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Abstract: Air pollution in developing countries is a growing concern. It is associated with urbanization
and social and economic structures. The understanding of how social factors can influence the
perception and the potential impact of air pollution have not been addressed sufficiently. This paper
addresses the social vulnerability and exposure to PM10 association and its influence on the air quality
perception of residents in Mexicali, a Mexico–US border city. This study used individual variables
and population census data, as well as statistical and spatial analyses. A cluster of socially vulnerable
populations with high exposure to coarse particulate matter (PM10) was found in the city’s peripheral
areas. The spatial distribution of the local perception of air quality varied by the exposure zones
of the estimated PM10 concentrations. Respondents living in very high exposure areas perceive air
quality as “poor,” contrarily to a worse perception in areas of intermediate and lower exposure to
PM10. Proximity to stationary sources of pollution was associated with a poor perception of air
quality. Results also indicate that low household income and poor air quality perceived at the place of
residence negatively influences the perceived changes in the air quality over time. The knowledge of
chronic health effects related to air pollution was scarce in the sampled population, especially in the
areas with very high exposure and high social vulnerability. These findings can serve as a support in
local air quality management.

Keywords: air pollution; social vulnerability; PM10; perception; Mexicali; sustainable development

1. Introduction

1.1. Air Pollution in the Context of Sustainable Development

Air pollution is recognized as a threat to public health with significant social, economic and
material consequences [1]. Ambient air pollution, mainly due to fine particulate matter (PM2.5) has
been associated with three million deaths annually from no communicable diseases [2]. It mainly affects
the quality of life and the economy of people living in low-middle income countries [3,4]. This issue has
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an essential relationship with the Sustainable Development Goals (SDGs). In particular, air pollution is
linked to Goal 3 (good health and well-being), Goal 7 and 9 (clean energy, industry innovation and
infrastructure) and Goal 11 (sustainable cities and communities) [5]. It also contributes indirectly to
Goal 1, related to no poverty, building the resilience of people in vulnerable situations and reducing their
vulnerability to economic, social, and environmental impacts [6]. A representation of such relationships
is found in developing countries where the rapid urbanization process has led to a widening of
the economic inequalities, growth with disordered changes in land use, industrial expansion, and a
noticeable deterioration of the air quality [7–9]. High concentrations of particulate matter (PM10 and
PM2.5) remain a concern in low-and middle-income communities in several countries of Latin America
due to the existing levels exceeding the World Health Organization Air Quality Guidelines (an annual
mean of 20 µg/m3 for PM10 and 10 µg/m3 for PM2.5) [4,10]. The high levels of particulate matter in
Chile and the upper middle-income nations of Brazil and Mexico have been associated with an increase
in respiratory and cardiorespiratory morbi-mortality risk, where people living in lower socioeconomic
groups are at a higher risk [11–13]. There is evidence supporting the role of socioeconomic status as a
significant effect modifier of air pollution-related health outcomes in disadvantaged populations [14–16].
However, the evidence is still scarce in Latin American countries [17], and consequently, there is an even
a scarcer number of public policy initiatives [18]. Public policy programs to mitigate air pollution are
widely supported by the technical information of the sources, levels and health issues. Factors related
to social vulnerability (the capacity of individuals or communities exposed to environmental hazards to
resist, cope with, and recover from these hazards [19]) have received less attention. Social vulnerability is
a complex concept and involves socioeconomic status, demographic factors, perception, social networks,
access to infrastructure, and political power [20]. However, when addressing air pollution, it has been
overlooked, despite its relevance in sustainable development [21]. Policies to improve air quality
represent opportunities to advance in SDGs [22,23], especially if they integrate relationships between
social, economic and environmental factors. In this sense, effective policies to control air pollution
with a broader socioeconomic impact require the understanding of the factors that influence the
social vulnerability and the perception of air quality as evidence needed in the communication and
implementation of appropriated strategies [24].

1.2. Air Quality Perception

Air quality public perception is a relevant input for evidence-based decision making. It influences
the behavioral response to interventions and the choices that can lead to increasing or reducing
exposure to air pollutants [25,26], as well as to new technological developments and regulatory
strategies. Furthermore, public perception may be influenced by trust in institutions and socioeconomic
characteristics such as income, education and age, and by contextual factors such as proximity to fixed
sources of pollution or the presence of green areas in neighborhoods [27,28].

Studies conducted in Nanchang, Shanghai, and Wuhan (China) [24,29,30], southern Chilean
cities [31], Colombian cities [32] and Mexico City [33] have demonstrated the importance of such
socioeconomic and geographical factors in the decision making and implementation of air quality
control strategies. Despite these efforts, there is a gap in the knowledge of the relationships among
socioeconomic disparities, environmental degradation, and public perception [34]. This situation
requires addressing in order to support air quality policies in the context of sustainable development.
In this paper, we evaluated patterns of PM10 exposure levels, air quality perception, and social
vulnerability in Mexicali, a representative city of the social and environmental problems present
at the Mexico–US border region. Mexicali is a city affected by problems such as a marginalized
migrant population and low-income communities exposed to multiple risks related to water and air
pollution [35,36].

Explicitly, we modelled and characterized a city-wide exposure to PM10. PM10 concentrations
compromise the air quality in Mexicali city. In addition to its geological origin, PM10 levels also
reflect other persistent problems in the region. Local sources of PM10 relate to deficient urban
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solid waste management, agricultural waste burning, increased road traffic (abrasion, erosion,
and exhaust emissions), resuspension from unpaved streets, and emissions from maquiladoras [37,38].
We developed a socioeconomic index to evaluate the spatial patterns of social vulnerability related to
PM10 exposure, and we evaluated the association between the spatial distribution of the population’s
air quality perception and the estimated exposure. All these were to analyze the factors that influence
air quality perception using data from surveys and previous estimations of exposure and social
vulnerability. These analyses seek to provide policy-relevant evidence to local air quality management
in the context of sustainable development goals.

2. Methods

Exposure patterns to PM10 across the city were developed using 2015 PM10 data, a socioeconomic
index was built on 2010 Census data, and the air quality perception at the individual level in inhabitants
of Mexicali was approached by a survey performed in 2019. A detailed description of the methods is
found below.

2.1. Study Site

More than 15 million inhabitants live in the US–Mexico borderlands [39]. This region is affected by
poverty, marginalization, social inequities, and crucial environmental pollution issues [40]. In addition
to the natural characteristics of the region, such as aridity, high temperatures, and scarce precipitation,
the establishment of manufacturing and power-generating plants have brought consequences in
sustainable development [41]. On the one hand, the establishment of the maquiladoras has had a
positive impact as a substantial source of manufacturing jobs [42]; however, the weak environmental
regulations imposed on these maquiladoras have negatively impacted the quality of water, air,
and soil [43]. Mexicali is a remarkable example of this situation. The city is on the northern Mexican
border, adjacent to Imperial Valley, California (Figure 1). It has a population of 689,775 inhabitants [44],
dry weather and precipitation of around 75 mm/year [45]. One of its leading environmental problems
is air pollution [46]. It is ranked as the ninth most polluted place on the American continent due to the
high concentration of PM10 [4]. Within Mexico, it is the second city with the highest 24-hour average
PM10 concentration (274 µg/m3) just after Torreón city (276 µg/m3) [47].
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Binational programs have been established through the US–Mexico Border 2020 Program to
promote sustainable development in the border regions, including the Mexicali–Imperial Valley region.
One of the main objectives is to improve air quality. The programs have advanced in the establishment
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of guides and strengthening the installed technical capacity. However, agricultural and industrial
unsustainable practices, as well as natural sources (mainly erosion caused by wind) have contributed
to the deterioration of environmental conditions [48,49]. The study of the PM10 chemical composition
when the 24-hour average concentration exceeded 120 µg/m3 (national index) identified multiple
additional sources such as construction activities, burning of wood and household waste, unpaved
roads, and dust crushing due to traffic. Those sources share participation in the urban areas at the
Mexico–US border [50]. Local strategies to improve air quality in the city are addressed through
PROAIRE (“Programa para mejorar la calidad del aire”), which includes scientific and technical
information and a set of strategies to reduce the pollution from the identified sources. However,
social vulnerability and perception are factors that are not considered in-depth, even though air
pollution can disproportionately impact the communities of this area with high migration and poverty
rates [51]. Within this context, we explored the social vulnerability and public perception of air quality
as relevant factors in local air quality management.

