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Post-translational modifications, such as ubiquitylation, need to be tightly controlled to
guarantee the accurate localization and activity of proteins. Ubiquitylation is a dynamic
process primarily responsible for proteasome-mediated degradation of substrate
proteins and crucial for both normal homeostasis and disease. Alterations in
ubiquitylation lead to the upregulation of oncoproteins and/or downregulation of
tumor suppressors, thus concurring in tumorigenesis. PROteolysis-TArgeting
Chimera (PROTAC) is an innovative strategy that takes advantage by the cell’s own
Ubiquitin-Proteasome System (UPS). Each PROTACmolecule is composed by a ligand
that recruits the target protein of interest (POI), a ligand specific for an E3 ubiquitin
ligase enzyme, and a linker that connects these units. Upon binding to the POI, the
PROTAC recruits the E3 inducing ubiquitylation-dependent proteasome degradation
of the POI. To date, PROTAC technology has entered in clinical trials for several human
cancers. Here, we will discuss the advantages and limitations of PROTACs
development and safety considerations for their clinical application. Furthermore,
we will review the potential of PROTAC strategy as therapeutic option in brain
tumor, focusing on glioblastoma.
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INTRODUCTION

The Ubiquitin-Proteasome System
The Ubiquitin-Proteasome System (UPS) is a cellular mechanism essential for maintaining the
correct balance of protein turnover and cell homeostasis (Finley 2009; Hipp et al., 2019). UPS
machinery includes chaperones and components of the proteolytic system (Kim et al., 2013): the first
are required for an accurate protein folding; the latter converge on the 26S proteasome and guarantee
the removal of unfolded and/or damaged proteins. To be targeted for proteasome-mediated
degradation, proteins are covalently tagged with ubiquitin (Ub) moieties. This event requests the
consequential activity of three enzymes: E1 Ub-activating enzyme (E1), E2 Ub-conjugating enzyme
(E2), and E3 Ub-ligase (E3) (Kliza and Husnjak, 2020). First, an Ub molecule is activated by E1 in an
ATP-dependent manner resulting in an E1-Ub conjugate. Then, a trans-thioesterification reaction
allows the transfer of a molecule of Ub from E1 to E2. Lastly, an E3 binds at the same time the E2-Ub
conjugate and the target protein favouring the transfer of Ub from the E2 to the substrate, directly or
indirectly depending on the E3 family involved in the event (Infante et al., 2019; Sharma et al., 2021).
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Both the number of Ub moieties and the lysine linkage of Ub-Ub
conjugation determine the fate of the protein (Welchman et al.,
2005). Ub-tagged substrates are mostly addressed to the
proteasome for degradation (Figure 1).

The UPS is finely regulated by E3 ligases that confer specificity
of ubiquitylation through the recognition of substrates, thus
making these enzymes considerable druggable targets. So far,
several small molecule inhibitors (SMIs) have been designed to
hit E3s. For instance, Mouse double minute two homolog
(Mdm2), the E3 responsible of the ubiquitylation and
degradation of p53, is highly expressed in sarcomas and breast
cancers (~20 and ~15%, respectively) (Karni-Schmidt et al., 2016;
Oliner et al., 2016) and represents a significant drug target in

these tumors. Nutlin-3a, a small inhibitor of Mdm2, binds the
hydrophobic pocket at the N-terminal of Mdm2 necessary for its
binding with p53, preventing Mdm2-p53 interaction and
activating p53 oncosuppressor functions in malignant cells
(Vassilev et al., 2004).

SMIs present some inevitable limitations, including the
possibility to target only a moderate percentage (~20%) and
an exiguous class, mainly enzymes, of human proteins
(Schapira et al., 2019). Since most of disease-driven proteins
are not enzymes, they are considered unconventional therapeutic
targets. The urgent need to develop new strategies to target the
undruggable proteome led to advances in antibody therapy
(Jenkins et al., 2018; Dobosz and Dzieciątkowski 2019),
although the difficulty to hit intracellular proteins still strongly
limits the use of this option. The current emerging and successful
strategy to target proteome is PROteolysis TArgeting Chimera
(PROTAC) technology (Sakamoto et al., 2001; Schapira et al.,
2019).

PROTACs take advantage of cell’s own UPS machinery to
specifically address a protein of interest (POI) towards a
proteasome-mediated degradation (Sakamoto et al., 2001).

