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Abstract: Diabetic gastroenteropathy is a common complication, which develops in patients with
long-term diabetes. The pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropep-
tide known for its cytoprotective properties and plays an important role in neuronal development,
neuromodulation and neuroprotection. The present study was designed to elucidate, for the first time,
the impact of prolonged hyperglycaemia conditions on a population of PACAP-like immunoreactive
neurons in selected parts of the porcine gastrointestinal tract. The experiment was conducted on
10 juvenile female pigs assigned to two experimental groups: The DM group (pigs with streptozocin-
induced diabetes) and the C group (control pigs). Diabetes conditions were induced by a single
intravenous injection of streptozocin. Six weeks after the induction of diabetes, all animals were
euthanised and further collected, and fixed fragments of the stomach, duodenum, jejunum, ileum
and descending colon were processed using the routine double-labelling immunofluorescence tech-
nique. Streptozotocin-induced hyperglycaemia caused a significant increase in the population of
PACAP-containing enteric neurons in the porcine stomach, small intestines and descending colon.
The recorded changes may result from the direct toxic effect of hyperglycaemia on the ENS neurons,
oxidative stress or inflammatory conditions accompanying hyperglycaemia and suggest that PACAP
is involved in regulatory processes of the GIT function in the course of diabetes.
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1. Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterised by hypergly-
caemia resulting from defects in insulin secretion, insulin action (or both) and is one of
the most commonly encountered endocrinopathies worldwide. The International Dia-
betes Federation (IDF) reports that there were 424 million cases of diabetes in 2017. It is
estimated that the number of cases in 2040 will increase significantly and will amount to
642 million [1]. Previous studies have shown that hyperglycaemia evokes chronic compli-
cations by vascular endothelium damage, inflammatory conditions and several organic
dysfunctions [2]. Diabetic gastroenteropathy is a common complication that develops in
patients with long-term diabetes. Clinical symptoms including abdominal pain, vomiting,
heartburn, diarrhoea and obstipation have been confirmed in diabetic patients, especially
in poorly controlled glycaemia [2,3]. Although gastroenteropathy contributes to lowering
the quality of life and hinders proper glycaemic control, knowledge of its pathophysiology
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is still very fragmented. There is evidence suggesting that autonomic neuropathy is the
main reason for these disturbances [4].

The enteric nervous system (ENS) is one of the parts of the autonomic nervous system
located in the wall of the gastrointestinal tract, which is characterised by a multitude
of neurons in its composition and an extraordinary richness of neurotransmitters [5].
These features allow ENS considerable autonomy in the control of many important func-
tions of the digestive tract, such as motor activity, secretion and circulation processes as well
as local inflammatory conditions without the participation of the central nervous system
(CNS) [5,6]. The structure and arrangement of individual plexuses in particular parts of the
gastrointestinal tract (GIT) depend on the species. In large mammals, two types of plexuses
can be found in the oesophagus and stomach: Myenteric plexus (MP)—responsible mainly
for the regulation of motor activity and submucous plexus (SP)—controlling secretory
processes. In the further parts of the GIT (small and large intestines), there are two sub-
mucous plexuses: Inner submucous plexus (ISP) and outer submucous plexus (OSP) [6,7].
It should also be emphasised that changes in the neurochemical characteristics of ENS
neurons in response to pathological stimuli are an important element of the so-called
neuronal plasticity [6]. In light of previous research, neuroactive substances synthesised
and released by ENS neurons may be an important element of the protective mechanism
against harmful factors like hyperglycaemia [6–8].

The pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide,
isolated for the first time from an ovine hypothalamus extract [9]. Two biologically active
forms, a 38-amino-acid-peptide (PACAP-38) and the N-terminal 27-amino-acid peptide
(PACAP-27), are known so far [9,10]. PACAP shows high sequence homology with vasoac-
tive intestinal peptide (VIP) and is classified as a member of the VIP/glucagon/secretin
superfamily [10]. PACAP is widely expressed in the peripheral and central nervous sys-
tem (CNS) [10,11]. The presence of PACAP was also confirmed in the digestive system,
including neuroendocrine cells, intramural neurons and nerve fibres, the pancreas and the
liver, where it regulates the secretion of digestive juices, smooth muscle contraction, cell
migration and proliferation [6,12–15]. In addition, PACAP is known for its cytoprotective
properties and plays an important role in neuronal development, neuromodulation and neu-
roprotection [16]. Accumulating evidence indicates the anti-apoptotic, anti-inflammatory
and antioxidant effects of PACAP in many experimental models of inflammatory and de-
generative diseases [6,13,16,17]. Furthermore, recent studies provide evidence that PACAP
has a positive effect on glucose-stimulated insulin secretion and glucose tolerance, stimu-
lates proliferation of beta-cells and may prevent diabetes-related organ complications, such
as micro- and macroangiopathy, retinal dysfunction, neuropathy and insufficient insulin
secretion [18,19].

Animal models play a crucial role in the detection and characterisation of disease
pathophysiology and target identification in the study of new therapeutic agents in vivo.
The pig is an omnivorous species whose gastrointestinal anatomy and physiological pro-
cesses are very similar to those of humans and is a widely used research model for studying
disorders of the GIT [20]. Streptozotocin (STZ) is one of the most potent diabetogenic chem-
icals used in the induction of diabetes. STZ, as a powerful alkylating agent, leads to
deoxyribonucleic acid breaks in the beta cells, resulting in the induction of insulinopoenic
diabetes [21]. Pigs with streptozotocin-induced diabetes appear to be a very useful ani-
mal model in studies designed to assess the impact of hyperglycaemia on ENS neurons.
Thus, the present study was designed to elucidate, for the first time, the impact of pro-
longed hyperglycaemia conditions on a population of PACAP-like immunoreactive (LI)
neurons in selected parts of the porcine gastrointestinal tract.

2. Results
2.1. Control of Glycaemia

Before the administration of STZ, the mean value of serum glucose level was com-
parable in both animal groups and was within the reference standards for this species
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(5.01 ± 0.10 mmol/L in the C group and 5.03 ± 0.10 mmol/L in the DM group, respec-
tively). Throughout the experiment, the blood glucose level in the control pigs remained
constant and averaged 5.09 ± 0.14 mmol/L. In turn, in pigs from the DM group after STZ
injection, an increased level of glucose in the blood was observed (Figure 1). Detailed
data were described previously by Bulc at al. [8]. In general, hyperglycaemia persisted
for six weeks until euthanasia of the animals and the average glucose level in the blood
was 20.58 ± 0.55 mmol/L. Despite the hyperglycaemia, the animals were in good general
condition and the use of insulin was not required.
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Figure 1. Serum glucose levels in control and diabetic pigs during the experiment.

2.2. Immunofluorescence Technique
2.2.1. PACAP-LI Neurons in the Porcine Corpus of the Stomach

In the control pigs, the population of PACAP-LI intramural neurons located in the corpus
was sparse. In the myenteric plexus (MP), PACAP-LI neurons constituted 2.33 ± 0.12% of
HuC/D-positive neurons (Figures 2A and 3A). Similarly, in the submucous plexus (SP), only
1.15 ± 0.26% of neurons showed immunoreactivity to PACAP (Figures 2A and 3C). Hypergly-
caemia led to an increase in the number of PACAP-LI neurons in the SP (to 4.74 ± 1.72 %) in
the corpus of the stomach (Figures 2A and 3D). However, in the MP, the value was similar to
that observed in the control group (Figures 2A and 3B).