2.2. Air Pollution Data and the Exposure Estimation Model

We worked with the concentrations of PM10 for 2015, since the data from previous years (2010 to
2015) were statistically insufficient (>25% missing), and in the subsequent years (2016 to 2019),
several monitoring stations were out of operation. Thus, the data from 2015 was the most consistent in
whole the 2010–2019 range. The data included measurements obtained at the monitoring stations of
the National Air Quality Information System (SINAICA) and provided by the Secretaría de Protección
al Ambiente, Baja California. We estimated the exposure levels using an interpolation inverse distance
weighting (IDW) model. The model used as a base the point data from the monitoring sites. To obtain
the possible values of exposure over the space between all the data points, and the visualization of
spatial patterns [52], we constructed circular buffers of 5 and 10 km radius. These centered at the
monitoring sites and measured the distance to the centroid of each basic geo-statistical area (AGEB by its
acronym in Spanish) (Figure S1 in Supplementary Material). AGEBs represent the minimal geographic
region where census data is accumulated and reported. The urban area of Mexicali city has 412 AGEBs.
Then, we weighted the 24 h average PM10 concentrations from monitors that had ≥75% of hourly
measurements. In a first interpolation, we assigned the daily AGEB PM10 concentration using the IDW
raised to the power value of two to those centroids that intersected within 5 km buffers. A second
interpolation used the centroids within 10 km buffer intersections for those AGEBs not included in
the first, and also raised to the power of two. As a third approach, the centroids outside any 10 km
buffer intersection received the PM10 concentration of the closest monitoring site. Lastly, for the AGEBs
outside the buffers, the IDW raised to the power value of 1 was used, taking as reference the 24 h
average concentrations of all the monitoring sites. Téllez-Rojo et al. [53] provided the procedure and
validation of this method. We created and used categories based on exceedance days for each AGEB in
the subsequent analysis. Exceeded days were those with PM10 concentrations above the WHO Air
Quality Guideline (AQG) mean value of 50 µg/m3 in 24 h. Exposure estimation was obtained for all
412 AGEBs. The analyses were performed using software R, version 3.5.2. (R Foundation for Statistical
Computing, Vienna, Austria).

2.3. Social Vulnerability Index

We analyzed social vulnerability through socioeconomic status (SES), based on the variables
reported in literature linking socioeconomic status and air pollution [15,54,55], as well as data
availability. We included variables such as education level, individual economic status (unemployed),
health insurance status, women head of household, and access to long lasting consumer goods at the
AGEB level from the more recent national population census [44]. The selected variables included
the dimension of susceptibility and adaptability, as described by Ge et al. [21]. We used principal
components analysis (PCA) to obtain an aggregated value for the range of considered variables.
Given that single variables may be autocorrelated, we used the PCA to reduce redundancies and



Int. J. Environ. Res. Public Health 2020, 17, 4616 5 of 22

dimensionality. We only included those variables with minimal missing values to minimize the potential
for clumping or truncation [56]. We retained the components whose percentage of variance was higher
than 10%. Additionally, we used the scree plot based on the eigenvalues proposed by Cattell (1966) [57]
(Figure S2 Supplementary Material). The Kaiser–Meyer–Olkin (KMO) index was used as a measure of
sampling adequacy (Table S1 Supplementary Material). The index resulting from the PCA analysis
was used as a categorical variable based on the standard deviation from the mean, allowing a better
visualization of AGEBs with extreme values of social vulnerability. The analysis was performed using
Stata version 11.2. (IBM, Armonk, NY, USA).

2.4. Spatial Analysis

To analyze the spatial association between PM10 exposure and social vulnerability, we used the
local bi-variate spatial auto-correlation through Moran’s Index. This indicator quantifies the spatial
association between these two variables, the identification of spatial clusters, and their statistical
significance [58]. We selected the first order “Queen” spatial weight matrix; this measure of contiguity
is based on spatial units that share boundaries and vertices. The variables used to obtain the SES index
were not available for the 412 AGEBs; thus, the Queen’s measure was more appropriate. We carried
out this spatial analysis using the Geoda 1.12 software (free and open source software) [59].

2.5. Data Collection and Statistical Models of Individual Socioeconomic Characteristics and Air Quality Perception

2.5.1. Data Collection from the Survey

We conducted a survey to capture additional individual socioeconomic characteristics and the
perception of the air quality among the inhabitants of Mexicali. The survey was part of a contingent
valuation study to assess the socioeconomic, perception, and health concerns as potential determinants
towards a program of urban afforestation to improve air quality [60]. The questionnaires were applied,
face to face, in open spaces (streets, commercial establishments, parks, supermarkets) in January 2019.
Pedestrians were randomly selected, and the survey was applied to individuals over 18 years of age
and that provided consent. The questions sought to gather quantitative and qualitative information.
The items first addressed the demographic and socioeconomic attributes (age, sex, education level,
average household income, health insurance, ownership) and the place of residence (street, postal code,
and neighborhood) of the respondents. Moreover, the individuals were asked about their concerns
for air quality, capturing their perceptions at the local and city level. We used a Likert scale with
the categories of very good, good, regular, poor, and very poor air quality. We also explored their
perceptions of air quality changes in the last few years (during 2015–2019), presenting them with three
scenarios: do you think the air quality in Mexicali has improved; remains unchanged; or worsened?
In a third section, we explored another essential aspect, their knowledge about the health effects related
to air pollution and pollution sources. We also asked if at least one of the household members presented
frequent respiratory symptoms. Two hundred and seventy surveys were applied (sample size has an
error type I of 5%). Two inclusion criteria were applied to this sample to select the surveys included
in the analysis. First, the respondents must be people with more than four years living in Mexicali,
and they must provide some reference for their place of residence. We considered this inclusion
criterion essential so that the respondents could provide us with information on the changes observed
in recent years. One hundred and ninety-nine surveys were retained. The information about their
place of residence allowed us to assign the perception responses to a specific AGEB when the reference
was within the polygon. To assess the potential association between air pollution perception and the
presence of stationary sources of pollution, we first geocoded the medium-large industries with more
than 30 employees and were registered in the National Statistical Directory of Economic Units [61].
We constructed 1.6 km radius buffers centered at the respondent’s place of residence and counted the
number of industries within each buffer. The used distance is frequently employed in environmental
hazard assessments [62,63]. The assessment of the spatial association between perception and the
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presence of stationary sources of pollution also used the Queen spatial weight matrix and Moran’s
Index. Figure S3 (Supplementary Material) present the buffers used to assess the spatial association
between the number of nearby industries and air quality perception.

2.5.2. Statistical Analysis

To identify the association between the estimated variables of exposure and social vulnerability,
with the perception of air quality, we used the three categories of the question about the changes
perceived in air quality over time (during 2015–2019) as the dependent variable. An ordinal logistic
regression model was employed to determine the factors that influenced the perceived changes in
the air quality at the individual and neighborhood level. This model is especially relevant when the
dependent variable is ordered, in this case:

y =


1 improved

2 unchanged
3 worsend

(1)

The selection of the included independent variables was based on previous studies [64–67] and the
Kruskal–Wallis H test [68]. The test was used to determine if the dependent variable differs significantly
between each group of the independent variables (Table S2, Supplementary Material). The model was
as follows:

pi j = Pr
(
y j = i

)
= Pr

(
µ1 < x jβ+ u + µ2

)
= 1

1+exp(−µ2+x jβ)
−

1
1+exp(−µ1+x jβ)

(2)

where pi j is the change perceived by the individual j, i corresponds to the ordered categories (“improved,”
“unchanged,” “worsened”), x j are the independent variables, β are the estimated coefficients, µ1 and µ2

are the thresholds, which divide the ranges of possible values for the dependent variable, for instance,
µ1 is the estimated threshold on the ordered variable used to differentiate the “improved” category
from the “unchanged” and “worsened” categories when the values of the independent variables were
assessed at zero, µ2, is the estimated threshold used to differentiate “improved and “unchanged”
categories from “worsened” when the independent variables are evaluated at zero, and u is the error
term. The model assumes that the three choices follow the same distribution. Thus, the effects of the
independent variables are constant across the choices. This assumption is the well known parallel
regression assumption for the proportional odds ratio [69,70] and it was proven in our estimations.

