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SUMMARY

One long-standing model of striatal function divides the striatum into compartments called 

striosome and matrix. While some anatomical evidence suggests that these populations represent 

distinct striatal pathways with differing inputs and outputs, functional investigation has been 

limited by the methods for identifying and manipulating these populations. Here, we utilize 

hs599CreER mice as a new tool for targeting striosome projection neurons and testing their 

functional connectivity. Extending anatomical work, we demonstrate that striosome neurons 

receive greater synaptic input from prelimbic cortex, whereas matrix neurons receive greater input 

from primary motor cortex. We also identify functional differences in how striosome and matrix 

neurons process excitatory input, providing the first electrophysiological method for delineating 

striatal output neuron subtypes. Lastly, we provide the first functional demonstration that 

striosome neurons are the predominant striatal output to substantia nigra pars compacta dopamine 

neurons. These results identify striosome and matrix as functionally distinct striatal pathways.
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Graphical Abstract

In Brief

McGregor et al. utilize a novel transgenic mouse line to dissect the functional circuitry and 

electrophysiology of striatal striosome and matrix neurons. They report that striosome and matrix 

neurons receive distinct synaptic input and that striosome neurons represent the major striatal 

population innervating substantia nigra pars compacta dopamine neurons.

INTRODUCTION

The striatum is the primary input nucleus of the basal ganglia and plays a critical role in a 

wide range of behaviors. Classical models of striatal function divide the output neurons, 

medium spiny neurons (MSNs), into two groups: direct and indirect pathway cells. These 

populations have proven useful for understanding striatal functions such as movement 

control (Kravitz and Kreitzer, 2012; Cui et al., 2013) and are differentiated by their 

connectivity to downstream basal ganglia nuclei. An alternative model that may help explain 

other striatal functions, including certain forms of learning and decision making (Brown et 

al., 1999; Friedman et al., 2015), divides striatal output neurons into populations called 

striosome and matrix. Like the direct-indirect pathway model, striosome and matrix neurons 

are hypothesized to mediate distinct functions, based in large part on proposed differences in 

their upstream and downstream connectivity.
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Historically, striosome and matrix neurons have been distinguished by their localization 

within neurochemically distinct compartments. Striosome compartments, which appear as 

irregularly distributed islands within the surrounding matrix, show enriched expression of 

markers such as μ-opioid receptors (MORs) and diminished expression of markers such as 

calbindin (Pert et al., 1976; Gerfen, 1985). Early and recent anatomical tracing studies found 

that terminals from limbic and sensorimotor regions show preferential localization in 

striosome and matrix compartments, respectively (Ragsdale and Graybiel, 1988; Sadikot et 

al., 1992; Eblen and Graybiel, 1995; Kincaid and Wilson, 1996; Lévesque and Parent, 1998; 

Friedman et al., 2015). Additionally, while MSNs in both compartments project to canonical 

downstream basal ganglia targets such as the substantia nigra pars reticulata (SNr), tracing 

studies suggest that striosome MSNs in the dorsal striatum send additional output to 

dopamine neurons in the substantia nigra pars compacta (SNc), while those in the ventral 

striatum project to dopamine neurons in the ventral tegmental area (VTA) (Gerfen, 1985; 

Jiménez-Castellanos and Graybiel, 1989; Fujiyama et al., 2011; Watabe-Uchida et al., 2012). 

These anatomical findings led to the hypothesis that striosomes comprise a distinct striatal 

pathway that integrates limbic information and regulates activity of SNc dopamine neurons.

Neurochemically defined striosome and matrix compartments have been recognized for 

decades, but without tools to identify and manipulate these neurons in vivo, studies of how 

potential structural differences in connectivity translate functionally have been limited. 

Much of our current knowledge is derived from post-mortem neuroanatomical studies, with 

methods to facilitate functional study of striosome and matrix MSNs in living tissue only 

recently becoming available (Davis and Puhl, 2011; Gerfen et al., 2013; Banghart et al., 

2015; Lopez-Huerta et al., 2016; Smith et al., 2016; Crittenden et al., 2017). Such 

approaches have enabled novel insights into differences between striosome and matrix but 

also raised debate over whether striosome and matrix MSNs indeed differ in their inputs and 

outputs. Here, we use Cre-mediated recombination from the hs599CreER mouse line to target 

developing striosome MSNs. We find that striosome and matrix MSNs receive biased input 

from limbic and sensorimotor regions at the synaptic level. We also show that striosome and 

matrix MSNs have divergent intrinsic properties. Finally, we demonstrate that striosome and 

matrix MSNs have functionally distinct inhibitory output to SNc dopamine neurons. 

Together, our data establish the hs599CreER mouse line as a highly specific tool for studying 

striosomes and confirm that striosome and matrix represent functionally distinct striatal 

pathways.

RESULTS

Enhancer hs599 Drives Gene Expression in Postmitotic Neurons of the Developing 
Striatum

hs599 is a 1,678-bp DNA fragment from the human genome that was discovered to drive 

LacZ expression in the embryonic day 11.5 (E11.5) mouse striatum using a mouse 

transgenic screen of candidate regulatory elements (Visel et al., 2013). hs599 was then 

cloned upstream of CreERT2-IRES-eGFP and used to generate a stable mouse transgenic 

line (hs599CreERT2-EGFP, referred to here as hs599CreER), which confirmed its activity in the 
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E11.5 striatum (Silberberg et al., 2016). Here, we investigated hs599CreER as a tool for 

labeling components of the developing striatum.

To explore its ability to label striosomes, we examined hs599-driven CreER-eGFP 

expression and CreER-mediated recombination during development following a single 

administration of tamoxifen. Previous studies demonstrate that striosome and matrix cells 

are derived from the lateral ganglionic eminence (LGE) starting at E10.5 (van der Kooy and 

Fishell, 1987), with striosome neurons born prior to matrix neurons. Because the hs599 is 

active in the LGE during this time (Silberberg et al., 2016), we hypothesized that tamoxifen 

administration at E10.5 would label early-born neurons that give rise to striosomes (Figure 

1A). Therefore, we administered tamoxifen at E10.5 to hs599CreER;Ai14 mice and observed 

CreER-eGFP expression (EGFP) and Cre-mediated recombination (tdTomato) in the 

striatum of embryos and pups (E12.5, E15.5, and E18.5; Figures 1B and S1A-S1C). In the 

LGE at E12.5, recombination appeared restricted to the neuronal zone (mantle zone), 

suggesting hs599 was not active in progenitor cells (Figure 1B). To confirm that 

recombination was restricted to post-mitotic cells, we stained E12.5 sections for either Ki67 

or phospho-histone H3, markers of proliferating cells. Neither eGFP nor Cre-driven 

tdTomato expression overlapped with either marker within the LGE, except for a small 

domain at the pallial/subpallial boundary (Figures 1C and 1D, asterisks in Figure S1A). This 

region produces interneurons of the olfactory bulb and pyramidal neurons of the piriform 

cortex; both of these structures had low levels of recombination (Figure 1E). No 

recombination was observed in the progenitor domains of the medial ganglionic eminence 