2.2.2. PACAP-LI Neurons in the Porcine Small Intestine

In the small intestine, PACAP-positive neurons were observed in all of the studied
enteric plexuses and parts of the intestine. In the duodenum, the most numerous population
of PACAP-LI neurons was noted in the OSP (10.50 ± 0.88%) (Figure 2B), with slightly
smaller populations in the ISP (9.60 ± 0.46%) (Figures 2B and 4C) and the MP (9.35 ± 1.18%)
(Figures 2B and 4A). In the jejunum, a higher number of PACAP-positive cell bodies were
detected in the MP (11.29 ± 2.02%) (Figures 2C and 4E) and slightly fewer were detected
in the OSP (9.25 ± 0.70%) (Figures 2C and 4G) and the ISP (6.36 ± 1.89%) (Figure 2C).
In turn, in the ileum, PACAP-LI neurons accounted for 10.96 ± 0.98 % neurons in the MP
(Figures 2D and 4I), 8.50 ± 0.64 % in the ISP (Figures 2D and 4M) and 7.32 ± 1.21 % in the
OSP (Figures 2D and 4K), respectively.

Streptozotocin-induced diabetes evoked alterations in the number of PACAP-LI intramural
neurons in the porcine small intestine (Figure 2). The severity of the changes depended on the
type of plexus examined and its location. In the duodenum, a large increase in the population of
PACAP-LI neurons was observed in the MP (to 18.39 ± 2.10 %) (Figures 2B and 4B) and a slightly
smaller population was observed in the ISP (to 11.25 ± 0.45%) (Figures 2B and 4D). In the jejunum,
an increase was detected in the MP (to 15.64 ± 0.20%) (Figures 2C and 4F) as well as in the OSP
(to 12.05 ± 0.74) (Figures 2C and 4H). In the ileum, the increase was statistically significant in all
types of intramural plexuses (to 19.10 ± 0.98%) in the MP (Figures 2D and 4J), to 11.98 ± 0.93% in
the OSP (Figures 2D and 4L) and to 11.60 ± 1.02 % in the ISP (Figures 2D and 4N), respectively.
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C—PACAP-LI enteric neurons in the jejunum, D—PACAP-LI enteric neurons in the ileum, E—
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Student’s t-test for independent samples (* p < 0.05, ** p < 0.01, and *** p < 0.001). 

Figure 2. Histograms showing the percentage of PACAP- LI neurons in the wall of selected parts of the gastrointestinal
tract in control (grey bars) and diabetic pigs (white bars). (A)—PACAP-LI enteric neurons in the corpus of the stomach,
(B)—PACAP-LI enteric neurons in the duodenum, (C)—PACAP-LI enteric neurons in the jejunum, (D)—PACAP-LI enteric
neurons in the ileum, (E)—PACAP-LI enteric neurons in the descending colon. Significant differences were assessed with
Student’s t-test for independent samples (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the myenteric plexus of 
diabetic pigs, C—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the sub-
mucous plexus of control pigs; D—neurons immunoreactive to HuC/D (panneuronal marker) and 
PACAP in the submucous plexus of diabetic pigs. All pictures were created by digital superimpo-
sition of two colour channels (green for HuC/D and red for PACAP). 
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Figure 3. PACAP-LI enteric neurons in the porcine corpus of the stomach. (A)—neurons immunoreactive to HuC/D
(panneuronal marker) and PACAP in the myenteric plexus of control pigs; (B)—neurons immunoreactive to HuC/D
(panneuronal marker) and PACAP in the myenteric plexus of diabetic pigs, (C)—neurons immunoreactive to HuC/D
(panneuronal marker) and PACAP in the submucous plexus of control pigs; (D)—neurons immunoreactive to HuC/D (pan-
neuronal marker) and PACAP in the submucous plexus of diabetic pigs. All pictures were created by digital superimposition
of two colour channels (green for HuC/D and red for PACAP).
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Figure 4. PACAP-LI enteric neurons in the porcine small intestine. (A)—neurons immunoreactive to HuC/D (panneuronal
marker) and PACAP in the myenteric plexus in the duodenum of control pigs; (B)—neurons immunoreactive to HuC/D
(panneuronal marker) and PACAP in the myenteric plexus in the duodenum of diabetic pigs, (C)—neurons immunoreactive
to HuC/D (panneuronal marker) and PACAP in the inner submucous plexus in the duodenum of control pigs; (D)—neurons
immunoreactive to HuC/D (panneuronal marker) and PACAP in the inner submucous plexus of diabetic pigs; (E)—neurons
immunoreactive to HuC/D (panneuronal marker) and PACAP in the myenteric plexus in the jejunum of control pigs;
(F)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the myenteric plexus in the jejunum of
diabetic pigs; (G)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the outer submucous plexus
in the jejunum of control pigs; (H)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the outer
submucous plexus in the jejunum of diabetic pigs; (I)—neurons immunoreactive to HuC/D (panneuronal marker) and
PACAP in the myenteric plexus in the ileum of control pigs; (J)—neurons immunoreactive to HuC/D (panneuronal
marker) and PACAP in the myenteric plexus in the ileum of diabetic pigs; (K)—neurons immunoreactive to HuC/D
(panneuronal marker) and PACAP in the outer submucous plexus in the ileum of control pigs; (L)—neurons immunoreactive
to HuC/D (panneuronal marker) and PACAP in the outer submucous plexus in the ileum of diabetic pigs; (M)—neurons
immunoreactive to HuC/D (panneuronal marker) and PACAP in the inner submucous plexus in the ileum of control pigs;
(N)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the inner submucous plexus in the ileum
of diabetic pigs. All pictures were created by digital superimposition of two colour channels (green for HuC/D and red
for PACAP).
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2.2.3. PACAP-LI Neuron in the Porcine Descending Colon