3. Results

3.1. Estimation and Spatial Distribution of PM10 Exposure

The average days with exceedances of the AQG established by the WHO in the AGEBs studied
was 60%. Twenty-one days represented the minimum days with exceedances, and 44 days was
the maximum. They correspond to 42% and 88% of the days with valid measurements for 2015.
The estimated annual median concentration was 77.35 µg/m3, the minimum was 59.32 µg/m3, and the
maximum was 101.93 µg/m3. Figure 2 presents the spatial distribution of exposure based on the
exceedance days at the AGEBs level. These results show that high concentrations of PM10 regularly
impacted the general population of Mexicali. AGEBs with higher PM10 exposure were located mainly in
the West and Southeast regions of the city. These peripheral areas are close to agricultural activities and
industrial zones (electric power generation, metallic and nonmetallic mineral products manufacturing,
meat processing, and conservation).
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3.2. Estimation of Social Vulnerability

An initial set of 13 variables from the 2010 Census, including economic, social, and material
conditions, were selected, based on the least number of missing values, higher variance, and significance,
according to a literature review. The PCA only included six variables (Table 1). This set of variables
showed good sampling adequacy (KMO: 0.85).

Table 1. Description of the socioeconomic variables included in the principal component analysis.

Variables 1 N Mean Std. Dev. Min Max

Population without post-basic education 2 370 687.43 540.49 1 4290
Population without employment 3 357 42.11 30.69 0 168

Population without health insurance (public/private) 370 458.70 301.12 0 1503
Number of households headed by women 370 149.54 100.19 0 470

Number of people per room (overcrowding proxy) 370 3.43 0.51 2 4
Household without a car 370 136.46 115.07 0 750

1 The variables are based on metadata defined by National Institute of Statistic, Geography and Informatics (INEGI),
2010 Census [44]. 2 People more than 18 years old without post-basic education (bachelor’s degree, master or
doctoral studies, complete or incomplete grades). 3 People over 12 years old who did not had job, but they looked
for a job in the reference week of the census.

We assigned these variables as proportions to each AGEB before the PCA, due to differences in the
population size among AGEBs. Two components with an accumulated variance of 84% were extracted.
The first component combined the variables related to social (education, access to health services),
and material factors (access to long-lasting consumer goods). Component 2 gave higher weight to
financial conditions (unemployment, female-headed households, and overcrowding). Figure 3 shows
the correlation of the variables included in the analysis to each one of the selected components.
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3.3. Spatial Distribution of Social Vulnerability and Autocorrelation with Estimated Exposure to PM10

The PCA identified two principal components, Component 1, which includes the variables
associated with the susceptibility and adaptive capacity. It also has the statistical power to serve as the
SES index used in this study. Figure 4 represents the spatial distribution of the SES index in Mexicali,
showing social vulnerability polarization. We identified the hot spots of AGEBs with high social
vulnerability and with high levels of PM10. The AGEBs with high SES are located in the Northeast
region of the city, whereas a higher number of AGEBs with lower SES are located in the Northwest
region (Figure 4a). Significant spatial clusters (hotspots) of a socially vulnerable population (Figure 4b)
were mainly located in the Northwest and Southeast regions of the city. The distribution from the
bivariate local Moran’s Index showed significant spatial clusters of higher vulnerability where higher
levels of PM10 existed (Figure 4c). Results of the global Moran’s Index were statistically significant
(z-score: 18.09 and p-value: 0.001). They confirmed that the spatial distribution of high–high follows
specific clustering patterns that included 57 AGEBs in the Northwest region of Mexicali. We identified
another relevant cluster (five AGEBs) located in the Southeast region with a high level of social
vulnerability and an intermediate level of exposure to PM10.
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3.4. Descriptive Statistics and Spatial Distribution of Air Quality Perception

3.4.1. Description of Individual Responses by Air Quality Perceived

We assessed how the perception of the air quality (city-wide and at the place of residence) diverged
by socioeconomic attributes, health status, knowledge of health effects, pollution sources, and the
changes perceived in the last four years. Throughout the city, the current air quality was perceived as
“regular,” by 32% of the respondents, whereas 46% perceived it as “poor,” and 22% perceived it as
“very poor” More than 76% of the respondents perceived that the air quality worsened, whilst 17%
considered no change, and 7% perceived that the air quality had improved. We found less consensus
at the local level, and some residents even perceived good air quality (around 8%). When the survey
was conducted in January 2019, the average concentration of PM10 was 87.5 µg/m3, and the average
annual concentration for that year was 76.75 µg/m3, a very close value to the estimated value for 2015.
However, we did not use data from 2019, since only one station in the center of the city was monitoring
PM10. The responses obtained from 199 individuals are in Figure 5. Most respondents were in an age
range between 18 and 31 years (31%), and the majority were women (63%) (Figure 5a,b). The highest
percentage reported a monthly household income that was less than the II decile of the average
nationwide household income [71]. Among the different income levels, the most common perception of
air quality was regular or poor, with a perception that it became worse in recent years. The perception
of regular or poor air quality had a similar distribution among age groups, while the perception
of improved air quality predominated in the young population and women. Similar perceptions
occurred at different education levels with a noticeable higher perception of inferior air quality in
those individuals with higher education levels (Figure 5c,d). Concerning the way respondents learned
about air quality, many of them (60%) reported media such as the Internet, followed by newspapers
and TV. A considerable percentage reported only relying on their senses (odors and poor visibility)
(40%). This distribution was the same among those who perceived regular or poor air quality. In the
case of perceived improvements over time, a higher proportion of respondents learned from the
media (Figure 5e). Fifty-six percent of the respondents pointed to stationary sources (manufacturing
and generating plants) as the primary sources of air pollution; 23% considered mobile sources;
18% identified area sources (burning of household waste, burning grassland, and unpaved roads);
and 3% of respondents considered natural sources such as dust storms (Figure 5f). This distribution
did not change in the different air quality categories. However, when exploring the participating
sources related to improved air quality over time, a higher proportion of participants identified mobile
sources. When inquiring about health concerns and air pollution, 86% mentioned respiratory illness
(cough, cold, asthma, allergies), and 14% associated air pollution with chronic diseases, neurological
or metabolic conditions. Frequent respiratory symptoms in at least one member in the household



Int. J. Environ. Res. Public Health 2020, 17, 4616 10 of 22

was answered by 55% of the respondents (Figure 5g,h). The highest percentage of individuals that
perceived air quality worsening over time also reported an association between severe health effects
and frequent respiratory symptoms with air pollution. We present the frequencies and percentages
associated with each category of perceived air quality at the local level and perceived changes over
time in Table S3 of the Supplementary Material.
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Figure 5. Distribution of perceived air quality at the local level and the perceived changes in the air
quality over time by (a) age range; (b) sex; (c) education level; (d) average monthly household income
(2019 USD); (e) sources to check air quality; (f) the presence of frequent respiratory symptoms in at least
one household member; (g) knowledge of the diseases related to air pollution (respiratory or other such
as chronic diseases, cancer, neurological and metabolic diseases); and (h) the type of pollution sources
perceived as more polluting. The colors are related to the number of categories in the first column of
each figure. The numbers located next to the first column correspond to the associated percentages of
air quality perception at the local level within each category of the first column.

The perceptions of air quality according to the estimated levels of PM10 indicated that those
respondents in the higher PM10 exposure regions perceived, in higher proportions, that the air quality
was “poor” or “regular.” In moderately exposed areas, slightly higher proportions perceived the air
quality as very poor, and even a small fraction considered it “good.” In general, we identified a limited
knowledge of air pollution-related health effects, other than respiratory conditions. A lower proportion
of knowledgeable individuals existed in areas of very high exposure. Regarding pollution sources,
the stationary sources were the most frequently reported in high exposure areas. Area sources such as
agricultural areas, trash burning, and fireworks, particularly in the winter, were frequently identified
in those areas with moderate exposure. Figure 6 presents the proportions of responses related to air
quality perception, air pollution sources, and the knowledge of air pollution-related health effects in
each one of the estimated categories of exposure.



Int. J. Environ. Res. Public Health 2020, 17, 4616 12 of 22
Int. J. Environ. Res. Public Health 2020, 17, 4616 12 of 22 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Responses to the perception of air quality by the estimated categories of exposure to PM10. 
(a) Fractions of the perceived changes in the air quality on time (last four years); (b) fractions of the 
perceived air quality at a local level; (c) fraction of the responses about the knowledge of health effects 
related to air pollution; and (d) fractions of the perceived primary sources of air pollution. 