PROTAC Technology: The Two Side of the
Coin
PROTACs are heterobifunctional molecules formed by two
ligands connected by a linker. The first ligand (warhead)
interacts with the POI, a different one binds with an E3, and
the linker connects them (Figure 1) (An and Fu 2018). The
proximity between the E3 and the POI mediated by PROTAC
favors the ubiquitylation and catalyzes the degradation of the POI
by the UPS.

PROTAC compounds have been developed more than
20 years ago (Sakamoto et al., 2001) and many efforts have
been made in these 2 decades to improve their effectiveness.
For example, peptide ligands in PROTAC structure have been
modified in small molecules to ameliorate cell permeability
(Schneekloth et al., 2008).

PROTACs show multiple advantages as compared to
traditional SMIs, alongside several limitations. A PROTAC
molecule can catalyse the degradation of multiple POI
molecules, and its pharmacological effect is achieved at very
low dosages compared to SMIs, thus reducing the toxicity. Of
note, proteins considered as “undruggable” could be potentially
targeted by PROTACs. This is relevant especially for
transcription factors (TFs) involved in the progression of
several malignancies (Bai et al., 2019; Zhou et al., 2019). For
example, genomic alterations in c-MYC, FOXO1 or the androgen
receptor (AR) have been described in neuroblastoma, breast, and
prostate cancer, respectively (Bushweller 2019; Yu et al., 2019).
Counteracting their expression through protein degradation
represents a therapeutic strategy for these human
malignancies. In this regard, two PROTACs targeting the AR
and estrogenic receptor (ER) have reached the clinical practice in
two phase I studies for the treatment of prostate and ER-positive
breast cancer, respectively (Mullard 2019), sustaining the results
obtained in this field.

FIGURE 1 | Ubiquitin-proteasome and PROTAC systems. Schematic
representation of the enzymatic cascade of the Ubiquin-Proteasome System
(UPS cascade; left side). Ubiquitylation is triggered by the ATP-dependent
activation of the ubiquitin by E1 activating enzyme. Next, the ubiquitin
(Ub) is bound to the E2 Ub-conjugating enzyme and, subsequently,
transferred to a Lys residue on a substrate protein (S) by an E3-Ub ligase (E3).
The formation of a poly-Ub chain, formed by more than four Ub moieties, can
lead to the degradation of the substrate by the proteasome. PROTAC
components and their mechanism of action (PROTAC; right side). PROTACs
are heterobifunctional small molecules consisting of a ligand specific for the
protein of interest (POI) and another ligand for E3, connected by a linker.
PROTACs work by recruiting an E3 ligase into proximity of a specific POI that
can be tagged with Ub and degraded by the proteasome.
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Additionally, PROTACs can overcome SMIs resistance by
targeting mutated POIs (Burslem et al., 2018; Zhao et al.,
2019; Gonzalez et al., 2020), as well as the resistance resulting
from POIs upregulation (Kregel et al., 2020).

However, some safety concerns associated with PROTACs
need to be taken into consideration before supporting their
entry in clinical practice. PROTACs limitations are mainly
due to on-target and off-target toxicities. The on-target
toxicities are related to the physiological functions of POI.
Some proteins (i.e., kinases) hold enzymatic as well as
scaffold functions, becoming essential for normal cellular
functions. SMIs block only the enzymatic activity of POI,
while the complete degradation induced by PROTACs
interferes with both enzymatic and scaffolding function,
eliciting undesirable consequences (Cromm et al., 2018;
Nunes et al., 2019). Moreover, unlike SMI that can only
partially inhibit the functions of their targets, a potent
PROTAC can completely deplete its POIs. The partial
inhibition consequent to SMIs treatment may be tolerable,
while PROTAC-induced degradation could be harmful if
POIs have essential functions for cell survival (Winter
et al., 2015). The extent of cellular damage depends on the
rate of the depleted protein resynthesis (Chan et al., 2018;
Cromm et al., 2018; Olson et al., 2018; Testa et al., 2018;
Smith et al., 2019). In addition, the inhibition of POIs
mediated by SMIs is transient as opposed to the prolonged
depletion PROTAC-mediated. In this case, the cellular/tissue
context and the target features impact on the benefits or
drawbacks of PROTACs. If a POI has redundant function in
normal tissues, its prolonged degradation couldn’t be
devastating for cells (Mason et al., 2007; Eichhorn et al.,
2014; Khan et al., 2019). On the contrary, targeting a POI
indispensable for physiological cellular activities can cause
on-target toxicities.