In the descending colon, PACAP-LI neurons constituted 8.26 ± 0.76% of HuC/D-positive
neurons in the MP (Figures 2E and 5A), 4.96 ± 0.22% in the OSP (Figures 2E and 5C) and 6.07
± 0.42% in the ISP (Figures 2E and 5E), respectively. Long-term hyperglycaemia triggered an
increase in the number of PACAP-positive neurons in all types of intramural neurons under
investigation (Figure 2). The most significant increase was noted in the MP (to 14.40 ± 3.04%)
(Figures 2E and 5B) and a slightly lower increase was recorded for the OSP (to 6.98 ± 0.53%)
(Figures 2E and 5D) and the ISP (to 9.59 ± 0.35%) (Figures 2E and 5F).
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Figure 5. PACAP- LI enteric neuron in the porcine descending colon. (A)—neurons immunoreactive
to HuC/D (panneuronal marker) and PACAP in the myenteric plexus in the descending colon
of control pigs; (B)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in
the myenteric plexus in the descending colon of diabetic pigs; (C)—neurons immunoreactive to
HuC/D (panneuronal marker) and PACAP in the outer submucous plexus in the descending colon
of control pigs; (D)—neurons immunoreactive to HuC/D (panneuronal marker) and PACAP in the
outer submucous plexus in the descending colon of diabetic pigs; (E)—neurons immunoreactive to
HuC/D (panneuronal marker) and PACAP in the inner submucous plexus in the descending colon
of control pigs; (F)—neurons immunoreactive to HuC/D (pan-neuronal marker) and PACAP in the
inner submucous plexus in the descending colon of diabetic pigs. All pictures were created by digital
superimposition of two colour channels (green for HuC/D and red for PACAP).

3. Discussion

In the present study, for the first time, the influence of streptozotocin-induced diabetes
on PACAP- like immunoreactive enteric neurons was demonstrated. Enteric neurons showing
immunoreactivity to PACAP were visualised in each submucous (SP, ISP and OSP) and myenteric
plexuses in the wall of the entire studied GIT (the corpus of the stomach, small intestines and
descending colon). The obtained results are in agreement with previous findings in mammals
showing PACAP immunoreactivity in enteric neurons and nerve fibres along the entire length of
the digestive tract [6,12–15]. The regional distribution of PACAP in particular sections of the GIT
and innervation density varies somewhat between species [6,12–15]. Nevertheless, the presence
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of PACAP in enteric neural structures supports previous reports on the significant role of
this neuropeptide in the physiology of the alimentary tract. PACAP, together with VIP, as
a non-cholinergic, non-adrenergic inhibitory neurotransmitter, induces relaxation of smooth
muscle in the gastrointestinal wall [22]. Additionally, several studies have shown that PACAP
stimulates pancreatic secretion, hormone release, gastric secretion and active ion transport in the
intestine [13,23]. PACAP demonstrates its biological effect by binding to three G-protein-coupled
receptor subtypes: VPAC1, VPAC2 and PAC1. The PAC1 receptor is considered to be a PACAP-
specific receptor and binds PACAP with high affinity [11]. The presence of PAC1 receptors in
the digestive tract has been described in various animals and humans [11,24–26]. Additionally,
PAC1 immunoreactivity has been shown in the rat gastric and colonic myenteric neurons [25],
which confirmed PACAP engagement in neuronal regulation of the GIT function.