3.4.2. Spatial Distribution of Air Quality Perception, Estimated Exposure to PM10 and Stationary 
Sources of Pollution. 

The geographic distribution of the responses related to perceived air pollution, estimated 
categories of exposure, and the location of stationary sources of pollution are presented in Figure 7. 
The perception responses do not show apparent differences among the estimated categories of PM10 
exposure. A global Moran’s Index for spatial autocorrelation between these two variables does not 
show a significant association (I: −0.0172, z-score: −0.249, and p-value: 0.39). The perception of good 
air quality was infrequent across the exposure zones. In extremely high exposure zones, we did not 
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Figure 6. Responses to the perception of air quality by the estimated categories of exposure to PM10.
(a) Fractions of the perceived changes in the air quality on time (last four years); (b) fractions of the
perceived air quality at a local level; (c) fraction of the responses about the knowledge of health effects
related to air pollution; and (d) fractions of the perceived primary sources of air pollution.

3.4.2. Spatial Distribution of Air Quality Perception, Estimated Exposure to PM10 and Stationary
Sources of Pollution

The geographic distribution of the responses related to perceived air pollution, estimated categories
of exposure, and the location of stationary sources of pollution are presented in Figure 7. The perception
responses do not show apparent differences among the estimated categories of PM10 exposure. A global
Moran’s Index for spatial autocorrelation between these two variables does not show a significant
association (I: −0.0172, z-score: −0.249, and p-value: 0.39). The perception of good air quality was
infrequent across the exposure zones. In extremely high exposure zones, we did not find responses of
perceived good air quality. However, in the same areas, the perception of very poor air quality was less
frequent than the perception categories of “poor” or “regular” air quality. A similar tendency regarding
a frequent perception of intermediate categories “regular” and “poor” persists in the remaining
exposure level areas. The percentages of responses by the estimated categories of exposure are in
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Figure S4 (Supplementary Material). Additionally, the geographic distribution of the responses of
perceived changes in air quality over time showed a consensus on the perception that the air quality
has “worsened” throughout the city (Figure S5, Supplementary Material). Regarding the location of
stationary sources of pollution, they are predominantly located at the periphery of the city, mainly in
the Southeast region. The western region, which was estimated with high exposure to PM10, has electric
power generation industries, meat products industries, and metal product manufacturing, which were
perceived as very polluting by the residents of these areas. The distribution of responses shows that
the proximity to industries was linked to a perception of “very poor” air quality in areas with lower
occurrences of PM10 exceeding days. The Moran’s Index identified a small cluster where the perception
of poor air quality was associated with the high presence of industries near to the respondent’s
residence in Southeast Mexicali (I: −0.144, p-value: 0.013) (Figure S6, supplementary material).
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(PM10 concentration from the data of monitoring sites from 2015); localized industries correspond to
those with more than 30 employees, and that belong to subsectors 221, 311–313, 321–327, 331–336 and
339 according to the North American Industry Classification System.

3.5. Statistical Model for the Association between Perceived Air Quality, Socioeconomic Attributes,
and Estimated Exposure to PM10

Results of the Kruskal–Wallis H test showed significant differences between the categories of
average monthly household income and the perceived changes in the air quality of the city. We included
the results of the estimated exposure areas at the AGEBs level and the knowledge of health effects
related to air pollution in the ordered logistic model as confounding variables based on previous
studies [29,65,66]. The estimated coefficients are in Table 2. Results show that income and air quality
perception in the place of residence have a significant effect on the perceived air quality changes over
time in Mexicali. Respondents who reported low household income had lower odds of perceiving
that the air pollution has improved versus the perception of “unchanged” or “worsened” air quality.
Respondents who reported that there is “regular poor air quality” in their neighborhood are not likely
to report that the air quality has improved in the city. Categories of estimated exposure and social
vulnerability included at the AGEBs level did not have a significant effect on the perceived changes.
The knowledge on the severity of the health effects related to air pollution does not significantly
influence the perception. The small number of respondents who know about the severe health effects
may have influenced the coefficients obtained.
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Table 2. Estimates for the perceived changes in air quality (worsened, unchanged, improved) on time.

Variable Description Odds Ratio 95% CI

Average monthly household income
(2019 USD) 1

<US $354.9 (Ref)

From US $354.9 to US $605.4 0.36 ** [0.15–0.90]

From US $605.4 to US $1352 0.30 ** [0.11–0.86]

From US $1352 to US $1825 0.42 [0.08–2.20]

>US $1825 0.48 [0.11–2.02]

Knowledge of health effects related to air
pollution 2

No (Ref)

Yes 0.51 [0.13–1.96]

Perception of air quality in the location of the
individual’s residence 3

Good (Ref)

Regular 0.41 [0.14–1.21]

Poor 0.21 *** [0.07–0.69]

Very poor 0.32 * [0.08–1.21]

Exposure areas by exceedance days of PM10
concentrations 4

Moderate (Ref)

High 1.22 [0.44–3.39]

Very high 1.27 [0.43–3.78]

Extremely high 1.58 [0.42–5.91]

Social vulnerability (categories by SES index) 5
Medium-high SES index (Ref)

Low SES index 0.58 [0.24–1.38]

N = 199 Log-likelihood = −127.54

Equality coefficient test through the response Chi2(12) = 2.37
Categories 6 Pseudo R2 = 0.78

1 The exchange rate for when the survey was conducted was 1USD = 19.16 Mexican pesos. World Bank’s collection
of development indicators [72]; 2 “Yes” if the respondents relate chronic diseases such as cancer, neurological or
metabolic diseases with air pollution. 3 The place of residence was assigned based on the reference streets or
ZIP code. 4 The categories of days with exceedances are based on the WHO guideline (50 µg/m3). 5 The social
vulnerability was categorized as very high when the socioeconomic status (SES) index was less than or equal to
the 75th centile. 6 The result indicates that the proportional odds assumption was not violated. *** for p < 0.001,
** p < 0.05, * p < 0.01.

Demographic variables such as age, sex, and education level did not have a significant effect on the
perceived changes through the ordinal logistic regression model (Table S4, Supplementary Material).

4. Discussion

4.1. Linking Air Pollution and Social Vulnerability

In this analysis, we assessed social vulnerability, the estimated exposure to PM10, measured the
public perception of air quality, and evaluated the spatial distribution and the relationships among
them. We focused on the importance of the evidence of these links when considering air quality
management in the context of sustainable development goals. The estimated PM10 levels suggested
a high exposure to PM10 across the city. We found spatial patterns of higher exposure in AGEBs
located in the periphery of the city, specifically in the Northwest and Southeast areas. These areas
are near to the sources of PM10 emissions and adjacent to agricultural areas, areas with reduced
vegetation cover, unpaved roads, and affected by the periodic burning of waste and frequent dust
storms [73]. Industry and geothermal plants are contributing to deteriorating the air quality in these
areas [74]. When assessing social vulnerability, we found clusters of AGEBs with lower SES located in
the same peripheral areas. The SES index indicates that a higher amount of people without post-basic
education, with unemployment, and no health insurance reside mainly in the Northwest area, near the
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Mexico–USA border, and South of Mexicali, where socio-spatial environmental and health inequalities
have been reported [36,75,76].

In those peripheral regions, we found clusters (hot spots) of significant spatial autocorrelation
between high social vulnerability and high exposure to PM10. Therefore, people in these areas
have reduced adaptive capacity and have a higher susceptibility to face the risks associated with air
pollution [21]; for instance, people with low education levels often access lower-wage jobs. Additionally,
in poor working conditions, low-income individuals are often unable to locate homes in places with
better environmental conditions or to cover expenses to protect themselves. In Mexico, the “Agenda
2030” for sustainable development [77], particularly Goal 11, proposed that all the public policies require
the consideration of the vulnerability to climatic change, especially in disadvantaged populations.
However, until now, public policies attending the social vulnerability to the risk associated with air
pollution, have not received enough impulse. Evidence of the relationship between socioeconomic
drivers and particulate matter pollution comes from other developing countries [78,79]. In those
studies, they found relevant links with land use, infrastructure, and energy consumption, that if
contemplated, could result in effective policies to reduce socioeconomic disparities [80]. Concerning
PM10 exposure in Mexicali, we found that the socially deprived population was highly exposed.
Urban development programs have been insufficient to reduce potential PM10 sources such as unpaved
streets or unsustainable agricultural practices. Therefore, the results suggest that it is necessary to align
the strategies in the PM10 pollution control in Mexicali, as well as urban planning, with social factors
in order to promote sustainable development in this region.

