK resistance and ThT binding269 revealed an extended lag time for

vesicle‐attached PrPPalm with respect to conversion into PrPres and

fibril formation than for PrP in control experiments. Further, binding

to zwitterionic DOPC liposomes indicated a very strong membrane

interaction for PrPPalm in contrast to PrP. Transfer of PrPPalm onto neu-

ronal cells gave rise to similar patterns observed for native PrPC by

immunostaining. Together with extraction experiments of the cell

membrane, this provided proof that soluble PrPPalm is attached to

detergent‐resistant domains (DRMs) similar to wild‐type PrPC with a

native GPI anchor.



FIGURE 4 Mechanism of the expressed protein ligation (EPL) reaction (A) and protein trans‐splicing (PTS) (B)
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Next, Becker et al257 developed a synthetic strategy for the prepara-

tion of PrP with a native, homogeneous GPI anchor that can also be

applied for other GPI‐anchored proteins. A challenge lies here in the

chemical diversity of GPI anchors on the same protein. Different

glycoforms of native PrPGPI anchors have been reportedwith the exact

linkage positions and anomeric configuration of the oligosaccharide

branches not defined. At the same time, details about the lipids attached

to these GPI anchors are not fully clear (Figure 6A).270 In view of this

structural uncertainty, a core GPI pseudopentasaccharide, containing

threemannose (Man), a glucoseamine (GlcN), and an inositol (Ino) glycan

connected in an α‐Man‐(1→ 2)‐α‐Man‐(1→ 6)‐α‐Man‐(1→ 4)‐α‐GlcN‐

(1→ 6)‐myo‐Ino way, was selected. The incorporation of a cysteine res-

idue on the 2‐aminoethyl phosphate moiety of the GPI backbone prior

to global deprotection provided a synthetic, cysteine‐taggedGPI anchor

suitable for NCL reactions (Figure 6B). In a following EPL reaction, PrP

with a C‐terminal thioester was linked to this synthetic GPI anchor.

Analysis of the secondary structure of PrP attached to the synthetic

GPI revealed that the CD curves are indistinguishable from the spectra

of PrP and comparable with the spectra of PrPC. Moreover, the CD

spectra were found to agree with the spectra of PrPPalm. This observa-

tion confirms the successful application of the GPI anchor‐mimicking

peptides (Figure 6C) as an alternative to circumvent the elaborate syn-

thesis of a GPI anchor (Figure 6B). Even though the synthesis of the

GPI anchor succeeded, it remains a challenge to provide sufficient

amounts for subsequent experiments and extension to other proteins.

Isolating mostly homogeneous, cysteine‐carrying GPI anchors from
natural sources could help to avoid this problem, and first steps have

been made towards this goal by using yeast as an expression system

for GPI‐anchored proteins, fromwhich the GPI anchor is proteolytically

released and purified.271 GPI‐anchored PrP was also found to quantita-

tively bind to DOPC vesicles. This emphasizes the contribution of GPI

anchors in the membrane association of PrP.257 Noteworthy, the group

of Silva et al is also working on intein‐based semisynthesis schemes to

obtain homogeneous GPI‐anchored proteins, including PrP, using syn-

thetic GPI anchors.272-274

A major limitation of obtaining semisynthetic PrP variants by EPL

lies in the series of denaturation and renaturation steps required to

obtain functional PrP‐intein fusion constructs due to expression into

inclusion bodies in E. coli. The subsequent folding steps required for

PrPPalm and GPI‐anchored PrP also limits the overall yield of EPL reac-

tions. Deposition in inclusion bodies in E. coli is probably due to

misprocessing of newly generated PrP and the overproduction that

impedes proper folding, including the formation of the structurally

important disulfide bridge.60,275 Hence, to improve the semisynthetic

access to posttranslationally modified PrP Chu and Becker261 devel-

oped a strategy for soluble expression of PrP‐intein constructs in E

coli. Ultimately, the overexpression of a PrP‐intein construct N‐

terminally fused to the ATPase domain of heat shock protein (Hsp)

70 DnaK chaperone gave high quantities of soluble PrP. This approach

offers an alternative way to produce PrP‐thioester for subsequent EPL

reactions but also requires an additional step for removing the N‐

terminal ATPase domain by using sortase A.



FIGURE 5 Semisynthetic strategies for prion protein (PrP) variants, developed in the Becker laboratory.228,255,256 Via an expressed protein
ligation (EPL)‐ (A) and a protein trans‐splicing (PTS)‐based (B) approach, PrP variants equipped with a glycosylphosphatidylinositol (GPI) anchor
mimic can be obtained. With the strategy displayed in C, PrP variants modified with monodisperse PEG chains as mimics of N‐glycans can be
accessed. Selective desulfurization of the introduced cysteine following EPL (A) is depicted in D
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With robust semisynthetic strategies established, the critical

membrane attachment of PrP was studied by Chu et al241 using

three PrP variants, including full‐length FL_PrP (aa 23‐231), central

hydrophobic region deleted ΔCR_PrP (aa 23‐231 with Δ105‐125)

and N‐terminally truncated T_PrP (aa 90‐231), all equipped with a

C‐terminal membrane anchor. Interactions of the lipidated PrP con-

structs with phospholipid membranes demonstrated binding modes

distinct from the nonmodified PrPs and impacts on the biochemical

and conformational properties of PrP. Whereas nonmodified PrPs

showed a conversion into β‐sheet–enriched structures upon
interaction with anionic POPG vesicles, lipidated ΔCR_PrP and