Off-target toxicities often arise from the “unintentional”
degradation of proteins. This event may occur when the non-
target protein is not directly bound to the PROTAC but is in
complex with the POI or in its proximity (Hsu et al., 2020).
Since PROTACs form a ternary complex between POI and E3,
a phenomenon known as “Hook effect” can take place. In
particular, the formation of the ternary complexes is inhibited
with high PROTACs concentrations causing an excess of
binary bindings PROTAC-POI or PROTAC-E3, thus
invalidating target degradation (Pettersson and Crews
2019). Furthermore, the generation of PROTAC-E3 binary
complexes can induce the degradation of lower-affinity non-
targeted proteins (Moreau et al., 2020). This event may affect
substrates essential for cellular homeostasis (Schmitt et al.,
2002), or may cause the accumulation of off-target
ubiquitylated proteins saturating the UPS and dysregulating
the proteostasis.

PROTACs Optimization Strategies
PROTAC is a relatively new research field with rapid
developments that, however, still needs laborious
optimization. Biological and physical-chemical properties of
this technology can be fine-tuned. The linker length is a crucial

structural element that can be improved. Too short linkers
may cause a steric clash that disrupts ternary complex, thus
impairing PROTAC activity. Conversely, too long linkers can
give two heads of a PROTAC more motility, thus changing
molecule stability. Moreover, an excessive linker length
increases the molecular weight and reduces cell permeability
of a PROTAC.

The first linker used in PROTAC design has been a flexible
one, such as polyethylene glycol (PEG), which improves
water solubility (Bai et al., 2019; Khan et al., 2019) or
polymethylene chains. Recently, “click chemistry” based on
coppercatalyzed azide-alkyne cycloaddition (CuAAC) and
the Diels–Alder (DA) reaction has been applied in
PROTAC preparation (Wang et al., 2020). The resulting
PROTACs can be faster validated for their degradation
capability and can self-assembly as active molecules in live
cells (Lebraud et al., 2016).

The rigidity of the linker represents another important aspect
that impacts on pharmacokinetic properties and oral
bioavailability of PROTACs (Farnaby et al., 2019; Testa et al.,
2020). Nevertheless, the design of an optimal rigid linker could be
difficult if the cocrystal structure of the ternary complex is
unknown.

The human genome encodes for more than 600 E3s, but
only 1% of them have been explored for substrate degradation
(Khan et al., 2020). Since E3s define target specificity, this
feature could be useful to increase efficacy and decrease
toxicity of the PROTACs. For example, one PROTAC
optimization strategy is based on E3 specific expression in
tissues (i.e. the F-box and leucine-rich repeat protein 16,
FBXL16, is specifically expressed in cerebral cortex (Clifford
et al., 1999)) and/or cellular compartments (i.e. the DDB1- and
CUL4-associated factor 16, DCAF16, localizes only in the
nucleus (Robb et al., 2017).

PROTACs in Human Cancers
Cancer is a multistep process characterized by abnormal
cellular proliferation and dissemination due to genomic
and epigenomic alterations (Hanahan and Weinberg 2011).
The identification of molecular alterations involved in the
oncogenic features has become attractive for the development
of novel therapeutics (Ocaña et al., 2018). The clinical use of
proteasome inhibitors in oncology demonstrates how the
disbalance in protein homeostasis reflects an oncogenic
vulnerability in some malignancies (Inobe and Matouschek
2014; Schapira et al., 2019). Indeed, an accurate proteostasis
is crucial in cells characterized by a high rate of protein
turnover, such as tumor cells, that consequently need a very
efficient and quick protein synthesis and degradation (Bard
et al., 2019; Pohl and Dikic 2019).

Several PROTACs have been developed in the last 20 years,
but unfortunately only few of them are selective for tumor cells.
Many PROTACs recruit E3 ligases that are ubiquitously
expressed in both normal and tumor tissues, thus leading to
on-target toxicities. Multiple strategies can be followed to achieve
the selective degradation of tumor-specific POIs mediated by
PROTACs.
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If the POI is tumor specific, it is possible to target it with any
available E3s expressed in the tumor tissues (Burslem et al., 2019).
Alternatively, if the POI is characteristic of a tumor-derived
tissue, it is possible to optimize PROTACs taking advantages
of any available tissue-specific E3 (Schapira et al., 2019; Sun et al.,
2019). Further, a tumor-associated POI could be expressed in
normal tissues and involved in physiological cell functions but
showing an upregulated expression in cancer tissues. The use of
tumor specific E3s highly expressed in tumor cells, but lowly or
absent expression in normal tissues, could offer an increased
advantage to selectively kill cancer cell, thus minimizing toxicity
to normal tissues. The development of a B-cell lymphoma-extra-
large (BCL-XL) PROTAC is a recent example (Chung et al., 2020;
Kolb et al., 2021).