(Figure 1B). While we did observe recombined cells in the external globus pallidus (GPe), 

they were NKX2-1 negative and therefore unlikely to be derived from the MGE (Figure 

S2A) (Flandin et al., 2010; Nóbrega-Pereiraetal., 2010; Hernández etal., 2015; Dodson et al., 

2015). In line with hs599 enhancer embryonic activity, fate mapping of tdTomato+ cells in 

adult animals (postnatal day 30 [P30]) revealed labeling in the GABAergic regions of the 

telencephalon (striatum, olfactory bulb, olfactory tubercle, septal nuclei, bed nucleus of the 

stria terminalis [BNST], amygdala [central and intercalated nucleus], and diencephalon 

[reticular thalamus and zona incerta]) (Figure 1E). Notably, tdTomato+ cell bodies were not 

observed in the substantia nigra (Figures 1E and S2B). These data show that hs599CrsER 

mice can be used to label a subset of striatal neurons born during specific developmental 

time points.

hs599CreER Mice Enable Genetic Targeting of Striosome MSNs

hs599CreER;Ai14 mice given tamoxifen at E10.5 lead to patchy striatal tdTomato expression 

by adulthood, suggesting the possibility of striosome labeling (Figure 1B, right). To test this 

hypothesis, we double-labeled striatal sections from hs599CreER;Ai14 mice for MORs and 

calbindin, markers of striosome and matrix compartments, respectively (Pert et al., 1976; 

Gerfen et al., 1985). tdTomato+ cells were found in regions enriched for MOR and poor in 

calbindin expression (Figures 2A and 2B), consistent with striosome labeling. Previous 

studies targeting striosomes developmentally indicate a tradeoff between penetrance and 

specificity across different developmental time points (Kelly et al., 2018; van der Kooy and 

Fishell, 1987; Mason et al., 2005). Therefore, we estimated the penetrance and specificity of 

striosome labeling in the dorsal striatum of hs599CrsER;Ai14 mice (tamoxifen administration 
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at E10.5) by quantifying the density of tdTomato+ cells in striosome and matrix 

compartments (Figures 2C and 2D). We observed an ~12-fold higher density of labeling in 

striosome compared to matrix compartments (12,211 ± 820 versus 1,058 ± 79 cells/mm, N = 

3; Figure 2I). Notably, tamoxifen administration at E15.5 led to increased striatal labeling, 

but in a broader and more nonspecific pattern (data not shown). Next, to confirm whether 

labeling was restricted to striatal projection neurons (MSNs), we stained for markers of 

striatal interneurons: choline acetyltransferase (ChAT), parvalbumin (PV), and neuropeptide 

Y (NPY) (Figures 2E-2G). We observed almost no overlap of tdTomato with ChAT, PV, or 

NPY (Figure 2J). These findings indicate that hs599CreER mice enable highly enriched 

labeling of striosome MSNs.

Striosome and matrix compartments each contain direct and indirect pathway MSNs. To 

determine if hs599CreER mice preferentially label either pathway, we first measured the 

endogenous proportion of indirect pathway MSNs in each compartment. Striatal slices from 

an indirect pathway reporter mouse line (D2-GFP; Gong et al., 2003) were stained for 

MORs and the neuronal marker NeuN, enabling quantification of the proportion of GFP+ 

neurons in striosomes and matrix (Figure 2H). While approximately half of identified matrix 

neurons were GFP+ (45.8% ± 0.6%, N = 4), striosomes showed a small but consistent 

reduction in this proportion (38.7% ± 1.2%, N = 4), suggesting a slight enrichment for direct 

pathway MSNs (Figure 2K). Using hs599CreER;Ai14;D2-GFP mice, we next quantified the 

proportion of tdTomato+ neurons that were D2-GFP+. We observed minimal overlap 

between GFP+ and tdTomato+ neurons (Figures 2H and 2K; 9.8% ± 0.9%, N = 3), indicating 

that labeled neurons in hs599CreER mice underrepresent indirect pathway MSNs within 

striosomes. Thus, our data indicate that striatal neurons labeled in hs599CreER mice are 

primarily direct pathway striosome MSNs.

Striosome and Matrix Receive Differential Input from Prelimbic and Primary Motor Cortex

The advent of novel tools for studying striosome and matrix MSNs has raised questions over 

whether these populations receive differing levels of input from limbic and sensorimotor 

neocortical regions. With the hs599CreER mouse line as a tool to identify and manipulate 

striosome MSNs, we next tested the hypothesis that striosome MSNs receive differential 

inputs from upstream brain regions, as compared to neighboring matrix MSNs. While 

terminals from prelimbic cortex (PL) and primary motor cortex (M1) have been found to 

preferentially distribute onto striosome and matrix compartments, respectively (Eblen and 

Graybiel, 1995; Kincaid and Wilson, 1996; Lévesque and Parent, 1998; Miyamoto et al., 

2018), it is unknown how such anatomical differences translate at the functional level. To 

address this question, we expressed channelrhodopsin (ChR2-EYFP) in either the PL or M1 

of hs599CreER;Ai14 mice. Consistent with previous findings, ChR2-EYFP+ fibers from the 

PL were enriched in tdTomato-labeled striosomes (Figures S3A-S3C), while those from M1 

concentrated in the matrix (Figures S3D-S3F). Next, we targeted sequential pairs of 

neighboring striosome and matrix MSNs in ex vivo brain slices (Figure 3A) and measured 

optically evoked excitatory postsynaptic currents (oEPSCs) in whole-cell voltage-clamp 

configuration. Brief pulses of blue light induced short-latency oEPSCs (<5 ms) from PL and 

M1 inputs in both matrix and striosome MSNs (Figure 3A). The amplitude of PL-derived 

EPSCs was greater in striosome (776 ± 175 pA) than in matrix (483 ± 182 pA) MSNs 
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(Figure 3B, left; Wilcoxon sign-rank, p = 0.0099, n = 17 pairs, N = 4). Conversely, the 

amplitude of M1-derived EPSCs was significantly lower in striosome (202 ± 48 pA) 

compared to matrix (756 ± 201 pA) MSNs (Figure 3C, left; Wilcoxon sign-rank, p = 0.0072, 

n = 19 pairs, N = 4). To quantify the functional bias of PL and M1 inputs for striosome 

MSNs, we averaged the ratio of oEPSC amplitudes [striosome/(striosome + matrix)] for all 

recorded pairs, as well as for each animal. Values greater than 0.5 represent preference for 

striosome MSNs, while values less than 0.5 represent preference for matrix MSNs. The PL 

and M1 showed opposing biases, with the PL favoring striosome MSNs (Figure 3B, right; 

0.65) and the M1 favoring matrix MSNs (Figure 3C, right; 0.28). The directionality of this 

bias was consistent across all animals for both the PL and M1. In combination, these results 

extend anatomical findings, showing that PL and M1 inputs onto individual striosome and 

matrix MSNs differ at the functional level.

Direct Pathway Striosome MSNs Have Increased Intrinsic Excitability Compared to Matrix 
MSNs

Though striosome and matrix MSNs may receive distinct synaptic input from the PL and 

M1, how they transform synaptic input into spiking relies in part on their intrinsic properties. 