Diabetic gastroenteropathy, as a complication of long-term and inadequately con-
trolled glycaemia in the course of diabetes mellitus, is an increasingly recorded problem
that leads to a significant deterioration in patient life quality [2]. The pathophysiology
of this disorder varies and depends on organs and symptoms. It has been shown that
hyperglycaemia leads to autonomic neuropathy, mainly concerning the vagus nerve but
also other parts of the peripheral nervous system [4]. Other authors have reported a loss of
Interstitial Cell of Cajal (ICC), forming a gastric muscle pacemaker which is manifested
by disorders of gut motility, including dysphagia, gastroparesis and obstructions [2,27].
Motility disorders are also a result of myenteric plexus neuropathy, physiologically in-
volved in the control of smooth muscle activity in the alimentary tract [28]. Although no
clinical symptoms of gastroenteropathy were observed in diabetic pigs, we may suspect
that the high glucose levels may evoked dysfunction of ENS neurons. An increased number
of PACAP-LI enteric neurons in each part of the GIT observed in the present study may
be a response to the neurotoxic effect of hyperglycaemia on the ENS neurons. PACAP
is known for its neuromodulatory and neuroprotective properties [16]. It is involved in
neuronal proliferation and differentiation and axonal growth and development of glial
cells [16–18]. Increased expression of PACAP in the CNS has been noted in disorders
caused by neurotoxic agents, such as ethanol [29], kainic acid [30], oxidative-related fac-
tors [31], beta-amyloid peptide [32] and glucotoxicity [33]. In the GIT, the cytoprotective
effects of PACAP in experimentally induced small bowel ischemia and transplantation
have been reported [34]. Additionally, increased immunoreactivity of PACAP in ENS struc-
tures has been shown during nerve injury [6], NLPZ administration [35] and zearalenone
intoxication [36].

It is also worth mentioning that an imbalance between pro- and anti-oxidative factors
leading to oxidative stress in the course of diabetes is often reported. As a result, neuronal
damage occurs, including a decrease in the density and diameter of axons, degeneration of
Shwann’s cells and changes in endoneurial vascularisation and cell apoptosis [2]. Addi-
tionally, in long-term diabetes, insulin-growth factor I (IGF-I) is reduced, which leads to
atrophic changes in smooth muscles, resulting in an impaired GIT function [37]. The an-
tioxidative effect of PACAP has been identified in various culture studies in vitro and
in various animal models in vivo [10,16,31,38]. Studies of PACAP-deficient mice have
shown that endogenous PACAP plays a crucial role in reducing oxidative stress and its
deficiency leads to severe oxidative damage [38]. Kasica et al. [39] showed that PACAP
has an anti-apoptotic effect on zebrafish hair cells by reducing the cleaved caspase-3 level
and reducing oxidative stress. Furthermore, the antioxidative effect of PACAP on small
intestine INT 407 cells was also shown [40].