The availability of public -omics data has incentivized the
identification of tissue-selective E3s (Consortium 2015; Melé
et al., 2015) opening the route to achieve the selective and
tumor specific degradation of a target protein by PROTACs.

Several research groups have recently investigated the activity
of the light-controllable photo-PROTACs, which can be
controlled under visible or UVA light to drive tumor specific
degradation of POIs (Pfaff et al., 2019; Xue et al., 2019; Liu et al.,
2020; Reynders et al., 2020). This strategy can only be
accomplished in a clinical setting using photodynamic therapy
for limited types of cancer.

PROTACs efficacy has been demonstrated in several preclinical
studies (Bai et al., 2019; Khan et al., 2019; Li et al., 2019). Of note,
PROTAC technology has also been shown to stimulate an anticancer
immune response by inducing the presentation of peptides derived
from the degradation of POI to antigen-presenting cells (Moser et al.,
2017; Jensen et al., 2018). Moreover, PROTAC could be used to
generate new MHC-I peptides on the cell surface favouring the
formation of new immunopeptidome “targetable” by T-cell based
therapeutics (Lai et al., 2018).Mass spectrometry analysis can help to
understand and explore the impact of PROTAC treatment on
peptide repertoire of MHC-I presentation and potential
perturbation of biological pathways.

PROTAC strategy can be used to exploit E3s having tumor
suppressor natural substrates (Hines et al., 2019), as well as
PROTAC-incorporation into nanoparticles which can be
incapsulated with antibodies, can help to specifically reach the
tumoral environment and malignant cells (Beck et al., 2017; Niza
et al., 2019; Pillow et al., 2020).

Recently, strategies similar to PROTACs have been developed
to induce the degradation of RNAs (i.e., oncogenic micro-RNAs)
through the recruitment of nucleases. These molecules, known as
ribonuclease Targeting Chimeras (RIBOTACs) stands as
innovative future anticancer therapeutics (Costales et al.,
2020a; Costales et al., 2020b). Overall, PROTACs and similar
technologies stand as promising class of biological drugs useful in
cancer therapy.

PROTACs as Therapeutic Option for
Glioblastoma
Central nervous system (CNS) cancers are a group of
heterogeneous tumor entities with wide differences

regarding the site of onset, molecular biology, clinical
behaviour, and etiology (Kristensen et al., 2019; Lospinoso
Severini et al., 2020). Among them, glioblastoma (GB) is the
most malignant and lethal in adults (Louis et al., 2016).
Classified as grade IV diffuse glioma by the World Health
Organization (WHO), GB encompasses more than 54% of
gliomas with an median survival of about 15 months (Ostrom
et al., 2014; Louis et al., 2016). Current standard therapy for
newly diagnosed GB is based on maximal surgical resection,
followed by radiation and chemotherapy, based on the
administration of temozolomide (TMZ), an oral alkylating
agent (Stupp et al., 2005; Stupp et al., 2009). Despite the
aggressiveness of this therapeutic strategy, it has limited
effectiveness making GB an incurable tumor that often
returns as relapse (Lieberman 2017). The main hallmarks of
this malignancy that hinder its treatments are rapid
progression, invasiveness of cancer cells in the surrounding
region of the brain, inter- and intra-tumoral genetic and
molecular heterogeneity and the presence of drug-resistance
GB stem-like cells (GSCs), which favour tumor relapse
(Brennan et al., 2012; Meyer et al., 2015; Gangoso et al., 2021).

Transcriptomic and genomic profiling have allowed the
identification of genetic alterations patterns affecting molecular
drivers involved in GB tumorigenesis, including epidermal
growth factor receptor (EGFR), phosphatase and tensin
homolog (PTEN), cyclin dependent kinase 4/6 (CDK4/6) and
cyclin dependent kinase inhibitor 2A/B (CDKN2A/B),
neurofibromatosis type 1 (NF1), platelet-derived growth factor
receptor alpha (PDGFRα), and isocitrate dehydrogenase (IDH)
genes (Verhaak et al., 2010; Dunn et al., 2012; Stoyanov and
Dzhenkov 2018).