4.2. The Association of Air Pollution, Socioeconomic Attributes and Air Quality Perception

The spatial distribution of the answers shows that the overall perception is not associated with
the modeled exposure to PM10. Strong association occurred only in areas with very high exposure.
In those areas, air quality perception relies on the individual senses (odors and the visible manifestation
of smog and dust). In agreement with previous studies [27,81], we found that perceived changes in
air quality occur in areas where people are exposed to the visible manifestation of pollution, such as
extremely high concentrations of PM10. For instance, a previous analysis of the spatial dimension of
environmental and social hazards related to the public perception in Mexicali, Ley-García et al. [82]
showed that only 23% of their sample showed congruence between exposure and perception. In those
instances, where the perception was higher than the exposure, the proximity to potential sources of
pollution played a role. We identified this issue in areas with moderate exposure to PM10, where some
respondents reported very poor air quality when industries were in the proximity. On the other
hand, the sense of attenuation mentioned in [82] is manifested here as well, since only 14% of the
respondents living in extremely high exposure areas perceived very poor air quality. This sense of
attenuation, in some cases, is related to the order of priorities that people have. Especially in border
cities, the violence associated with drugs, immigration, economic and health disparities is part of them.
In a similar manner, Mexicali’s industrial growth as a result of a considerable number of manufacturing
industries attracted by incentives like cheap labor and the access to a local source of electricity is
perceived by the residents as a critical factor of risk. Most of these industries, the settlements where
people belonging to lower SES, and air pollutants represent an environmental hazard are concentrated
in the peripheral areas of the city. Air quality perception in those areas has an essential role in engaging
self-protect actions as well as promoting collective actions to improve environmental conditions.

Our findings from the statistical analysis of low-income level affecting pollution perception
(including variables at the individual and community level), agreed with recent studies conducted in
the United States, South Korea, and China [29,66]. In our case, when people perceived the surroundings
as polluted, they were less likely to consider that the overall air quality in the city improved. The other
studies [29,66] reported a similar tendency; lower-income inhabitants had higher odds of considering
that the air quality had not improved. These findings also agree with the ones by Schmitz et al. [66],
indicating that the concern for pollution, in immediate surroundings, negatively influences the
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perception of air quality at the city level. Other authors [29,65] postulated that when studying the
built environment, individual-level socioeconomic factors are more affordable predictors of air quality
perception than objective measurements from monitoring stations. Usually, air quality data is not widely
disseminated, and it is not straightforward to interpret [83]. In this regard, the sensitization to engage
the population around air pollution problems is necessary to promote behavioral changes towards the
air quality control strategies and the self-protection attitudes [34]. Knowledge about the long-term risk
of exposure to air pollutants can influence behavioral changes [84]. We found a lack of knowledge about
the impact of air pollution on health. Only 7% of the respondents in areas of extremely high exposure
were aware of the severity of health effects related to air pollution, particularly in low socioeconomic
groups. The knowledge about respiratory diseases, reported by most respondents, is limited to asthma,
allergies, cough, and the flu. Other diseases, such as pulmonary cancer and cognitive effects, were not
recognized by the respondents. Although existing knowledge of health effects and self-reported
diseases related to air pollution have shown a significant association with perceived air quality [63,66],
in our study, no statistical significance was obtained. Similar results to ours were obtained in a study
conducted in Seoul with a larger sample [29]. A possible reason for this difference is that the population
with high social vulnerability and a very high exposure to PM10 may be affected by other social problems,
limiting their attention to environmental risks such as air pollution [27,80]. Therefore, beyond generating
data, governments should provide appropriate communication channels and prioritize actions in the
disadvantaged population. Some strategies involve providing understandable information. This goal
can be accomplished through media, interventions based on volunteer monitoring and participation
with observations, implementing workshops, and using low-cost air quality sensors in low-SES areas.
Actions like sustainable agricultural practices, modernizing the supply of conventional energy to clean
energy sources, and promoting the planting trees could contribute to increase the wellbeing of this
population. Moreover, local governments need to promote source-oriented actions that reduce the
emissions of particulate matter from an inclusive perspective. For instance, it is necessary to guarantee
the paving of streets in neighborhoods on the periphery where the population is most exposed and
lacks the economic resources to do so in a particular way. In Mexico, unpaved streets continue to
be a challenge in urban planning; local governments have limited budgets in this area. Hence, it is
necessary to show the importance of this issue in cities like Mexicali, which has social, health and
mobility implications and the need for prioritized actions.

The objective is to generate an understanding in the population and local officer managers, with a
sense of inclusion.

4.3. Limitations

Our study’s limitations are related to the temporary differences among the air quality data obtained
for 2015 and the socioeconomic variables from the 2010 Census. These differences may be biased since
we used retrospective social vulnerability data; it is not possible to ensure that the individuals remained
in the specified AGEBs for the year the exposure was estimated. However, we chose information from
2015 to achieve a higher statistical sufficiency in the air quality records and recent information on
socioeconomic characteristics at the AGEB level.

These temporal differences also were also a limitation in the information at the individual level;
however, in 2019, only one monitoring site was regularly measuring PM10; therefore, it was not
possible to estimate exposure at the AGEB level in areas with no functioning monitoring stations.
The estimated average annual concentration for 2019 was similar to the one obtained for 2015. In this
sense, we considered, as selection criteria, to retain the information, only residents with more than
four years living in Mexicali. Although the air quality perception may not adequately reflect the
tendencies in air quality if the changes are small, concerning PM10, considerable changes may be more
noticeable through the senses. Another limitation is related to the small sample size, which may result
in un-coverage bias. However, a good spatial coverage was achieved. The sample corresponds to
people who visit open spaces with more frequency, and only cover urban areas (see Table S5 in the
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Supplementary Material to compare population characteristics with the Census data). In this sense,
further studies could consider a house-by-house survey.

Despite the technical limitations regarding the availability and coverage of air quality data,
our study has an essential contribution in the scarce evidence about the linkages between air pollution,
socioeconomic status, and air quality perception in Latin American countries. The findings can serve
as a base for further research. Besides, our effort to obtain information in addition to requests from
other researchers can put pressure on the consistent generation of data on air quality.

5. Conclusions

The results of this study show the existence of spatial patterns of the socially vulnerable population
significantly associated with high exposure to PM10 in Mexicali. Spatial distribution and statistical
analysis indicate that air quality perception at a local level is affecting the lack of perception in air
quality changes over time. Considerable agreement between the perception and data from monitoring
stations occurred in the areas with a higher exposure to PM10; in many cases, the perception of
poor or very poor air quality was related to nearby industries. The estimates of PM10 exposure and
socioeconomic characteristics aggregated at the AGEBs level do not influence the perception in air
pollution changes over time. Individual socioeconomic factors such as income have a relevant adverse
effect on perceived changes. The knowledge of health effects related to air pollution is scarce in the city,
and is not significantly linked to the level of air quality perception. Clusters of the socially vulnerable
population living in areas of high exposure to PM10 are mostly unaware of the severe health effects
associated with air pollution. Therefore, more attention should be directed towards these areas, both in
the control of PM10-emitting sources and social programs to improve the resilience and adaptive
capacity of the residents. Additionally, there is a need for a local risk communication strategy related
to the concentrations and the health effects in this part of the city.