It is also likely that the increase in PACAP immunoreactivity in ENS neurons may be due
to local inflammatory conditions that often accompany diabetes [1–3]. Accumulating evidence
indicates that PACAP plays an important role in immunity and inflammation [10–12,16,34].
In experimental ileitis, PACAP exerts an immunomodulatory role through the decreased
activity of T lymphocytes, increased synthesis of anti-inflammatory cytokines and reduction of
oxidative stress [41]. Similarly, in dextran sodium sulphate-induced colitis, PACAP regulates
the levels of inflammatory cytokines [42]. Later, anti-inflammatory and cytoprotective effects of
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the neuropeptide were confirmed in an intestinal autotransplantation model [34]. Additionally,
Gonkowski and Całka [6] showed that natural and chemically induced inflammation leads
to an increase in PACAP immunoreactivity in the wall of the descending colon. Moreover,
gastrointestinal disturbances in diabetic patients are often accompanied by visceral pain [2].
The augmentation of PACAP-27 synthesis observed in the present study correlates well with
the fact that PACAP is a sensory neurotransmitter. Earlier studies demonstrated that PACAP
participates in the transmission of nociceptive stimuli during different pathological states [6,16].

It is also worth noting that although we generally observed an increase in the popula-
tion of PACAP-LI neurons in pigs with STZ-induced diabetes, these changes differed in the
individual plexus and parts of the GIT studied. It has been shown that the role of PACAP
in the GIT is multifunctional and organ-dependent. Their biological role in particular
fragments of the GIT is also dependent on the interaction with the specific type of recep-
tor [6,43]. PACAP as an inhibitory neurotransmitter elicits a dose-dependent relaxation of
smooth muscle, especially in the oesophagus, stomach and large intestine [14,15,43]. It is
also a strong regulatory factor engaged in the control of gastric acid secretion, hormone
and neurotransmitter release and the proliferation of enterochromaffin-like cells [6,15,43].
An increased number of PACAP-LI neurons in MP observed in the present study suggests
that PACAP may be involved in the control of motor function of the small intestines and
the descending colon in the course of diabetes. Furthermore, the increased expression of
PACAP in the submucous plexuses may result from its participation in the control of the
secretory functions of the particular parts of the GIT under hyperglycaemia.

4. Materials and Methods

The experiment was conducted on 10 juvenile female pigs (the White Large Polish
breed, about 20 kg of body weight [b.w.]). After one week of acclimatisation prior to the
experimental procedures, pigs were randomly and equally (five pigs per group) assigned
to two experimental groups, including the DM group (pigs with streptozocin-induced
diabetes) and the C group (control pigs). Diabetes conditions were induced by a single
intravenous injection of streptozocin (STZ) (150 mg/kg of b.w., Sigma-Aldrich, St. Louis,
MO, USA, S0130) as described previously by Bulc et al. [8]. To avoid episodes of sudden
hyperglycaemia induced by STZ administration, animals from the DM group received
250 mL of 50% glucose solution per animal. In turn, pigs from the control group received
only citrate buffer (a solvent for STZ). All procedures on animals were conducted according
to the Act for the Protection of Animals for Scientific or Educational Purposes of 15 January
2015 (Official Gazette 2015, No. 266), applicable in the Republic of Poland, and were
approved by the Local Ethical Committee in Olsztyn (decision number 13/2015/DTN, 30.
10. 2015). During the experiment, pigs had constant access to water and were fed twice a
day (morning and evening). Blood for glucose tests was collected from a capillary on the
ear by an experienced veterinarian before morning feeding. For this purpose, pigs were
restrained in accordance with the procedure prescribed for this species. Immediately after
blood sampling, the blood glucose level was determined by colorimetric measurement
of the glucose concentration using an Accent-200 biochemical analyser (Germany) (wave-
length: 510 nm/670 nm). Measurements were made in both groups before the start of the
experimental procedures, 48 h after the administration of STZ and then once a week for the
duration of the experiment.

On day 43 of the experiment (six weeks after the induction of diabetes with STZ), all
animals were euthanised by intravenous administration of pentobarbital (Vetbutal, Biowet,
Puławy, Poland) and then transcardially perfused with 4% buffered paraformaldehyde
(pH 7.4). Immediately after perfusion, the following tissues were collected for further
research: The corpus of the stomach, small intestines (duodenum, jejunum and ileum) and
the descending colon. The samples were then post-fixed in the same fixative (10 min),
rinsed in phosphate buffer (pH 7.4) for 2 days with daily buffer change and finally placed
in an 18% buffered sucrose solution.