The delineation of the aberrant molecular networks that
cause the malignant phenotype of GB have highlighted key
processes, which can be therapeutically exploited. So far, several
targeted therapies for GB have been tested, most of which aim to
block growth factor receptors (i.e., EGFR) and downstream
pathways frequently altered in GB (i.e., PI3K/AKT/mTOR
and MAPK/ERK) (Le Rhun et al., 2019). However, none of
these approaches have been formally validated as effective in
clinical trials, likely due to molecular compensatory mechanism,
insufficient target coverage or toxicity (Touat et al., 2017; Le
Rhun et al., 2019). Different immunotherapeutic approaches
have also been investigated for the treatment of GB, but the
presence of the tumor immunosuppressive microenvironment
limits their benefits (Bufalieri et al., 2020a; Weenink et al., 2020;
Bufalieri et al., 2021; Medikonda et al., 2021).

Recently, the UPS is emerging as a promising source for the
development of new therapeutic options for GB, and in
particular PROTACs represent an interesting targeted
therapy for the treatment of this devastating tumor (Bufalieri
et al., 2020b; Scholz et al., 2020; Maksoud 2021; Farrell and
Jarome 2021).

Two different PROTAC strategies able to induce the
degradation of CDK4 and/or CDK6 have been tested in
GB cells. CDK4 and CDK6 are crucial for cell cycle
regulation and are attractive targets for the treatments of
various types of cancers, including GB, frequently
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characterized by a CDK4/6 pathway dysregulation (Network
2008; Brennan et al., 2013; Bronner et al., 2019). In 2019, Zhao
and Burgess tested the activity of PROTACs based on two
selective CDK4/6 inhibitors, palbociclib (Ibrance®, Pfizer, New
York, USA) and ribociclib (Kisqali®, Novartis, Basel,
Switzerland) in breast cancer and GB cell lines (Zhao and
Burgess 2019). These drugs have been approved by US Food
Drug Administration (FDA) as combination therapy for ER-
positive, HER2-negative advanced breast cancer and are
currently used in ongoing clinical trials, including some for
the treatment of GB (NCT03158389; NCT02345824;
NCT02933736; NCT03834740; NCT03355794;
NCT03355794). PROTACs of palbociclib and ribociclib
(called pal-pom and rib-pom, respectively) consist in the
conjugation of these two drugs to pomalidomide (pom), a
cereblon (CRBN) E3 ligand, by cycloadding a known azide
derived from pomalidomide to N-propargyl derivatives of
palbociclib or ribociclib. U87 GB cells treated with pal-pom
and rib-pom at 20–200 nM have a significant depletion of
CDK4 protein levels, showing the effectiveness of these
PROTACs to counteract the aberrant overexpression of this
kinase in GB (Zhao and Burgess 2019). In addition, Su and
others designed and synthesized a PROTAC by linking the
CDK6 inhibitor palbociclib and E3 CRBN recruiter pom,
testing its effect in GB cells (Su et al., 2019). In this study
Nutlin-3b, VH032, and bestatin were also used as recruiting
moiety for the E3 ligases Mdm2 and VHL, and inhibitor of
apoptosis (cIAP), respectively. Interestingly, the authors found
that in U251 GB cells CDK4 and CDK6 were degraded only
with PROTAC recruiting CRBN, but not the other E3s, and
that CDK4 degradation was less significant compared to those
of CDK6. Furthermore, CDK6 degraders with shorter linker
possessed higher degradation capacity, favouring the
recruitment of CRBN towards CDK6 (Su et al., 2019).
Although in-depth studies on the biological effect and anti-
tumor potential of these PROTACs are still needed, these data
suggest the potential application of PROTAC technology for
the specific CDK4/6 degradation for the treatment of GB.

The first in vivo evidence of the potential of PROTACs as
anticancer agents for GB was provided by a recent work in
which the authors exploited the ability of a high-selective histone
deacetylase 6 (HDAC6) inhibitor, J22352, to impair GB tumor
growth (Liu et al., 2019). Indeed, the overexpression of HDAC6
in GB is associated with proliferation and resistance to TMZ, thus
targeting this enzyme stands as a promising strategy for GB
therapeutic interventions (Wang et al., 2016). J22352 shows
PROTAC-like property, leading to the ubiquitylation and
subsequent proteasome degradation of HDAC6. As consequence,
the decrease of HDAC6 expression level significantly inhibits GB
tumor growth in U87MG cells, both in vitro and in vivo, by
increasing autophagic cancer cell death and eliciting the anti-
tumor immune response (Liu et al., 2019).