T_PrP retained their α‐helical structure and lipidated FL_PrP partially

converted into random coil. Evidence indicating pore formation of

lipidated ΔCR_PrP was found in fluorescence‐based assays and sup-

ported by patch clamp electrophysiological measurements of cells

transfected with lipidated ΔCR_PrP. ΔCR_PrP was previously found

to be neurotoxic in vivo. Yet, expressed in cultured cells, it is identi-

cally localized as wild‐type PrP. Thus, altered binding interactions

had been suggested to cause the deleterious signaling path-

ways.276,277 Based on these results, critical roles for both C‐terminal



FIGURE 6 Structures of a native and artificial glycosylphosphatidylinositol (GPI) anchor together with a GPI anchor mimic. A shows a common
structure of a native GPI anchor from human erythrocyte acetylcholinesterase.226 B is a chemically synthesized GPI from Silva et al227 with a cysteine
residue for native chemical ligation (NCL) reactions. C shows the structure of the GPI anchor‐mimicking peptide used for the semisynthesis of lipidated
PrP constructs228
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membrane attachment and the N‐terminal domain of PrP have been

suggested.

PTMs in PrP comprise not only a C‐terminal GPI anchor but also N‐

glycosylation of two asparagine residues278 at positions 181 and 197.

Different prion strains and prion‐related diseases (TSEs) possess dis-

tinct glycosylation patterns of PrP. Studying the influence of these

PTMs in prion pathogenesis has not been forthcoming mainly due to

the confusing complexity and heterogeneity of these glycans.62,279 Shi

et al280 reported a strategy based on linking three segments of murine

PrP, in which a recombinant PrP segment (aa 90‐177S) was ligated with

two synthetic peptide segments (aa 178‐212 and aa 213‐230). This

strategy was aimed at introduction sugars into PrP but did not fully suc-

ceed. Shortly after that, Araman et al255 demonstrated a semisynthetic

approach to generate PrP variants modified with monodisperse PEG

chains as mimics of N‐glycans that are similar in size and molar mass

(Figure 5C). A newEPL strategywas established to achieve this, inwhich

expressed PrP (aa 23‐177) with a C‐terminal thioester is used in EPL

reactions with PEGylated, synthetic peptides (aa 179‐231). Selective

desulfurization of the β‐mercapto‐aspartate at the ligation site gives

homogeneous PEGylated full‐length PrP constructs. Interestingly,

in vitro aggregation was completely abrogated for all PEGylated PrP
constructs under conditions at which wild‐type PrP aggregated. Fur-

thermore, the addition of only 10% of PEGylated PrP completely

blocked aggregation of wild‐type PrP. This has raised the question if

large N‐glycans interfere with aggregation invivo. Recently, Mishra

et al281 introduced lactosyl and mannobiosyl glycans in huPrP (aa 90‐

231) at positions 181 and 197 via Asn to Cys mutations. In agreement

with our results, they found that glycosylated PrPs are less prone to

spontaneous fibril nucleation. Such a strategy raises the question if

added cysteine residues influence PrP structure by disulfide shuffeling

and if this affects the modification reaction used by Mishra et al.281

A similar question can arise from the cysteine residues introduced

during the EPL reactions described above as in our previous approach

depicted in Figure 5A. The introduced ligation site cysteine at the C‐

terminus of T_PrP (aa 90‐231) was left undesulfurized, which could

potentially be problematic for the folding of PrP. To finally prove that

such an additional C‐terminal cysteine residue does not influence PrP

folding, we employed a strategy recently introduced by Matveenko

et al,256 in which the two native cysteines in recombinant PrP (aa

23‐231) are protected by a phenacyl (PAc) protecting group. This pro-

tection allowed selective desulfurization of the introduced cysteine

following EPL (Figure 5D). Comparing PrP variants containing a
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cysteine at the ligation site and an alanine (by CD) proved that the

introduced cysteine did not disturb the folding to native PrP.
7 | CONCLUSION AND OUTLOOK

Based on the continuous progress in protein (semi)synthesis, access to

homogeneous, posttranslationally modified PrP variants was facilitated

over the past decade and a set of differently modified variants could be

characterized with respect to their biophysical and conformational

properties, including their interaction with membranes. Semisynthetic

PrP variants have the potential to shed light on the crucial steps in PrP

conversion, transmission, and pathogenicity, eg., by allowing for direct

observation of the protein at the cellular membrane. Understanding

these key features in prion diseases can further serve as paradigm for

other neurodegenerative diseases.
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