Int. J. Mol. Sci. 2021, 22, 5727 10 of 12

In the next step, 12-µm-thick cryostat sections of the tissue samples were processed
using the routine double-labelling immunofluorescence technique, as described previously
by Palus et al. [44]. In brief, after air-drying at room temperature for 45 min, the sections
were rinsed three times (10 min) in 0.1 M phosphate-buffered saline (PBS, pH 7.4), blocked
with a 10% normal goat serum in PBS with 0.3% Triton X-100 (Sigma, St. Louis, MO, USA)
and 1% bovine serum albumin (BSA; Sigma, St. Louis, MO, USA) for one hour, rinsed three
times in PBS (10 min) and finally incubated overnight at room temperature with primary
antisera raised against Hu C/D (mouse polyclonal, Invitrogen, Waltham, MA, USA, Cat.
No. A-21271, working dilution: 1:1000 used as a pan-neuronal marker) and pituitary
adenylate cyclase-activating peptide (PACAP, guinea pig polyclonal, Peninsula, San Carlos,
CA, USA, Cat. No. T-5039, working dilution: 1:3000). On the next day, the sections were
rinsed three times in PBS (10 min) and incubated with a mixture of the secondary antibody
(Alexa Fluor 488 nm donkey anti-mouse, ThermoFisher Scientific, Waltham, MA, USA; Cat.
No. A21202; working dilatation: 1:1000 and Alexa Fluor 546 nm donkey anti-guinea pig,
ThermoFisher Scientific, Waltham, MA, USA, Cat. No. A11074, working dilution: 1:1000)
for one hour at room temperature. After rinsing in PBS (3 × 10 min), the sections were cov-
ered with a polyethylene glycol/glycerine solution containing DABCO (Sigma, St. Louis,
MO, USA). Negative controls, including pre-absorption for the neuropeptide antisera with
appropriate antigens, as well as the omission and the replacement tests were performed to
eliminate non-specific labelling.

Sections were then examined under an Olympus BX51 microscope and photographed
with a digital monochromatic camera (Olympus XM 10) connected to a PC, equipped with the
cellSens Dimension Image Processing software (Olympus, Hamburg, Germany). The number
of PACAP-positive enteric neurons in all fragments of the studied GIT and the type of enteric
plexus under investigation was established by counting at least 500 neurons with a clearly visible
nucleus immunoreactive to Hu C/D (pan-neuronal marker) (the number of Hu C/D neurons
was assumed as 100%). To avoid double counting of the same neuron, sections separated at least
200 µm away from each other were selected for the study. The obtained results were pooled,
analysed statistically with Statistica 13 (Stat Soft Inc., Tulsa, OK, USA) and expressed as a mean
± standard error of mean (SEM). Significant differences were assessed with the Student’s t-test
for independent samples (* p < 0.05, ** p < 0.01, and *** p < 0.001).

5. Conclusions

Streptozotocin-induced hyperglycaemia caused a significant increase in the population
of PACAP-containing enteric neurons in the porcine stomach, small intestines and descend-
ing colon. The recorded changes may result from the direct toxic effect of hyperglycaemia
on the ENS neurons, oxidative stress or inflammatory conditions accompanying hypergly-
caemia and suggest that PACAP is involved in regulatory processes of the GIT function in
the course of diabetes. PACAP has also been shown to have a beneficial effect in alleviating
disorders of the diabetic retina and in the vascular complications of diabetes. Although nat-
ural PACAP is biologically unstable, pharmacological studies have led to the development
of a metabolically stable PACAP38 analog, acetyl-[Ala15, Ala20]PACAP38-propylamide,
which is a promising therapy for neurodegenerative diseases. Further research may estab-
lish its use in the alleviation of gastrointestinal dysfunction in the course of diabetes.
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