The findings of our research contribute to broadening the knowledge about the social factors that
affect the exposure and perception of air quality in developing countries. These results may serve as
evidence for policymakers to conduct air pollution abatement policies, not only based on technical
information but also focused on socioeconomic and cultural factors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/13/4616/s1,
Figure S1: Geographic location of monitoring stations, centroids of each AGEB and buffers used for the IDW
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place of residence. The number of industries within each buffer was calculated. We use the “queen” proximity
matrix, Figure S4: Responses of perceived air quality by exposure areas, Figure S5: Perceived changes on air
quality in the last four years in Mexicali. Survey 2019, Figure S6: Bivariate local Moran’s Index for spatial
autocorrelation between the presence of industries nearby the residence’s place and perception of air quality.
Localized industries correspond to those with more than 30 employees, and that belong to subsectors 221, 311–313,
321–327, 331–336 and 339 according to the North American Industry Classification System, Table S1: Results of
the Kaiser-Meyer-Olkin (KMO) for measuring adequacy sampling, Table S2: Results of the Kruskal-Wallis H test
for individual and AGEB level variables with responses of air quality perception. Consist of the chi-square test
statistic with ties (X2), the degrees of freedom (df) and the significance level (p-value), Table S3: Socioeconomic
characteristics, health concerns and knowledge of health effects by the perceived air quality, Mexicali, 2019.
Percentages of responses in parenthesis, Table S4: Estimates for perceived changes in air quality (worsened,
unchanged, improved), Table S5: Demographic characteristics of the sample and information from the 2015
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19. Armaş, I. Social vulnerability and seismic risk perception. Case study: The historic center of the Bucharest
Municipality/Romania. Nat. Hazards 2008, 47, 387–410. [CrossRef]

http://dx.doi.org/10.1787/9789264257474-en
https://www.who.int/phe/publications/air-pollution-global-assessment/en/
https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/airpollution/data/en/
https://apps.who.int/iris/handle/10665/204715
http://dx.doi.org/10.1038/s41558-017-0012-x
http://dx.doi.org/10.1136/jech.2003.019471
http://dx.doi.org/10.3390/ijerph14091048
http://dx.doi.org/10.1016/j.scs.2018.07.011
http://dx.doi.org/10.1016/j.envint.2014.01.017
http://www.ncbi.nlm.nih.gov/pubmed/24607502
http://dx.doi.org/10.1111/ecoj.12273
http://dx.doi.org/10.1515/reveh-2015-0070
http://www.ncbi.nlm.nih.gov/pubmed/26943599
http://dx.doi.org/10.3390/ijerph14101243
http://dx.doi.org/10.1038/s41467-019-09155-4
http://www.ncbi.nlm.nih.gov/pubmed/30874557
http://dx.doi.org/10.1007/s12403-019-00310-2
http://dx.doi.org/10.1007/s00038-014-0608-0
http://www.ncbi.nlm.nih.gov/pubmed/25255913
http://dx.doi.org/10.1007/s11069-008-9229-3


Int. J. Environ. Res. Public Health 2020, 17, 4616 19 of 22

20. Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84,
241–261. [CrossRef]

21. Ge, Y.; Zhang, H.; Dou, W.; Chen, W.; Liu, N.; Wang, Y.; Shi, Y.; Rao, W. Mapping Social Vulnerability to Air
Pollution: A Case Study of the Yangtze River Delta Region, China. Sustainability 2017, 9, 109. [CrossRef]

22. Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals.
Nature 2016, 534, 320–322. [CrossRef]

23. Longhurst, J.; Barnes, J.; Chatterton, T.; De Vito, L.; Everard, M.; Hayes, E.P.; Williams, B. Analysing air
pollution and its management through the lens of the un sustainable development goals: A review and
assessment. WIT Trans. Ecol. Environ. 2018, 230, 3–14. [CrossRef]

24. Pu, S.; Shao, Z.; Fang, M.; Yang, L.; Liu, R.; Bi, J.; Ma, Z. Spatial distribution of the public’s risk perception for
air pollution: A nationwide study in China. Sci. Total Environ. 2019, 655, 454–462. [CrossRef]

25. Bickerstaff, K.; Walker, G. Clearing the smog? Public responses to air-quality information. Local Environ.
1999, 4, 279–294. [CrossRef]

26. Bickerstaff, K. Risk perception research: Socio-cultural perspectives on the public experience of air pollution.
Environ. Int. 2004, 30, 827–840. [CrossRef] [PubMed]

27. Bickerstaff, K.; Walker, G. Public understandings of air pollution: The ‘localisation’ of environmental risk.
Glob. Environ. Chang. 2001, 11, 133–145. [CrossRef]

28. Oltra, C.; Sala, R. Perception of risk from air pollution and reported behaviors: A cross-sectional survey
study in four cities. J. Risk Res. 2018, 21, 869–884. [CrossRef]

29. Kim, M.; Yi, O.; Kim, H. The role of differences in individual and community attributes in perceived air
quality. Sci. Total Environ. 2012, 425, 20–26. [CrossRef]

30. Liu, X.; Zhu, H.; Hu, Y.; Feng, S.; Chu, Y.; Wu, Y.; Wang, C.; Zhan, Y.; Yuan, Z.; Lu, Y. Public’s Health Risk
Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang.
Int. J. Environ. Res. 2016, 13, 845. [CrossRef]

31. Boso, À.; Álvarez, B.; Oltra, C.; Hofflinger, A.; Vallejos-Romero, A.; Garrido, J. Examining Patterns of Air
Quality Perception: A Cluster Analysis for Southern Chilean Cities. SAGE Open 2019, 9, 1–11. [CrossRef]

32. Ramírez, O.; Mura, I.; Franco, J.F. How Do People Understand Urban Air Pollution? Exploring Citizens’
Perception on Air Quality, Its Causes and Impacts in Colombian Cities. Open J. Air Pollut. 2017, 6, 1–17.
[CrossRef]

33. Catalán-Vázquez, M.; Riojas-Rodríguez, H.; Jarillo-Soto, E.C.; Delgadillo-Gutiérrez, H.J. Percepción de riesgo
a la salud por contaminación del aire en adolescentes de la Ciudad de México. Salud Publica Mex. 2009, 51,
148–156. [CrossRef]

34. Peng, M.; Zhang, H.; Evans, R.D.; Zhong, X.; Yang, K. Actual Air Pollution, Environmental Transparency,
and the Perception of Air Pollution in China. J. Environ. Dev. 2009, 28, 78–105. [CrossRef]

35. Infante, C.; Idrovo, A.J.; Sánchez-Domínguez, M.S.; Vinhas, S.; González-Vázquez, T. Violence committed
against migrants in transit: Experiences on the Northern Mexican Border. J. Immigr. Minor Health 2011, 14,
449–459. [CrossRef]

36. Carruthers, D. Environmental Justice in Latin America: Problems, Promise and Practice; Carruthers, D., Ed.;
MIT Press: Cambridge, MA, USA, 2008; pp. 136–160.

37. Meza, L.M.; Quintero, M.; García, R.; Ramírez, J. Estimación de Factores de Emisión de PM10 y PM2.5, en vías
urbanas en Mexicali, Baja California, México. Información Tecnológica 2010, 21, 45–56. [CrossRef]

38. Osornio-Vargas, A.R.; Serrano, J.; Rojas-Bracho, L.; Miranda, J.; Garcia-Cuellar, C.; Reyna, M.A.;
Sánchez-Pérez, Y. In vitro biological effects of airborne PM2.5 and PM10 from a semi-desert city on the
Mexico-US border. Chemosphere 2011, 83, 618–626. [CrossRef] [PubMed]

39. Wilder, M.; Scott, C.A.; Pineda, N.P.; Varady, R.G.; Garfin, G.M.; McEvoy, J. Adapting Across Boundaries:
Climate Change, Social Learning, and Resilience in the U.S.- Mexico Border Region. Ann. Am. Assoc. Geogr.
2010, 100, 917–928. [CrossRef]

40. Lusk, M.; Staudt, K.; Moya, E.M. Social Justice in the US-Mexico Border Region, 1st ed.; Springer: New York,
NY, USA, 2012; pp. 3–38, ISBN 978-94-007-4150-8.