Using whole-cell current-clamp recordings in ex vivo brain slices to measure instantaneous 

firing rates in response to current injections, we compared the intrinsic excitability of 

striosome and matrix MSNs (Figures 3D and 3E). To control for potential differences in 

excitability between direct and indirect pathway MSNs (Gertler et al., 2008; Lieberman et 

al., 2018; Planert et al., 2013), we used hs599CreER;Ai14;D2-GFP mice to compare labeled 

striosome MSNs to direct and indirect pathway MSNs in the matrix. As very few labeled 

striosome neurons were indirect pathway neurons (Figure 2K), only direct pathway MSNs 

within striosomes were examined (see STAR Methods). Because direct pathway MSNs have 

lower intrinsic excitability than indirect pathway MSNs, we would expect to see lower 

excitability in tdTomato+ striosome MSNs than matrix MSNs. However, we observed higher 

intrinsic excitability in labeled striosome MSNs (n = 34, N = 5) than matrix MSNs (Figure 

3F; n = 25, N = 5). In fact, intrinsic excitability of presumed direct pathway striosome MSNs 

(n = 34, N = 5) was increased over both direct (Figure 3G; n = 12, N = 5) and indirect 

(Figure 3H; n = 13, N = 5) pathway MSNs in the matrix. Histologically confirmed direct 

pathway striosome MSNs showed similar excitability to that of the overall striosome 

population (Figure S3G). No difference was observed in the maximal firing rate (Figure 

S3H; striosome = 50 ± 3.0 spikes/s, matrix D1 = 55 ± 4.4 spikes/s, matrix D2 = 51 ± 5.4 

spikes/s; Kruskal-Wallis, p = 0.595) or resting membrane potential (Figure S3I; striosome = 

−89 ± 0.9 mV, matrix D1 = −93 ± 1.5 mV, matrix D2 = −87 ± 1.4 mV; Kruskal-Wallis, p = 

0.032) of any group. However, direct pathway striosome MSNs had higher input resistance 

at rest (Figure S3J; striosome = 236 ± 14 MΩ, matrix D1 =151 ± 16 MΩ, matrix D2 = 162 

± 25 MΩ; Kruskal-Wallis, p = 0.00052, Dunn post hoc, striosome versus D1 matrix, p = 

0.0018, D2 matrix, p = 0.0023) and showed a substantial shift in rheobase (Figure S3K; 

striosome = 207 ± 17 pA, matrix D1 = 404 ± 47 pA, matrix D2 = 325 ± 32 pA; Kruskal-

Wallis, p < 0.0001, Dunn post hoc, striosome versus D1 matrix p < 0.0001, D2 matrix p = 

0.0008). Given the marked difference in excitability between striosome and matrix MSNs, 

we wondered if this electrophysiological property could be used as a surrogate marker for 

compartmental identity. Striosome and matrix direct pathway MSNs showed minimal 
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overlap in their rheobase distribution (Figure S3K). Therefore, we quantified the positive 

and negative predictive value (PPV and NPV) of various rheobase cutoffs for identifying 

direct pathway MSNs in striosomes from those in the matrix (Figures S3L-S3N). Notably, a 

rheobase cutoff of 200 pA or less had a PPV of 100% for labeled striosome neurons, while a 

rheobase cutoff of 250 pA or more had a NPV of 92.7% (Figures S3L and S3M). Repeating 

this measure without a priori knowledge of direct or indirect pathway identity produced 

similar results (Figure S3N; PPV = 76.9%, NPV = 92.0%) Together, these data indicate 

striosome MSNs have greater intrinsic excitability than matrix MSNs of either pathway and 

provide a potential non-transgenic approach for electrophysiological identification of direct 

pathway striosome MSNs in slice recordings.

Striosome MSNs Are a Predominant Source of Striatal Input to SNc Dopamine

We next asked if striosome MSNs send outputs to distinct downstream targets. Previous 

anatomical studies suggest that direct pathway striosome MSNs, unlike those in the matrix, 

project monosynaptically to substantia nigra pars compacta (SNc) dopamine neurons, in 

addition to canonical target regions such as the substantia nigra pars reticulata (SNr) 

(Gerfen, 1985; Jiménez-Castellanos and Graybiel, 1989; Fujiyama et al., 2011; Watabe-

Uchida et al., 2012; Yang et al., 2018). However, this anatomical connection from striosome 

MSNs to SNc dopamine neurons and its specificity have not been explored at the 

physiological level. Furthermore, recent evidence suggested that striosome output may not 

differ from that of matrix (Smith et al., 2016). To address if striosome MSN synaptic output 

is distinct from that of direct pathway MSNs as a whole, we expressed ChR2-eYFP in direct 

pathway MSNs (both striosome and matrix; D1-Cre;Ai32) or selectively within striosome 

MSNs (hs599CreER;Ai32) and recorded light-evoked currents in SNc dopamine neurons. To 

control for differences in ChR2 expression across lines, we also recorded light-evoked 

currents in SNr neurons, allowing for normalization of synaptic output as a ratio between the 

two target regions (SNc/SNr; Figure 4A). In both D1-Cre;Ai32 (D1) and hs599CreER;Ai32 

(599) mice, we observed ChR2-EYFP+ terminals within the SNc as identified by staining for 

tyrosine hydroxylase, a marker of dopaminergic neurons (Figures S4A and S4B). Brief 

pulses of blue light induced optically evoked inhibitory postsynaptic currents (oIPSCs) with 

short latency (<5 ms), which were unaffected by application of glutamatergic antagonists 

(2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline [NBQX] + [2R]-amino-5-

phosphonovaleric acid [APV]) and abolished by application of the GABAA antagonist 

picrotoxin (Figures 4B and 4C). In SNc dopamine neurons identified by biocytin fill (Figure 

S4C) or cell-attached spike waveform (Figures S4D and S4E), we observed no difference in 

the oIPSC amplitude between 599 and D1 mice (Figure 4D; 599 = 428 ± 145 pA, n = 9, N = 

5; D1 = 281 ± 109 pA, n = 7, N = 5; p = 0.70). If we assume that D1-Cre captures all direct 

pathway neurons, these results indicate that the majority of striatal input to SNc dopamine 

neurons is derived from striosome neurons. Consistent with this assumption, oIPSC 

amplitude in SNr neurons was significantly less in 599 compared to D1 mice (Figure 4E; 

599 = 1,603 ± 505 pA, n = 14, N = 5; D1 = 4,417 ± 392 pA, n = 14,N = 5;p = 0.0012). The 

normalized ratio oIPSC amplitude (SNc:SNr) averaged 0.25 in 599 mice and 0.06 in D1 

mice, suggesting that striosome output shows increased bias toward SNc dopamine neurons 

compared to D1 MSNs as a whole. To compare these ratios statistically, we bootstrapped 

data acquired from D1 and 599 mice to obtain a probability distribution of outcomes, which 
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were significantly different (Figure 4F; Kolmogorov-Smirnov test, p < 0.001). Next, to show 

that striosome MSNs can regulate SNc dopamine neuron firing, we recorded spontaneous 

activity of dopamine neurons in a cell-attached configuration and activated striosome 

terminals using hs599CreER;Ai32 mice and brief trains of blue light (5 pulses, 10 Hz; Figure 

4G). Activation of striosome MSNs was sufficient to inhibit firing in SNc dopamine neurons 

(Figure 4H; n = 7, N = 4). Thus, these results demonstrate that striosome MSNs are the 

major source of striatal output to SNc dopamine neurons.