These pioneering studies on the effects of PROTACs in
GB cells and the evidence that PROTACs are already
developed against oncoproteins relevant for the progression of
this tumor, including EGFR (Zhang et al., 2020; Zhao et al., 2020),
mitogen-activated MAP-kinases (MAPs) (Pandey et al., 2016;

Trauner and Shemet 2019) and bromodomain and extraterminal
(BET) protein BRD4 (Xu et al., 2018; Yang et al., 2019; Hu and
Crews 2021; Yang et al., 2021), suggest the great potential for the
use of this technology for the treatment of GB.

DISCUSSION

In the last two decades, targeting UPS has emerged as an
extraordinary clinical opportunity, leading to the development
of new and effective therapeutic options in human diseases,
especially in cancer.

In this field, PROTAC has been one of the first strategies
developed, aimed to degrade rather than inhibit protein targets.
Thanks to their mechanism of action, PROTACs have shown the
peculiarity to improve current cancer therapies based on the use of
SMIs. Indeed, while SMIs act by occupying pockets on target
proteins in a stoichiometric manner, a single PROTAC molecule
can induce the degradation of its target through many rounds, even
after dissociation of the PROTAC from POI (Lai and Crews 2017).
This mechanism of action provides several advantages (Figure 2).
Foremost PROTACs can be administered at lower dosages
compared to SMIs achieving comparable effects, thus reducing
toxicity. Moreover, PROTACs are less sensitive to drug resistance
compared to traditional drugs. Indeed, PROTACs are potentially
able to degrade multiple subunits of a protein complex, thus
reducing the possibility to develop resistance-mutations in the
protein of interest (Hu and Crews 2021). However, genomic
alterations in the components of the E3s complex can cause
resistance to PROTACs, underling the urgent need to find novel
ligands for other druggable E3 ligases (Ottis et al., 2019; Zhang et al.,
2019).

Given that many PROTACs targets are proteins involved in
oncogenic proliferation and metastasis, PROTAC technology
rapidly moved from laboratory to clinics especially for the
treatment of human cancers (Zeng et al., 2021). At present, two
Phase II clinical trials for the PROTACs ARV-471 and ARV-
110 are ongoing, for the treatment of breast and prostate
cancer, respectively. ARV-471 is an orally available
PROTAC developed by Arvinas for the targeting of ER and
its mutated forms, ERY537S ERD538G, resistant to endocrine
therapy in ER-positive breast cancer (Martin et al., 2017).
ARV-110, another orally available PROTAC, selectively
degrades AR and inhibits pancreatic tumor growth, both in
mice models and patient-derived organoids, better than
enzalutamide, a known AR inhibitor (Neklesa et al., 2019).
ARV-110 have been tested in Phase I clinical trial for
castration-resistant prostate cancer (CRPC) and a Phase II
clinical trial is ongoing to evaluate its pharmacokinetics and
pharmacodynamics as well as its safety and tolerability, in
CRPC patients (Petrylak et al., 2020).

Despite the rapid preclinical development of PROTACs as
novel cancer therapeutics, many aspects need to be addressed.
One of the biggest challenges is that PROTACs have high
molecular weights, often larger than 1,000 Da, which could
limit their cell permeability, pharmacokinetic abilities, oral
bioavailability, and their capability to bypass the blood-brain
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barrier (Figure 2). In particular, this last aspect could represent a
relevant limit for the clinical application of PROTACs in brain
tumors, for which it will be essential to improve drug delivery
systems for PROTACs, such as nano-vehicles, active transporter
or alternative administration regimens (Banks 2016; Dong 2018).

One of the biggest weaknesess in the development of new
PROTACs is the lack of knowledge for many E3s, especially
regarding their tissue-specific expression and correlation to
human diseases. So far, only a few E3s and ubiquitin ligase
binders have been explored for the design of PROTACs. This
aspect raises the need to study the biological functions and
expression of E3 ligases as well as to solve their structures to
accelerate the synthesis of new PROTACs. Moving forward,
chemo-proteomic platforms, DNA-encoded library screening,
and fragment-based ligand discovery will be useful both for
the identification of E3s tissue, tumor, or compartment
specific, and of ligands for incurable disease-related targets
(Jacquemard and Kellenberger 2019). Despite the use of small
molecule binders of only a few E3s, a fast progress has been made
in this field, set the ground for a bright future of PROTACs in
drug discovery and precision medicine. Overall, PROTAC
technology shows unique advantages and great therapeutic

potentials, thus possibly revolutionizing drug development and
providing clinical benefits.
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