41. Heyman, J. Environmental issues at the US-Mexico border and the unequal territorialization of value.
In Rethinking Environmental History: World-Systems History and Global Environmental Change; Hornberg, A.J.,
McNeill, J.R., Martinez-Alier, J., Eds.; Altamira Press: Lanham, UK, 2007; pp. 327–343.

http://dx.doi.org/10.1111/1540-6237.8402002
http://dx.doi.org/10.3390/su9010109
http://dx.doi.org/10.1038/534320a
http://dx.doi.org/10.2495/AIR180011
http://dx.doi.org/10.1016/j.scitotenv.2018.11.232
http://dx.doi.org/10.1080/13549839908725600
http://dx.doi.org/10.1016/j.envint.2003.12.001
http://www.ncbi.nlm.nih.gov/pubmed/15120202
http://dx.doi.org/10.1016/S0959-3780(00)00063-7
http://dx.doi.org/10.1080/13669877.2016.1264446
http://dx.doi.org/10.1016/j.scitotenv.2012.03.016
http://dx.doi.org/10.3390/ijerph13090845
http://dx.doi.org/10.1177/2158244019863563
http://dx.doi.org/10.4236/ojap.2017.61001
http://dx.doi.org/10.1590/S0036-36342009000200011
http://dx.doi.org/10.1177/1070496518821713
http://dx.doi.org/10.1007/s10903-011-9489-y
http://dx.doi.org/10.4067/S0718-07642010000400007
http://dx.doi.org/10.1016/j.chemosphere.2010.11.073
http://www.ncbi.nlm.nih.gov/pubmed/21168895
http://dx.doi.org/10.1080/00045608.2010.500235


Int. J. Environ. Res. Public Health 2020, 17, 4616 20 of 22

42. Mollick, A.V.; Cortez-Rayas, A.; Olivas-Moncisvais, R.A. Local labor markets in U.S.–Mexican border cities
and the impact of maquiladora production. Ann. Reg. Sci. 2006, 40, 95–116. [CrossRef]

43. Norman, L.M.; Villareal, M.L.; Lara-Valencia, F.; Yuan, Y.; Nie, W.; Wilson, S.; Amaya, G.; Sleeter, R. Mapping
socio-environmentally vulnerable populations access and exposure to ecosystem services at the U.S.–Mexico
borderlands. Appl. Geogr. 2012, 34, 413–424. [CrossRef]

44. INEGI. Censo de Población y Vivienda, Instituto Nacional de Estadística y Geografía, México. 2010. Available
online: Inegi.org.mx/programas/ccpv/2010/ (accessed on 5 April 2020).

45. García, O.R.; Jáuregui, E.; Toudert, D.; Tejeda, A. Detection of the urban heat island in Mexicali, B.C.,
Mexico and its relationship with land use. Atmósfera 2007, 20, 111–131.

46. Rojas-Caldelas, R.; Peña-Salmon, C.; Corona-Zambrano, E.; Arias-Vallejo, A.; Leyva-Camacho, O.
Environmental Sustainability Agenda: Metropolitan Area of Mexicali, Baja California, Mexico. WIT Trans.
Ecol. Environ. 2013, 173, 267–277. [CrossRef]

47. INECC. Informe Nacional de Calidad del Aire 2017, México. Coordinación General de Contaminación y Salud
Ambiental, Dirección de Investigación de Calidad del Aire y Contaminantes Climáticos; Instituto Nacional de
Ecología y Cambio Climático: Ciudad de México, Mexico, 2018. Available online: https://www.gob.mx/

inecc/prensa/inecc-pone-a-disposicion-el-informe-nacional-de-calidad-del-aire-2017?idiom=es (accessed on
5 April 2020).

48. Quintero-Nuñez, M.; Sweedler, A. Air quality evaluation in the Mexicali and Imperial Valleys as an element
for an Outreach Program. In Imperial-Mexicali Valleys: Development and Environment of the U.S.-Mexican
Border Region; Collins, K., Ed.; Institute for Regional Studies of the Californias and SDSU Press: San Diego,
CA, USA, 2004; pp. 263–280.

49. SEMARNAT & EPA. Programa Ambiental México-Estados Unidos: Frontera. 2020. Available online: https:
//www.gob.mx/semarnat/acciones-y-programas/publicaciones-del-programa (accessed on 5 April 2020).

50. Canales-Rodríguez, M.; Quintero-Nuñez, M.; Castro-Romero, T.G.; García-Cueto, R.O. Las partículas
respirables PM10 y su composición química en la zona urbana y rural de Mexicali, Baja California en México.
Información Tecnológica 2014, 25, 13–22. [CrossRef]

51. Eades, L. Air pollution at the US-Mexico border: Strengthening the framework for bilateral cooperation.
J. Public Int. Aff. 2018, 29, 64–78.

52. Jerrett, M.; Gale, S.; Kontgis, C. Spatial Modeling in Environmental and Public Health Research. Int. J.
Environ. Res. Public Health 2010, 7, 1302–1329. [CrossRef]

53. Téllez-Rojo, M.M.; Rothenberg, S.J.; Texcalac-Sangrador, J.L.; Just, A.C.; Kloog, I.; Rojas-Saunero, L.P.;
Gutiérrez-Avila, I.; Bautista-Arredondo, L.F.; Tamayo-Ortiz, M.; Romero, M. Children’s acute respiratory
symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City
Metropolitan Area. Environ. Res. 2020, 180, 108868. [CrossRef] [PubMed]

54. Evans, G.W.; Kantrowitz, E. Socioeconomic status and health: The potential role of environmental risk
exposure. Annu. Rev. Public Health 2002, 23, 303–331. [CrossRef] [PubMed]

55. Ho, H.C.; Wong, M.S.; Yang, L.; Chan, T.C.; Bilal, M. Influences of socioeconomic vulnerability and intra-urban
air pollution exposure on short-term mortality during extreme dust events. Environ. Pollut 2018, 155–162.
[CrossRef] [PubMed]

56. Cortinovis, I.; Vela, V.; Ndiku, J. Construction of a socio-economic index to facilitate analysis of health in data
in developing countries. Soc. Sci. Med. 1993, 36, 1087–1097. [CrossRef]

57. Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1996, 1, 245–276. [CrossRef]
58. Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agr. Econ.

2001, 83, 705–710. [CrossRef]
59. Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22.

[CrossRef]
60. Muñoz-Pizza, D.M.; Villada-Canela, M.; Rivera-Castañeda, P.; Reyna-Carranza, M.A.; Osornio-Vargas, A.;

Martínez-Cruz, A.L. Stated benefits from improved air quality through urban afforestation in an arid city:
A contingent valuation in Mexicali, Baja California, Mexico. Urban For. Urban Green 2020. (under review).

61. INEGI. Directorio Estadístico Nacional de Unidades Económicas (DENUE). Actividades Económicas
Industrials. 2019. Available online: https://www.inegi.org.mx/app/descarga/?ti=6 (accessed on 5 April 2020).

62. Zandbergern, A.; Chakaraborty, J. Improving environmental exposure analysis using cumulative distribution
functions and individual geocoding. Int. J. Health Geogr. 2006, 5, 23. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00168-005-0031-9
http://dx.doi.org/10.1016/j.apgeog.2012.01.006
Inegi.org.mx/programas/ccpv/2010/
http://dx.doi.org/10.2495/SDP130221
https://www.gob.mx/inecc/prensa/inecc-pone-a-disposicion-el-informe-nacional-de-calidad-del-aire-2017?idiom=es
https://www.gob.mx/inecc/prensa/inecc-pone-a-disposicion-el-informe-nacional-de-calidad-del-aire-2017?idiom=es
https://www.gob.mx/semarnat/acciones-y-programas/publicaciones-del-programa
https://www.gob.mx/semarnat/acciones-y-programas/publicaciones-del-programa
http://dx.doi.org/10.4067/S0718-07642014000600003
http://dx.doi.org/10.3390/ijerph7041302
http://dx.doi.org/10.1016/j.envres.2019.108868
http://www.ncbi.nlm.nih.gov/pubmed/31711659
http://dx.doi.org/10.1146/annurev.publhealth.23.112001.112349
http://www.ncbi.nlm.nih.gov/pubmed/11910065
http://dx.doi.org/10.1016/j.envpol.2017.12.047
http://www.ncbi.nlm.nih.gov/pubmed/29288928
http://dx.doi.org/10.1016/0277-9536(93)90127-P
http://dx.doi.org/10.1207/s15327906mbr0102_10
http://dx.doi.org/10.1111/0002-9092.00194
http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x
https://www.inegi.org.mx/app/descarga/?ti=6
http://dx.doi.org/10.1186/1476-072X-5-23
http://www.ncbi.nlm.nih.gov/pubmed/16725049


Int. J. Environ. Res. Public Health 2020, 17, 4616 21 of 22

63. Chakraborty, J.; Maantay, J.A. Proximity Analysis for exposure assessment in environmental health justice
research. In Geospatial Analysis of Environmental Health; Maantay, J., McLafferty, S., Eds.; Geotechnologies and
the Environment Series; Springer: Dordrecht, The Netherlands, 2011; pp. 111–138.