DISCUSSION

As a new tool for studying striosome and matrix MSNs, it is important to consider how the 

hs599CreER mouse line compares to existing methods. Our data indicate that by targeting 

early-born, postmitotic neurons of the LGE, hs599CreER mice label striosomes with higher 

specificity compared to non-inducible Cre lines, such as the Sepw1NP67-Cre line (Smith et 

al., 2016), though with reduced penetrance. Labeling of more ventral striosomes was 

especially variable, being present in some mice but appearing largely absent in others. As 

with other mouse lines for targeting striosomes (Kelly et al., 2018; Smith et al., 2016), 

labeling in hs599CreER mice was present in MSNs, but not major interneuron populations. 

Furthermore, labeling within MSNs was strongly biased toward those of the direct pathway, 

a feature of other methods for targeting striosomes (Davis and Puhl, 2011; Banghart et al., 

2015; Smith et al., 2016). Although our data support a slightly greater proportion of direct 

pathway MSNs in striosomes compared to matrix, labeling with these lines and hs599CreER 

mice underrepresents the numbers of indirect pathway MSNs in striosomes. The presence of 

this bias across different methods for isolating striosomes may suggest that molecular 

differences between striosome and matrix are more marked across direct pathway than 

indirect pathway MSNs. It is important to note though that other developmental strategies 

have produced more even labeling of indirect and direct pathway MSNs in striosomes, 

suggesting that the bias observed in hs599CreER mice results from regulation of CreER 

expression, rather than developmental timing (Kelly et al., 2018). Thus, hs599CreER mice 

may be particularly useful when high specificity of striosome labeling is required, or for 

studying dorsal direct pathway striosome MSNs in particular.

Using the hs599CreER mouse line, we found that at the functional level, PL inputs 

preferentially target striosome MSNs, whereas M1 inputs preferentially target matrix MSNs. 

These results are consistent with previous anterograde tracing studies using traditional 

neurochemically defined striosomes. However, it is important to integrate these local 

differences in innervation across striosome and matrix with the differences present across 

anatomical axes, such as dorsoventral and mediolateral. Inputs to striosome and matrix are 

highly heterogeneous across these axes, meaning that inputs to MSNs in neighboring 

compartments may be more similar than when compared to distant MSNs in the 

corresponding compartment. It is likely then that, like matrix MSNs, striosome MSNs in 

different striatal regions serve distinct functions. Recent work has highlighted the molecular 

heterogeneity of striosomes throughout the striatum (Miyamoto et al., 2018); future studies 

should aim to extend such analysis to the level of in vivo activity and behavior.
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We also found higher intrinsic excitability in direct pathway striosome MSNs compared to 

those in the matrix, which may amplify differences in excitatory inputs. In fact, the nearly 

nonoverlapping rheobases of striosome and matrix MSNs may provide a new means of 

studying striosome MSNs in slice preparations, without transgenic labeling. However, 

additional validation across genetic backgrounds and ages will be necessary. Critically 

important is how these differences in both excitatory inputs and intrinsic properties affect 

activity patterns in vivo. Calcium imaging in awake mice indicates that reward-predictive 

stimuli elicit stronger responses in striosomes than in matrix (Bloem et al., 2017; Yoshizawa 

et al., 2018). This difference might be explained by differences in intrinsic excitability, 

though contributions from glutamatergic and dopaminergic input remain to be examined.

Lastly, we provide evidence that striosome MSNs account for the majority of striatal 

inhibitory input onto SNc dopamine neurons. With the differences in cortical inputs 

described here, and the segregation of lateral connectivity between striosome and matrix 

populations shown previously (Kawaguchi et al., 1989; Banghart et al., 2015), these data 

support the long-standing hypothesis that striosome and matrix neurons constitute 

functionally distinct striatal pathways. However, how the activity of striosome neurons, or 

their inhibition of dopamine neurons, shapes behavior remains an open question. Recent 

calcium-imaging studies indicate that genetically defined striosome and matrix MSNs are 

activated by reward (Bloem et al., 2017; Yoshizawa et al., 2018), but striosome output to 

SNc dopamine neurons suggests that the response of striosome neurons may have distinct 

effects compared to matrix MSNs. This hypothesis is supported by recent studies showing 

that manipulations targeting striosome or matrix-biased cortical inputs bias decision-making 

in different ways (Friedman et al., 2015, 2017). Based on basal ganglia actor-critic models, 

striosome input may suppress reward-driven responses when rewards are expected (Brown et 

al., 1999).

Our finding that striosome activation is sufficient to alter spontaneous firing of SNc 

dopamine neurons suggests that striosome MSNs could fill such a role. Understanding how 

striosome inputs shape dopamine neuron activity in vivo may clarify the true functional role 

of striosome MSNs. Together, our results reestablish the striosome and matrix as 

functionally distinct striatal pathways and provide a new tool for investigating the role of 

striosomes in behavior.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Additional information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Alexandra Nelson (Alexandra.Nelson@ucsf.edu). This 

study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Prenatal and adult mice of either sex (age >6 weeks) from six different 

transgenic lines were used in this study. For histological experiments and identification of 

striosomes in slice, hemizygous hs599CrsER females (CD-1 IGS, Silberberg et al., 2016) 
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were crossed to homozygous Ai14 (C57BL/6, Madisen et al., 2010) male breeders, to yield 

experimental animals hemizygous for both Ai14 and hs599CreER. To identify indirect and 

direct pathway neurons within striosome and matrix compartments, homozygous Ai14 

(C57BL/6) and hemizygous D2-GFP mice (C57BL/6; Gong et al., 2003) were crossed, with 

male hemizygous offspring subsequently bred to hs599CreER (CD1) females. Experimental 

animals from this cross were hemizygous for D2-GFP, Ai14, and hs599CreER. Finally, 

expression of ChR2-eYFP in striosome or direct pathway neurons was produced by crossing 

homozygous Ai32 (C57/BL6, Madisen et al., 2012) males to either hemizygous hs599CreER 

or D1-Cre (C57BL/6, Gerfen et al., 2013) females, respectively, yielding mice hemizygous 

for Ai32 and D1-Cre or hs599CreER. All animals were housed 1-5 per cage and maintained 

on 12 hr light/dark cycle with food and water provided ad libitum. Experimental procedures 

were carried out with approval of the Institutional Animal Care and Use Committee at 

University of California, San Francisco and complied with local and national ethical and 

legal regulations regarding research using mice.

METHOD DETAILS

Genotyping of hs599CreER mice—For hs599CreER mice, tail biopsies were digested 

overnight at 55°C in 200 μL of buffer containing 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 2.5 

mM MgCl2-6H2O, 0.1 mg/mL gelatin, 0.45% IGEPAL CA-630 (by volume), 0.45% Tween 

20 (by volume), and 0.25 mg/mL proteinase K. Tails were then boiled for 10 min and spun 

down for 5 min at 2400 rpms. Next, supernatant (1 μL) was added to a mixture of dNTPs 

(2.5 μL), 10X LA PCR Buffer II (Mg2+ plus) (2.5 μL), dH20 (17.75 μL), forward primer (1 

μL, CACTACTGTTTCTAAGTGTTTCC), and reverse primer (1 μL, 

CAGCACAGGCTCAAAGTTGCC). PCR conditions were as follows: 93°C for 3 min, then 

hold at 82°C and 0.25 μL TaKaRa LA Taq added. Then, 35 cycles of 93°C for 30 s, 58°C for 

30 s, 65°C for 30 s. Products were held at 4°C, then run on a 1% agarose gel with SYBR 

Safe for 40 min at 110 V. Gels were imaged with UV light and presence of the transgene 

was indicated by a 398bp band.

Tamoxifen Administration—Activation of transgene expression in striosome neurons 

was achieved by orally gavaging female hs599CreER breeders with tamoxifen (125 mg/kg) 

dissolved in corn oil (20 mg/mL) on developmental day E10.5. Developmental time points 

were determined by checking mice each morning for vaginal plugs, with 12:00 pm set as 

E0.5 following plug detection.

Virus Injections—Anesthesia was induced with intraperitoneal injection of ketamine-

xylazine (15-30 mg), after which mice were placed in a stereotaxic frame (Kopf 

Instruments). Anesthesia was maintained with 1% isoflurane (inhaled) for the duration of the 

procedure. After opening the scalp, a mounted drill was used to make bilateral burr holes 

above either prelimbic (PL) or primary motor (M1) cortex. Next, 250 μL of AAV5-hSyn-

hChR2(H134R)-eYFP (UNC Vector Core) was delivered using a 33 gauge blunt needle and 

Micro4 pump (WPI) at 50 nL/min at the following coordinates relative to bregma and 

surface of the dura (in mm): PL, AP: +2.5 ML: ± 0.3 DV −1.0; M1, AP: +1.2 ML: ± 1.6 DV: 

−0.8. Ten minutes after completion of the injection, the needle was removed, the scalp 

sutured, and animals kept on a heating pad until awakening. Virus was allowed to express for 
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a minimum of 6 weeks prior to experimentation. Injection sites were confirmed following 

recordings using a Nikon 6D conventional wide-field microscope. Notably, in one animal 

injected with virus in M1, we observed a small amount of ChR2 expression in the most 

dorsal portion of striatum. Data from this animal was included, as all recorded cells were 

distant from the area of labeling, no intrinsic light responses were observed using 500 ms 

light pulses, and all GABAergic transmission was blocked using picrotoxin.

Histology—For histological characterization of striosome labeling in hs599CreER mice, 

animals were deeply anesthetized with ketamine-xylazine (100-200 mg, IP) and 

transcardially perfused with 4% paraformaldehyde in PBS. Following perfusion, brains were 

dissected, post-fixed for 3- 12 hr, and stored in 30% sucrose at 4°C. Embryonic brains were 

embedded in OCT (Tissue TEK) and sectioned onto slides using a cryostat at 20uM 

thickness. For immunostaining, embryonic tissue was washed 3 times in PBS with 0.2% 

Triton X-100 and blocked with with 10% normal goat serum, 0.2% gelatin and 2% non-fat 

milk in PBS with 0.2% Triton X-100. Postnatal brains were sliced into 35 μm coronal 

sections using a freezing microtome and kept in PBS. For staining of calbindin, NPY, and 

PV, sections were blocked in 3% normal donkey serum (NDS) and permeabilized using 

0.1% Triton X-100 for 2 hr on a shaker at 4°C. Primary antibody in 3% NDS was then added 

and sections incubated overnight at 4°C. Following 5 washes (10 min) with PBS, sections 

were incubated in 3% NDS with appropriate secondary antibody. Lastly, sections were 

washed 5 times with PBS and mounted in Vectashield Mounting Medium on glass slides for 

imaging. Immunohistochemistry for ChAT and MOR was performed with minor variations. 

Blocking serum for ChAT and MOR stains contained 5% NDS with 1.0% or 0.3% Triton-X, 

respectively. Additionally, primary antibody for MOR was incubated for 48 hr and washes 

were done using PBS with 0.3% Triton-X.

Primary and secondary antibodies used included: Rabbit anti-Calbindin (Swant, 1:2000), 

Rabbit anti-PV (Swant, 1:2000), Rabbit anti-NPY (Cell Signaling Technologies, 1:1000), 

Goat-anti ChAT (Millipore, 1:500), Mouse anti-NeuN (Millipore, 1:1000), Chicken anti-

GFP (Aves, 1:500), Chicken anti-GFP (Abcam 1:500), Rabbit anti-RFP (Living Colors 

1:1000), Rabbit anti-Ki67 (Abcam 1:300), Rabbit anti-PH3 (Millipore 1:300), Rabbit anti-

Nkx2.1 (Santa Cruz Biotechnology 1:500), Rabbit anti-MOR (Immunostar, 1:2000), Rabbit 

anti-TH (Pel-Freez, 1:1000), Alexa Fluor 568 donkey anti-rabbit (Life Technologies, 1:500), 

Alexa Fluor 647 donkey anti-mouse (Jackson ImmunoResearch, 1:500), Alexa Fluor 488 

donkey-anti rabbit (Jackson ImmunoResearch, 1:500), Alexa Fluor 647 donkey anti-rabbit 

(Jackson ImmunoResearch, 1:300), Alexa Fluor 488 goat anti-chicken (Molecular Probes 

1:300) and Alexa Fluor goat anti-rabbit Cy3 (Molecular Probes 1:300).

A Nikon 6D conventional wide-field microscope was used to take stitched multi-channel 

fluorescence images at 4-10x when imaging whole brain sections. To colocalize tdTomato 

expression with other neuronal markers, multi-channel Z stacks were taken at 40x using a 

Nikon Spinning Disk confocal microscope. Exposure times and laser intensity were matched 

between all images of the same type.

Slice Electrophysiology—Mice were deeply anesthetized with ketamine-xylazine 

(100-200 mg, IP) and perfused with a carbogenated, ice-cold glycerol-based artificial 
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cereberospinal fluid (ACSF) solution containing (in mM): 250 glycerol, 2.5 KCl, 1.2 

NaH2PO4, 10 HEPES, 21 NaHCO3, 5 D-glucose, 2 MgCl2, 2 CaCl2. Following 

decapitation, brains were dissected, mounted on a chuck, and submerged in ice-cold glycerol 

solution. A vibrating microtome (Leica) was used to cut sequential 275 μm coronal slices 

containing either the striatum or the midbrain, which were immediately transferred to warm 

(34°C), carbogenated ACSF containing (in mM): 125 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 

NaH2PO4, 12.5 D-glucose, 1 MgCl2, 2 CaCl2. Slices were incubated for 30-60 min, then 

kept at room temperature (~23°C) until use.