64. Brody, S.D.; Peck, B.M.; Highfield, W.E. Examining Localized Patterns of Air Quality Perception in Texas:
A Spatial and Statistical Analysis. Risk Anal. 2004, 24, 1561–1574. [CrossRef]

65. Huang, L.; Rao, C.; van der Kuijp, T.J.; Bi, J.; Liu, Y. A comparison of individual exposure, perception,
and acceptable levels of PM2.5 with air pollution policy objectives in China. Environ. Res. 2017, 157, 78–86.
[CrossRef]

66. Schmitz, S.; Weiand, L.; Becker, S.; Niehoff, N.; Schwartzbach, F.; von Schneidemesser, E. An assessment of
perceptions of air quality surrounding the implementation of a traffic-reduction measure in a local urban
environment. Sustain. Cities Soc. 2018, 41, 525–537. [CrossRef]

67. Reames, T.G.; Bravo, M.A. People, place and pollution. Investigating relationships between air quality
perceptions, health concerns, exposure, and individual-and-are-level characteristics. Environ. Int. 2019, 122,
244–255. [CrossRef] [PubMed]

68. Vargha, A.; Delaney, H.D. The Kruskal-Wallis Test and Stochastic Homogeneity. J. Edu. Behav. Stat. 1998, 23,
170–192. [CrossRef]

69. Wolfe, R.; Gould, W. An Approximate Likelihood-Ratio Test for Ordinal Response Models; Stata Technical
Bulletin; StataCorp Lp: College Station, TX, USA, 1998; Volume 7, pp. 24–27. Available online: http:
//stata-press.com/journals/stbcontents/stb42.pdf (accessed on 5 April 2020).

70. Hill, R.C.; Griffiths, W.E.; Lim, G.C. Qualitative and Limited Dependent Variable Models. In Principles of
Econometrics, 5th ed.; John Wiley & Sons: New York, NY, USA, 2018; pp. 702–718.

71. Encuesta Nacional de Ingresos y Gastos de los Hogares ENIGH 2019. Instituto Nacional de Estadística
y Geografía, México. Available online: https://www.inegi.org.mx/programas/enigh/nc/2018/ (accessed on
5 April 2020).

72. World Development Indicators, The World Bank Databank. 2019. Available online: https://databank.
worldbank.org/reports.aspx?source=2&series=PA.NUS.FCRF&country= (accessed on 15 January 2020).

73. Corona Zambrano, E.A.; Rojas-Caldelas, R.I. Environmental Planning and Management of Air Quality:
The Case of Mexicali, Baja California, Mexico. WIT Trans. Ecol. Environ. 2008, 116, 419–427. [CrossRef]

74. Aguilar-Dodier, L.C.; Castillo, J.E.; Quintana, J.E.P.; Montoya, L.D.; Molina, L.T.; Zavala, M.; Almanza-Veloz, V.;
Rodríguez-Ventura, J.G. Spatial and temporal evaluation of H2S, SO2 and NH3 concentrations near Cerro
Prieto geothermal power plant in Mexico. Atmos. Pollut. Res. 2020, 11, 94–104. [CrossRef]

75. Grineski, S.E.; Collins, T.W. Exploring patterns of environmental injustice in the Global South: Maquiladoras
in Ciudad Juárez, Mexico. Popul. Environ. 2008, 29, 247–270. [CrossRef]

76. Grineski, S.E.; Juárez-Carillo, P.M. Social Justice in the U.S.–Mexico Border Region; Lusk, M., Staudt, K., Moya, E.,
Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 179–198.

77. Agenda 2030, Estrategia Nacional para la Implementación de la Agenda 2030 en México. 2019. Available
online: https://www.gob.mx/agenda2030/documentos/estrategia-nacional-de-la-implementacion-de-la-
agenda-2030-para-el-desarrollo-sostenible-en-mexico?idiom=es (accessed on 5 April 2020).

78. Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric
analysis. J. Clean. Prod. 2016, 112, 1443–1453. [CrossRef]

79. Dong, D.; Xu, X.; Xu, W.; Xie, J. The Relationship Between the Actual Level of Air Pollution and Residents’
Concern about Air Pollution: Evidence from Shanghai, China. Int. J. Environ. Res. Public Health 2019, 16, 4784.
[CrossRef]

80. Imran, M.; Sumra, K.; Abbas, N.; Majeed, I. Spatial distribution and opportunity mapping: Applicability of
evidence-based policy implications in Punjab using remote sensing and global products. Sustain. Cities Soc.
2019, 50, 101652. [CrossRef]

81. Elliott, S.J.; Cole, D.C.; Krueger, P.; Voorberg, N.; Wakefield, S. The power of perception: Health risk attributed
to air pollution in an urban industrial neighborhood. Risk Anal. 1999, 19, 621–634. [CrossRef] [PubMed]

82. Ley-García, J.; Denegri de Dios, F.M.; Ortega-Villa, L.M. Spatial dimension of urban hazardscape perception:
The case of Mexicali, Mexico. Int. J. Disaster Risk Reduct. 2015, 14, 487–495. [CrossRef]

http://dx.doi.org/10.1111/j.0272-4332.2004.00550.x
http://dx.doi.org/10.1016/j.envres.2017.05.012
http://dx.doi.org/10.1016/j.scs.2018.06.011
http://dx.doi.org/10.1016/j.envint.2018.11.013
http://www.ncbi.nlm.nih.gov/pubmed/30449629
http://dx.doi.org/10.3102/10769986023002170
http://stata-press.com/journals/stbcontents/stb42.pdf
http://stata-press.com/journals/stbcontents/stb42.pdf
https://www.inegi.org.mx/programas/enigh/nc/2018/
https://databank.worldbank.org/reports.aspx?source=2&series=PA.NUS.FCRF&country=
https://databank.worldbank.org/reports.aspx?source=2&series=PA.NUS.FCRF&country=
http://dx.doi.org/10.2495/AIR080421
http://dx.doi.org/10.1016/j.apr.2019.09.019
http://dx.doi.org/10.1007/s11111-008-0071-z
https://www.gob.mx/agenda2030/documentos/estrategia-nacional-de-la-implementacion-de-la-agenda-2030-para-el-desarrollo-sostenible-en-mexico?idiom=es
https://www.gob.mx/agenda2030/documentos/estrategia-nacional-de-la-implementacion-de-la-agenda-2030-para-el-desarrollo-sostenible-en-mexico?idiom=es
http://dx.doi.org/10.1016/j.jclepro.2015.05.005
http://dx.doi.org/10.3390/ijerph16234784
http://dx.doi.org/10.1016/j.scs.2019.101652
http://dx.doi.org/10.1111/j.1539-6924.1999.tb00433.x
http://www.ncbi.nlm.nih.gov/pubmed/10765426
http://dx.doi.org/10.1016/j.ijdrr.2015.09.012


Int. J. Environ. Res. Public Health 2020, 17, 4616 22 of 22

83. Calvillo, N.; Garnett, E. Data intimacies: Building infrastructures for intensified embodied encounters with
air pollution. Sociol. Rev. 2019, 67, 340–356. [CrossRef]

84. Yang, J.; Zou, L.; Lin, T.; Wu, Y.; Wang, H. Public willingness to pay for CO2 mitigation and the determinants
under climate change: A case study of Suzhou, China. J. Environ. Manag. 2014, 146, 1–8. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0038026119830575
http://dx.doi.org/10.1016/j.jenvman.2014.07.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Air Pollution in the Context of Sustainable Development 
	Air Quality Perception 

	Methods 
	Study Site 
	Air Pollution Data and the Exposure Estimation Model 
	Social Vulnerability Index 
	Spatial Analysis 
	Data Collection and Statistical Models of Individual Socioeconomic Characteristics and Air Quality Perception 
	Data Collection from the Survey 
	Statistical Analysis 


	Results 
	Estimation and Spatial Distribution of PM10 Exposure 
	Estimation of Social Vulnerability 
	Spatial Distribution of Social Vulnerability and Autocorrelation with Estimated Exposure to PM10 
	Descriptive Statistics and Spatial Distribution of Air Quality Perception 
	Description of Individual Responses by Air Quality Perceived 
	Spatial Distribution of Air Quality Perception, Estimated Exposure to PM10 and Stationary Sources of Pollution 

	Statistical Model for the Association between Perceived Air Quality, Socioeconomic Attributes, and Estimated Exposure to PM10 

	Discussion 
	Linking Air Pollution and Social Vulnerability 
	The Association of Air Pollution, Socioeconomic Attributes and Air Quality Perception 
	Limitations 

	Conclusions 
	References