During all recordings, slices were superfused with carbogenated ACSF at 31-33°C. 

Differential interference contrast (DIC) optics on an Olympus BX 51 WIF microscope were 

used to target MSNs and midbrain neurons, which were patched in a whole-cell 

configuration using borosilicate glass electrodes (2-5 MΩ). To record excitatory synaptic 

currents from PL and M1 onto MSNs, we used a cesium methanesulfonate-based internal 

containing (in mM): 120 CsMeSO3,15 CsCl, 8 NaCl, 0.5 EGTA, 10 HEPES, pH = 7.3. 

Striosome and matrix MSNs within neighboring fields of view (~200 μm) were patched 

serially in a randomized order. Excitatory currents were optically evoked using 2 ms pulses 

of 473 nm light ranging in power from 0.5-10 mW and delivered by a TTL-controlled LED 

(Olympus) passed through a GFP filter (Chroma). Differences in intrinsic excitability 

between MSNs were measured using a potassium methanesulfonate-based internal 

containing (in mM): 130 KMeSO3,10 NaCl, 2 MgCl2, 0.16 CaCl2, 0.5 EGTA, 10 HEPES, 

pH = 7.3. To control for age-related changes in intrinsic excitability (Lieberman et al., 

2018), animals used for these experiments were all between 90-160 days old. Picrotoxin (50 

μM, Sigma Aldrich) was included in the ACSF for all intrastriatal experiments to block 

GABAA-mediated inhibition.

To record inhibitory synaptic currents in midbrain neurons, we used a cesium 

methanesulfonate-based internal with high chloride, which contained (in mM): 120 CsCl, 15 

CsMESO3, 8 NaCl, 0.5 EGTA, 10 HEPES, pH = 7.3. Inhibitory synaptic currents were 

evoked as described above. During a subset of whole-cell current clamp recordings, we 

examined if activation of striosome terminals was sufficient to inhibit spontaneous firing 

during cell-attached recordings. For these experiments, a potassium-based internal 

(described above) was used and 473 nm light delivered in 2 ms pulses at 20 Hz. Input 

resistance and holding current were measured continuously as proxies of recording stability.

All whole-cell recordings were conducted using a MultiClamp 700B amplifier (Molecular 

Devices) and digitized using an ITC-18 A/D board (HEKA). Igor Pro 6.0 software 

(Wavemetrics) and custom acquisition routines (mafPC, courtesy of M.A. Xu-Friedman). 

Both voltage clamp and current-clamp recordings were filtered at 5 kHz and digitized at 10 

kHz.

Post hoc Identification of Recorded Neurons—Biocytin (Sigma Aldrich) was 

included in internal recording solutions (5 mg/mL) for experiments comparing intrinsic 

excitability of MSNs and synaptic input onto SNc dopamine neurons. In the first experiment, 

tdTomato fluorescence in the emission range of GFP confounded online identification of 

direct and indirect pathway neurons within striosomes in some cases, necessitating post hoc 
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confirmation. Three steps were taken to address this issue. First, we showed that 90.2% of 

tdTomato+ MSNs belonged to the direct pathway, as described above (Figure 2K). Second, 

we used biocytin-fill, far-red staining for GFP, and confocal microscopy to identify recorded 

MSNs as direct or indirect pathway post hoc. Of all the striosome MSNs recovered, 100% 

(9/9) were identified as direct pathway, supporting the hypothesis recorded striosome MSNs 

were predominantly from the direct pathway. Finally, we compared the intrinsic excitability 

of identified direct pathway striosome MSNs to that of all recorded striosome MSNs and 

found no difference (Figure S3G). Therefore, data for striosome MSNs appeared 

representative of direct pathway MSNs.

For recording synaptic input to SNc dopamine neurons, biocytin was used to confirm 

midbrain neurons with compatible physiology as being Tyrosine-hydroxylase (TH)-

expressing SNc dopamine neurons. Recorded neurons were filled for a minimum of 15 

minutes before carefully detaching the recording pipette. Slices were then fixed with 4% 

PFA for 3-12 hr at 4°C and transferred to 30% sucrose in PBS. A sliding microtome was 

used to cut 55 μm subsections, which were stored in PBS until use. To identify D2-GFP in 

tdTomato+ cells, sections were stained with chicken anti-GFP (Aves, 1:500) and Alexa Fluor 

647 Donkey anti-chicken secondary antibody (1:500), as described for NPY, PV, and 

calbindin stains, with Triton X-100 replaced by 0.3% Tween20 (Chem-impex Inernational 

Inc.). Rabbit anti-TH (1:1000, Pel Freez) and Alexa Fluor 568 Donkey anti-rabbit secondary 

antibody (1:500) were used to identify dopamine neurons. Alexa Fluor 350 streptavidin 

(3:500) was included with the secondary antibody to visualize biocytin-filled neurons. 

Biocytin-filled cells were located using a Nikon 6D conventional wide-field microscope at 

4-10x and colocalization of fluorophores imaged using a Nikon Spinning Disk confocal 

microscope at 40x.

In addition to identifying dopamine neurons by post hoc staining for TH, a subset of SNc 

dopamine neurons were identified based on cell-attached waveforms, using criteria similar 

to that previously described (Chieng et al., 2011). Custom code in MATLAB was used to 

extract on-cell spikes based on current thresholds, which were manually determined for 

individual neurons. All waveforms were then manually confirmed to prevent contamination 

from potential artifacts. Following normalization of the peak-to-trough amplitude, 

normalized waveforms were averaged across each recorded neuron and the time from the 

peak to trough calculated. A threshold of 1 ms for peak-trough duration was selected for 

positive identification of dopamine neurons, as this effectively segregated biocytin-

confirmed SNc dopamine neurons from neighboring GABAergic neurons in the SNr.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics—All data are presented as the mean ± SEM, with N referring to the number of 

animals and n to the number of cells.

Histology and Cell Counting—Specificity and penetrance of striosome labeling in 

hs599CreER;Ai14 mice was determined using coronal sections from three points along the 

AP-axis (+0.5, +1.0, and +1.5 mm relative to Bregma) from each animal. Striosomes and 

neighboring matrix regions in the dorsal half of the striatum were identified by MOR 
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expression using a spinning disk confocal microscope, with the experimenter imaging 

blinded to tdTomato+ labeling pattern. After imaging tdTomato expression, the number of 

tdTomato+ cells were quantified manually with FIJI/ImageJ software by a rater blinded to 

compartmental origin. Density (Ai14+ cells/mm) in striosome and matrix were used as a 

measure of penetrance and specificity, respectively. For both measures, cell bodies within 

the subcallosal strip were excluded for analysis, though notably this region showed 

consistent MOR and tdTomato labeling across animals.

To quantify colocalization of tdTomato expression with interneuron markers (ChAT, PV, or 

NPY) or a marker of indirect pathway MSNs (D2-GFP), striosomes from three striatal 

sections along the AP-axis (+0.5, +1.0, and +1.5 relative to Bregma) were imaged in their 

entirety, and the number of GFP+ and tdTomato+ nuclei counted manually. The proportion of 

indirect pathway MSNs in histologically defined striosomes and matrix was quantified in 

D2-GFP mice using coronal striatal sections from five APs (+1.0, +0.5, 0, −0.5, and −1.0 

relative to Bregma). Striosome and matrix were identified by MOR expression, and the 

proportion of NeuN+ cells positive for GFP quantified manually. The Mouse Brain Atlas in 

Stereotaxic Coordinates (hard copy, 4th edition, by George Paxinos and Keither B.J 

Franklin) was consulted for anatomical reference.

Slice Electrophysiology—To characterize intrinsic excitability, custom code in Igor Pro 

(Wavemetrics) was used to extract the instantaneous firing rate for each current step, 

rheobase, maximum firing rate, and resting membrane potential. Input resistance was 

manually calculated using Ohm’s law (V = I*R) and the current transient induced by a −5 

mV step from −70 mV holding in voltage clamp. For all measures, significance was 

determined using a Kruskal-Wallis test with a Bonferroni correction applied to control for 

multiple comparisons. A Dunn’s post hoc test was applied to test for significance between 

individual groups. The positive and negative predictive values of various rheobase thresholds 

to identify striosome from matrix MSNs were calculated using the following equations: 

[positive predictive value = true positives / (true positives + false positives)], [negative 

predictive value = true negatives / (true negatives + false negatives)].

Average amplitudes of oEPSCs and oIPSCs were quantified manually in Igor. A Wilcoxon 

sign-rank test was used to compare oEPSC amplitude from M1 or PL onto striosome and 

matrix MSNs. For comparison of oIPSC amplitude onto midbrain neurons, we used a 

Wilcoxon rank-sum test. In all experiments involving optical stimulation, data was drawn 

from stimulations at ~3.5 mW light power.

To determine if the observed output of striosome and direct pathway matrix MSNs to SNr 

and SNc neurons differed statistically, 50% of oIPSC amplitudes from SNr and SNc neurons 

were randomly sampled with replacement 10,000 times for each genotype using custom 

MATLAB code (Mathworks). For each trial, the ratio of output (SNr:SNc) was calculated 

using the average oIPSC amplitude sampled from each cell type. Ratios were binned in units 

of 1 and the probability density distributions obtained by dividing the total number of counts 

in each bin by the total number of trials. A Kolmogorov–Smirnov test was used to test for 

differences between the probability distribution obtained from hs599CrsER;Ai32 and D1-

Cre;Ai32 mice.
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DATA AND CODE AVAILABILITY

Any data or code supporting the current study are available from the Lead Contact upon 

request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• hs599CreER mice enable labeling of direct pathway striosome MSNs

• Striosome and matrix MSNs receive biased input from prelimbic and primary 

motor cortex

• Striosome MSNs show higher intrinsic excitability than matrix MSNs

• Striosome MSNs are the predominant striatal population innervating SNc 

dopamine neurons
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Figure 1. Targeting of Early-Born Striatal Neurons Using hs599CreER Mice
(A) Schematic of striosome (purple) and matrix (orange) development and strategy for using 

tamoxifen to capture early born striatal neurons. CPu, caudoputamen (striatum); Ctx, cortex; 

LGE, lateral ganglionic eminence; LV, lateral ventricle; MGE, medial ganglionic eminence).

(B) tdTomato+ (magenta) and CreER-eGFP+ (green) cells at E12.5 (left), E15.5 (middle), 

and E18.5 (right) following E10.5 tamoxifen administration. Arrows indicate potential 

striosomes.

(C and D) Overlap of tdTomato+ and CreER-EGFP+ cells with progenitor cells marked by 

(C) Ki67 (blue) or (D) phospho-histone H3 (pH3, blue).
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(E) Sample coronal sections illustrating tdTomato-labeled structures in the adult brain (P30) 

following tamoxifen administration at E10.5. The anteroposterior distance from bregma (in 

mm) is noted in the lower right corner of each panel.

MOB, main olfactory bulb; M1, primary motorcortex; Pr, piriform cortex; CC, corpus 

callosum; acb, nucleus accumbens; str, striatum; BNST, bed nucleus of the stria terminalis; 

Rt, reticular thalamus, CeM, central amygdala; ZI, zona incerta; SNr, substantia nigra pars 

reticulata; SNc, substantia nigra pars compacta. Scale bars represent 0.5 μm (B and E) and 

50 μm (C and D). See also Figures S1 and S2.
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Figure 2. hs599CreER Mice Enable Targeting of Striosome MSNs
(A and B) Overlap of tdTomato+ cells (magenta) in striosomes (arrows) identified by (A) 

increased μ-opioid receptor (MOR; green) or (B) decreased calbindin (blue) staining.

(C and D) Example of high-magnification image used to quantify the density tdTomato+ 

cells in (C) striosome and (D) matrix compartments as identified by MOR staining.

(E–G) Overlap of tdTomato+ cells with interneurons (green), marked by staining for (E) 

choline acetyltransferase (ChAT), (F) parvalbumin (PV), and (G) neuropeptide Y (NPY).

(H)Example of overlap between tdTomato+ and D2-GFP+ cells.

(I)Quantification of tdTomato+ cell density in striosome and matrix.
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(J)Cell counts of tdTomato+ cells, interneurons, and double-labeled cells for ChAT, PV, and 

NPY.

(K)Percentage of matrix, striosome, and tdTomato+ cells that are D2-GFP+.

Scale bars represent 1.0 mm (A and B) and 20 μm (C–H). Data are displayed as mean ± 

SEM.
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Figure 3. Cortical Innervation and Intrinsic Excitability Differs between Striosome and Matrix 
MSNs
(A) Schematic of recording configuration (left) and examples of optically evoked excitatory 

post-synaptic currents (oEPSCs) from prelimbic (PL, top right) and primary motor (M1, 

bottom right) cortex in striosome (purple) and matrix neurons (orange).

(B) Left: amplitudes of oEPSCs from PL cortex in sequential pairs of striosome and matrix 

neurons. Right: bias of PL for striosome based on oEPSC amplitudes. Bar represents the 

average for all recorded pairs, while individual points represent the average calculated for 

individual animals. A value of 1 represents input exclusively to striosome neurons, while a 

value of 0 represents input exclusively to matrix neurons.

(C) Left: amplitudes of oEPSCs from M1 cortex in sequential pairs of striosome and matrix 

neurons. Right: bias of M1 input for matrix calculated as in (B).

(D) Schematic of excitability recording configuration.

(E) Responses of a direct pathway striosome (purple), direct pathway matrix (green), and 

indirect pathway matrix (red) to three example current injections.

(F–H) Current-frequency plot for (F) all striosome and matrix MSNs, (G) direct pathway 

striosome and matrix MSNs, and (H) direct pathway striosome and indirect pathway matrix 

MSNs.

Data are displayed as mean ± SEM. See also Figure S3.
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Figure 4. Striosome Output to Midbrain Neurons Is Distinct from Direct Pathway MSNs
(A) Schematic of recording configuration.

(B) Example optically evoked inhibitory currents (oIPSCs) in SNc dopamine (blue) and SNr 

(black) neurons from hs599CreER;Ai32 (left) and D1-Cre;Ai32 (right) mice.

(C) Effect of NBQX and APV or picrotoxin on oIPSCs in a SNc dopamine neuron from a 

hs599CreER;Ai32 mouse.

(D) oIPSC amplitudes in SNr dopamine neurons for striosome and direct pathway terminal 

stimulation.

(E) oIPSC amplitudes in SNc neurons for striosome and direct pathway terminal stimulation.

(F) Probability density plot of oIPSC amplitude ratios (SNc:SNr) obtained by bootstrapping 

data from hs599CreER (green) and D1-Cre (purple) mice.

(G) Configuration for cell-attached recording of SNc dopamine neurons with example trace.

(H) Top: raster of spontaneous SNc DA neuron firing (31 trials across 7 cells) with 

suppression by striosome terminal stimulation (blue bars). Bottom: firing rates over time 

(500-ms bins) for all dopamine neurons.

Data are displayed as the mean. See also Figure S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-TH Pel-Freez Biologicals Cat# P40101-150; RRID: AB_2617184

Goat anti-ChAT Millipore Cat# AB144P; RRID: AB_2079751

Rabbit anti-NPY Cell Signaling 
Technology

Cat# 11976; RRID: AB_2716286. Lot#1

Rabbit anti-PV Swant Cat# PV27; RRID: AB_2631173

Mouse anti-NeuN Millipore Cat# MAB377; RRID: AB_2298772

Chicken anti-GFP Aves Cat# GFP-1020; RRID: AB_2307313

Chicken anti-GFP Abcam Cat# ab13970; RRID: AB_300798

Rabbit anti-RFP Living Colors Cat# 632496; RRID: AB_10013483

Rabbit anti-Ki67 Abcam Cat# ab16667; RRID: AB_302459

Rabbit anti-PH3 Millipore Cat# 06_570; RRID: AB_310177

Rabbit anti-Nkx2.1 Santa Cruz 
Biotechnology

Cat# sc-13040; RRID: AB_793532

Rabbit anti-MOR Immunostar Cat# 24216; RRID: AB_572251

Rabbit anti-Calbindin D-28k Swant Cat# CB-38a; RRID:AB_10000340

Alexa Fluor 350- Streptavadin Invitrogen Cat# S11249; Lot #1856878

Alexa Fluor488- Donkey anti-Rabbit IgG Jackson 
ImmunoResarch

Cat# 711-546-152; RRID: AB_2340619

Alexa Fluor488- Donkey anti-Goat IgG Jackson 
ImmunoResarch

Cat# 705-545-147; RRID: AB_2336933

Alexa Fluor- Donkey anti-Goat IgG – Cy3 Jackson 
ImmunoResarch

Cat# 705-165-147; RRID: AB_2307351

Alexa Fluor488- Donkey anti-Chicken IgY (IgG) Jackson 
ImmunoResarch

Cat# 703-545-155; RRID: AB2340375

Alexa Fluor568- Donkey anti-Rabbit IgG Invitrogen Cat# A10042; RRID: AB_2534017

Alexa Fluor647- Donkey anti-Rabbit IgG Jackson 
ImmunoResarch

Cat# 711-606-152; RRID: AB_2340625

Alexa Fluor647- Donkey anti-Chicken IgY (IgG) Jackson 
ImmunoResarch

Cat# 703-606-155; RRID: AB_2340380

Bacterial and Virus Strains

rAAV5-hSyn-hChR2(H134R)-EYFP UNC Vector Core Lot AV4319I

Chemicals, Peptides, and Recombinant Proteins

Picrotoxin Sigma-Aldrich P1675

Lidocaine N-ethyl chloride Sigma-Aldrich L1663

Potassium methanesulfonate Sigma-Aldrich 83000

Cesium methanesulfonate Sigma-Aldrich C1426

Cesium Chloride Sigma-Aldrich C3139

Guanosine 5′-triphosphate sodium salt hydrate Sigma-Aldrich A9187

Adenosine 5′-triphosphate magnesium salt Sigma-Aldrich D3900

CNQX Tocris 1045

D-APV Tocris 0106

Corn Oil Fisher Scientific S25271
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REAGENT or RESOURCE SOURCE IDENTIFIER

Tamoxifen Sigma-Aldrich T5648

Proteinase K Promega V3021

TaKaRa LA Taq TaKaRa RR002M

IGEPAL CA-630 Sigma-Aldrich I3021

Tween20 Chem-Impex 
International

50-493-594

Triton X-100 Sigma-Aldrich T8787

Biocytin Sigma-Aldrich B4261

Vectashield Mounting Medium with DAPI Vector Laboratories H-1200

Tissue –Tek OCT Compund VWR 25608-930

Experimental Models: Organisms/Strains

Mouse: WT: Crl:CD1(ICR) Charles River RRID:IMSR_CRL:22

Mouse: STOCK Tg(Drd2-EGFP)S118Gsat/Mmnc Mus 
musculus

MMRRC RRID: MMRRC_000230-UNC

Mouse: B6.Cg-Gt(ROSA)26sortm14(CAG-tdTomato)Hze/J The Jackson Laboratory RRID: IMSR_JAX:007914

Mouse: Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze The Jackson Laboratory RRID:IMSR_JAX:012569

Mouse: B6.FVB(Cg)-Tg(Drd1cre)EY217Gsat/Mmucd MMRRC RRID: MMRRC_034258-UCD

Mouse: STOCK Tg(hs599-cre/ERT2,-GFP)119Jlr/Mmucd Laboratory of John 
Rubenstein

RRID:MMRRC_041445-UCD

Oligonucleotides

hs599CreER Forward PCR Primer: CACTACTGTTTCTAAG 
TGTTTCC

This paper N/A

hs599CreER Reverse PCR Primer: 
CAGCACAGGCTCAAAG TTGCC

This paper N/A

Software and Algorithms

Igor Pro Wavemetrics https://www.wavemetrics.com/products/igorpro/
igorpro.htm; RRID: SCR_000325

Axon MultiClamp Commander Software Axon http://mdc.custhelp.com/app/answers/detail/a_id/
18877/~/axon%E2%84%A2-multiclamp
%E2%84%A2-commander-software-download-page

MATLAB R2018a Mathworks https://www.mathworks.com/products/matlab.html; 
RRID: SCR_001622

Adobe Illustrator CS6 Adobe https://www.adobe.com/products/illustrator.html; 
RRID: SCR_014198

ImageJ NIH https://imagej.net/Welcome; RRID:SCR_003070

NIS-Elements Nikon https://www.microscope.healthcare.nikon.com/
products/software; RRID:SCR_014329

mafPC Xu-Friedman Lab https://www.xufriedman.org/mafpc;

Other

Single Channel Temperature Controller Warner Instruments TC-324C

MINIPULS 3 Peristaltic Pumps Gilson F155008

X-Cite 120LED Boost Excelitas 010-00326R

ITC-18 16-bit Multi-Channel Data Acquisition Interface Heka ITC-18

MultiClamp 700B Microelectrode Amplifier Molecular Devices Multiclamp 700b

Headstage CV-7B Molecular Devices Mo-1-CV-7B

Fixed Stage Microscope Olympus BX51WI
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